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Dynamical independence: Discovering emergent macroscopic processes
in complex dynamical systems
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We introduce a notion of emergence for macroscopic variables associated with highly multivariate microscopic
dynamical processes. Dynamical independence instantiates the intuition of an emergent macroscopic process as
one possessing the characteristics of a dynamical system “in its own right,” with its own dynamical laws distinct
from those of the underlying microscopic dynamics. We quantify (departure from) dynamical independence by
a transformation-invariant Shannon information-based measure of dynamical dependence. We emphasize the
data-driven discovery of dynamically independent macroscopic variables, and introduce the idea of a multiscale
“emergence portrait” for complex systems. We show how dynamical dependence may be computed explicitly
for linear systems in both time and frequency domains, facilitating discovery of emergent phenomena across
spatiotemporal scales, and outline application of the linear operationalization to inference of emergence portraits
for neural systems from neurophysiological time-series data. We discuss dynamical independence for discrete-
and continuous-time deterministic dynamics, with potential application to Hamiltonian mechanics and classical
complex systems such as flocking and cellular automata.

DOI: 10.1103/PhysRevE.108.014304

I. INTRODUCTION

When we observe a murmuration of starlings twisting,
stretching, and wheeling, it is hard to escape the impression
that we are witnessing an individuated dynamical entity quite
distinct from the thousands of individual birds which we
know to constitute the flock. The singular dynamics of the
murmuration as a whole, it seems, “emerges” from the collec-
tive behavior of its constituents [1]. Analogously, the gliders
and particles observed in some cellular automata appear to
emerge as distinct and distinctive dynamical entities from the
collective interactions between cells [2]. In both cases, these
emergent phenomena reveal dynamical structure at coarser
“macroscopic” scales than the “microscopic” scale of interac-
tion between individual components of the system—structure
which is not readily apparent from the microscopic perspec-
tive. Frequently, dynamical interactions at the microscopic
level are reasonably simple and/or well-understood; yet an
appropriate macroscopic perspective reveals dynamics that do
not flow transparently from the micro-level interactions, and,
furthermore, appear to be governed by laws quite distinct from
the microscopic dynamics. For a class of complex systems, it
seems, emergence proffers a window into inherent parsimo-
nious structure at characteristic spatiotemporal scales.
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In both of the above examples emergent structure “jumps
out at us” visually. But this need not be the case, and in general
may not be the case. For example, directly observing the
population activity of large numbers of cortical neurons (e.g.,
via calcium or optogenetic imaging [3]) may not reveal any
visually obvious macroscopic patterning (besides phenomena
such as widespread synchrony), even though this activity
underlies complex organism-level cognition and behavior.
Even in flocking starlings, while distal visual observation
clearly reveals emergent macroscopic structure, might there
be additional emergent structure that would only be appar-
ent from a very different—possibly nonvisual, or otherwise
nonintuitive—perspective?

In this paper we address two key questions regarding emer-
gent properties in complex dynamical systems:

How may we characterize those perspectives

which reveal emergent dynamical structure? (1a)

Knowing the microscopic dynamics, how may

we find these revealing perspectives? (1b)

By providing principled data-driven methods for identifying
emergent structure across spatiotemporal scales, we hope to
enable new insights into many complex systems from brains
to ecologies to societies.

A. Emergence and dynamical independence

Emergence is broadly understood as a gross (macroscopic)
property of a system of interacting elements, which is not
a property of the individual (microscopic) elements them-
selves. A distinction is commonly drawn between “strong”
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and “weak” emergence [4,5]. A strongly emergent macro-
scopic property (i) is in principle not deducible from its
microscopic components, and (ii) has irreducible causal
power over these components [6]. This flavour of emergence
appears to reject mechanistic explanations altogether, and
raises awkward metaphysical issues about causality, such as
how to resolve competition between competing micro- and
macrolevel “downward” causes [7]. By contrast, Bedau [4,
p. 375] characterizes emergent phenomena as “somehow con-
stituted by, and generated from, underlying processes,” while
at the same time “somehow autonomous from underlying
processes” (ibid.). He goes on to define a process as weakly
emergent iff it “can be derived from [micro-level dynamics
and] external conditions but only by simulation.” Weakly
emergent properties are therefore ontologically reducible to
their microscopic causes, though they remain epistemically
opaque from these causes.

We propose a new notion and measure of emergence
inspired by Bedau’s formulation of weak emergence. Dynam-
ical independence shares with weak emergence the aim to
capture the sense in which a flock of starlings seems to have
a “life of its own” distinct from the micro-level interactions
among individual birds, even though there is no mystery that
the flock is in fact constituted by the birds. Following Be-
dau’s formulation, a dynamically independent macroscopic
process is “ontologically reducible” to its microscopic causes,
and downward (physical) causality is precluded. However,
dynamically independent macroscopic processes may display
varying degrees of “epistemic opacity” from their microscopic
causes, loosening the constraint that (weak) emergence rela-
tions can only be understood through exhaustive simulation
(cf. Seth [8]).

Dynamical independence is defined for macroscopic dy-
namical phenomena associated with a microscopic dynamical
system—macroscopic variables—which supervene [9,10] on
the microscopic. Here, supervenience of macro on micro is
operationalized in a predictive sense: that macroscopic vari-
ables convey no information about their own evolution in
time beyond that conveyed by the microscopic dynamics. The
paradigmatic example of such macroscopic variables, and one
which we mostly confine ourselves to in this study, is rep-
resented by the coarse-graining of the microscopic system by
aggregation of microscopic components at some characteristic
scale. Dynamical independence, like supervenience, is framed
in predictive terms: a macroscopic variable is defined to be
dynamically independent if, even while supervenient on the
microscopic process, knowledge of the microscopic process
adds nothing to prediction of the macroscopic process beyond
the extent to which the macroscopic process already self-
predicts (Sec. II C). In the language of Bertschinger et al. [11],
the macroscopic process is “informationally closed” with re-
spect to the microscopic process [12]—see also Sec. V A.
Note that this does not imply that a dynamically independent
process need self-predict well, if indeed at all; see Sec. V C.

To bolster intuition, consider a large group of particles,
such as a galaxy of stars. The system state is described by
the ensemble of position and momentum vectors of the in-
dividual stars in some inertial coordinate system, and the
dynamics by (to a degree sufficient for illustrating the point)
Newtonian gravitation. We may construct a low-dimensional

coarse-grained macroscopic variable by taking the average
position and total momentum (and, if we like, also the angular
momentum and total energy) of the stars in the galaxy. Ele-
mentary physics tells us that this macroscopic variable in fact
self-predicts perfectly without any knowledge of the detailed
microscopic state; it has a “life of its own,” perfectly under-
standable without recourse to the microscopic level. Yet an
arbitrarily concocted coarse-graining—i.e., an arbitrary map-
ping of the microscopic state space to a lower-dimensional
space—will almost certainly not have this property [13]: in-
deed, the vast majority of possible coarse-grainings do not
define dynamically independent processes.

Dynamical independence is defined over the range of
scales from microscopic, through mesoscopic to macroscopic.
It is expressed, and quantified, solely in terms of Shannon
(conditional) mutual information [14], and as such is fully
transformation-invariant; that is, for a physical process it
yields the same quantitative answers no matter how the pro-
cess is measured. Under some circumstances, it may also be
defined in the frequency domain, thus enabling analysis of
emergence across temporal scales. It applies in principle to
a broad range of dynamical systems, continuous and discrete
in time and/or state, deterministic and stochastic. Examples
of interest include neural systems, econometric processes,
Hamiltonian dynamics, cellular automata, flocking, and evo-
lutionary processes. Dynamical independence is also easily
extended to accommodate a dynamically coupled environment
(see Sec. V B); in this study, for clarity we consider only
“closed” microscopic systems with no environmental cou-
pling.

As previously indicated, our specific aims are (1a) to quan-
tify the degree of dynamical independence of a macroscopic
variable, and (1b) given the microlevel dynamics, to discover
dynamically independent macroscopic variables. In the cur-
rent study we address these aims primarily for stochastic
processes in discrete time, and analyze in detail the important
and nontrivial case of stationary linear systems.

The article is organized as follows: in Sec. II we set out our
approach. We present the formal underpinnings of dynami-
cal systems, macroscopic variables and coarse-graining, the
information-theoretic operationalization of dynamical inde-
pendence, its quantification and its properties. We declare an
ansatz on a practical approach to our primary objectives (1). In
Sec. III we specialize to linear stochastic systems in discrete
time and analyze in depth how our ansatz may be realized
for such systems; in particular, we detail how dynamically
independent macroscopic variables for linear systems may be
discovered via numerical optimization. In Sec. IV we discuss
approaches to dynamical independence for deterministic and
continuous-time systems. In Sec. V we summarize our find-
ings, discuss related approaches in the literature, and examine
some potential applications in neuroscience.

II. APPROACH

A. Dynamical systems

We describe a dynamical system by a sequence of variables
Xt taking values in some state space X at times indexed by
t (when considered as a whole, we sometimes drop the time
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index and write just X ). In full generality, the state space might
be discrete or real-valued, and possibly endowed with further
structure (e.g., topological, metric, linear, etc.). Typically, a
microscopic state x ∈ X will represent the high-dimensional
ensemble state of a large number of atomic elements, e.g.,
birds in a flock, molecules in a gas, cells in a cellular automa-
ton, neurons in a neural system, etc. The sequential time index
may be discrete or continuous. The dynamical law, governing
how Xt evolves over time, specifies the system state at time
t given the history of states at prior times t ′ < t ; this spec-
ification may be deterministic or probabilistic. In this study,
we largely confine our attention to discrete-time stochastic
processes, where the Xt , t ∈ Z, are jointly distributed ran-
dom variables. The distribution of Xt is thus contingent on
previously instantiated historical states; that is, on the set
x−

t = {xt ′ : t ′ < t} given that Xt ′ = xt ′ for t ′ < t (throughout,
we use a superscript dash to denote a set of prior states). In
Sec. IV, we discuss extension of dynamical independence to
deterministic and/or continuous-time systems.

B. Macroscopic variables and coarse-graining

Given a microscopic dynamical system Xt , we associate
an emergent phenomenon explicitly with some “macroscopic
variable” associated with the microscopic system. Intuitively,
we may think of a macroscopic variable as a gross perspective
on the system, a “way of looking at it” (cf. Sec. I), or a
particular mode of description of the system [15]. We op-
erationalize this idea in terms of a process Yt that in some
sense aggregates microscopic states in X into common states
in a lower-dimension or cardinality state space Y , with a
consequent loss of information. (We do not rule out that aggre-
gation may occur over time as well as state.) The dimension
or cardinality of Y defines the scale, or “granularity,” of the
macroscopic variable.

The supervenience of macroscopic variables on the micro-
scopic dynamics (Sec. I A) is operationalized in predictive,
information-theoretic terms: We assume that a macroscopic
variable conveys no information about its own future beyond
that conveyed by the microscopic history. Explicitly, we de-
mand the condition

I(Yt : Y −
t | X −

t ) ≡ 0, (2)

where I(· · · ) denotes Shannon (conditional) mutual informa-
tion [14,16]. A canonical example of a macroscopic variable
in the above sense is one of the form Yt = f (Xt ), where f :
X → Y is a deterministic, surjective mapping from the micro-
scopic onto the lower dimensional/cardinality macroscopic
state space (here aggregation is over states, but not over time
[17]). The relation (2) is then trivially satisfied. We refer to this
as coarse-graining, to be taken in the broad sense of dimen-
sionality reduction. Coarse-graining partitions the state space,
“lumping together” microstates in the preimage f −1(y) ⊆ X
of macrostates y ∈ Y , with a concomitant loss of information:
many microstates correspond to the same macrostate.

If the state space X is endowed with some structure (e.g.,
topological, metric, smooth, linear, etc.), then we generally re-
strict attention to structure-preserving mappings (morphisms).
In particular, we restrict coarse-grainings f to epimorphisms
(surjective structure-preserving mappings) [18]. There is a

natural equivalence relation among coarse-grainings: given
f : X → Y , f ′ : X → Y ′, we write

f ′ ∼ f ⇐⇒ ∃ an isomorphism ψ : Y → Y
such that f ′ = ψ ◦ f .

(3)

f and f ′ then lump together the same subsets of microstates.
When we talk of a coarse-graining, we implicitly intend an
equivalence class { f } of mappings X → Y under the equiva-
lence relation (3). In the remainder of this article we restrict
attention to coarse-grained macroscopic variables.

C. Dynamical independence

As we have noted, not every coarse-graining f : X → Y
will yield a macroscopic variable Yt = f (Xt ) which we would
be inclined to describe as emergent (cf. the galaxy example
in Sec. I A). Quite the contrary; for a complex microscopic
system comprising many interacting components, we may
expect that an arbitrary coarse-grained macroscopic variable
will fail to behave as a dynamical entity in its own right, with
its own distinctive law of evolution in time. When applied
to the coarse-grained variable, the response to the question:
What will it do next? will be: Well, without knowing the micro-
scopichistory, we really can’t be sure; unsurprising, perhaps,
as coarse-graining, by construction, loses information.

By contrast, for an emergent macroscopic variable, de-
spite the loss of information incurred by coarse-graining,
the macroscopic dynamics are parsimonious in the following
specific sense: knowledge of the microscopic history adds
nothing to the capacity of the macroscopic variable to self-
predict. Dynamical independence formalizes this parsimony
as follows:

Given jointly stochastic processes (X,Y ),Y is

dynamically independent of X iff, conditional

on its own history,Y is independent of the

history of X. (4)

In information-theoretic terms, Eq. (4) holds (at time t) pre-
cisely when I(Yt : X −

t |Y −
t ) vanishes identically. We recognize

this quantity as the transfer entropy (TE) [19–22] from X to Y
at time t :

Tt (X → Y ) = I(Yt : X −
t |Y −

t ) (5a)

= H(Yt |Y −
t ) − H(Yt | X −

t ,Y −
t ) (5b)

= H(Yt |Y −
t ) − H(Yt | X −

t ); (5c)

[the last equality follows from Eq. (2)] and state formally:

Y is dynamically independent of X at time t

⇐⇒ Tt (X → Y ) ≡ 0. (6)

The definition (6) establishes an information-theoretic con-
dition [23] for dynamical independence of Y with respect
to X ; we further propose the transfer entropy Tt (X → Y )
itself, the dynamical dependence of Y on X , as a quantitative,
nonnegative measure of the extent to which Y departs from
dynamical independence with respect to X at time t [24].
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Dynamical (in)dependence is naturally interpreted in pre-
dictive terms: the un predictability of the process Y at time
t given its own history is naturally quantified by the entropy
rate H(Yt |Y −

t ). We may contrast this with the unpredictability
H(Yt | X −

t ,Y −
t ) of Y given not only its own history, but also

the history of X . Thus, dynamical dependence quantifies the
extent to which X predicts Y over-and-above the extent to
which Y already self-predicts.

The dynamical dependence Tt (X → Y ) will in general be
time-varying, except when all processes are strongly station-
ary. For the remainder of this article we restrict ourselves
to the stationary case and drop the time index subscript. We
note at this stage that in the case that the processes X,Y are
deterministic, mutual information is not well-defined, and dy-
namical independence must be framed differently. We discuss
deterministic systems in Sec. IV.

As a conditional Shannon mutual information [14],
the transfer entropy T(X → Y ) is nonparametric in the sense
that it is invariant with respect to reparametrization of source
and target variables by isomorphisms of the respective state
spaces [21]. Thus, if ϕ is an isomorphism of X and ψ an
isomorphism of Y , then

T[ϕ(X ) → ψ (Y )] ≡ T(X → Y ). (7)

In particular, dynamical (in)dependence respects the equiva-
lence relation (3) for coarse-grainings. This means that (at
least for coarse-grained macroscopic variables) transfer en-
tropy from macro to micro vanishes trivially; i.e., T(Y →
X ) ≡ 0, which we may interpret as the nonexistence of
“downward causation” in this formalism.

To guarantee transitivity of dynamical independence (see
below), we introduce a mild technical restriction on admissi-
ble coarse-grainings to those f : X → Y with the following
property:

∃ an epimorphism u : X → U such that ϕ

= f × u : X → Y × U is an isomorphism. (8)

Intuitively, this means that there is a complementary mapping
u which, along with f itself, defines a nonsingular transfor-
mation of the system. For example, if f is a projection of the
real Euclidean space Rn onto the first m < n coordinates, u
could be taken as the complementary projection of Rn onto the
remaining n − m coordinates (cf. Sec. III). Trivially, Eq. (8)
respects the equivalence relation (3). The restriction holds uni-
versally for some important classes of structured dynamical
systems, e.g., the linear systems analyzed in Sec. III, and also
in general for discrete-state systems; otherwise, it might be
relaxed to obtain at least locally in the state space [25]. We
assume Eq. (8) for all coarse-grainings from now on.

Given property (8), we may apply the transformation ϕ =
f × u and exploit the dynamical dependence invariance (7) to
obtain an equivalent system X ∼ (Y,U ), U = u(X ) in which
the coarse-graining Y becomes a projection of X = Y × U
onto Y , and dynamical dependence is given by

T(X → Y ) = T(Y,U → Y ) = T(U → Y ). (9)

Assuming Eq. (8) for all coarse-grainings and using Eq. (9)
we may show that dynamical independence is transitive:

IfY = f (X ) is dynamically independent of X

and Z = g(Y ) is dynamically independent ofY, (10)

then Z = (g ◦ f )(X ) is dynamically independent of X.

We provide a formal proof in Appendix A. We have thus
a partial ordering on the set of coarse-grained dynamically
independent macroscopic variables, under which they may po-
tentially be hierarchically nested at increasingly coarse scales.

At this point, we note the intimate relationship between
transfer entropy and Wiener-Granger causality (GC) [26–29].
Specifically, for discrete-time, continuous-state processes, GC
and TE are equivalent under Gaussian assumptions [30] (these
may be relaxed to include a somewhat broader class of dis-
tributions; see Ref. [31]). More generally, for Markovian
processes GC and TE are asymptotically equivalent under an
interpretation of Granger causality as a log-likelihood ratio
[32]. For a broad class of processes, GC has distinct ad-
vantages over TE in terms of analytic tractability, sample
estimation and statistical inference, in both parametric [33,34]
and nonparametric [35] scenarios. In Appendix B we provide
a concise recap of (unconditional) Granger causality follow-
ing the classical formulation of Geweke [29].

Systems featuring emergent properties are typically large
ensembles of dynamically interacting elements; that is, system
states x ∈ X are of the form (x1, . . . , xn) ∈ X1 × . . . × Xn

with xi the state of the ith element. Dynamical indepen-
dence for such systems may be interpreted in terms of the
causal graph of the system [33,36] (here, “causality” is in the
Wiener-Granger predictive sense; see above). This means that
the causal graph encapsulates information transfer between
system elements, which facilitates the construction of systems
with prescribed dynamical-independence structure. Given a
coarse-graining yk = fk (x1, . . . , xn), k = 1, . . . , m at scale m,
using Eq. (8) it is not hard to show that we may always
transform the system so that yk = xk for k = 1, . . . , m; that is,
under a change of coordinates the coarse-graining becomes a
projection onto the subspace defined by the first m dimensions
of the microscopic state space. The dynamical dependence is
then given by

T(X → Y ) = T(Xm+1, . . . , Xn → X1, . . . , Xm), (11)

and we may show [37] that, under such a transformation,

T(X → Y ) = 0 ⇐⇒ Gi j (X ) = 0

for i = 1, . . . , m, j = m + 1, . . . , n, (12)

where

Gi j (X ) = T(Xj → Xi | X[i j] ),

i, j = 1, . . . , n, i �= j, (13)

is the causal graph of the system X (here the subscript “[i j]”
denotes omission of the i and j components of X ). According
to Eq. (12) we may characterize dynamically independent
macroscopic variables for ensemble systems as those coarse-
grainings which are transformable into projections onto a
subgraph of the causal graph with no incoming information
transfer from the rest of the system. However, given two or
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more dynamically independent macroscopic variables (at the
same or different scales), in general we cannot expect to find
a transformation under which all of those variables simultane-
ously become projections onto causal subgraphs. Nonetheless,
Eq. (12) is useful for constructing dynamical systems with
prespecified dynamically independent macroscopic variables.

For many complex dynamical systems, there will be no
fully dynamically independent macroscopic variables at some
particular (or perhaps at any) scale; i.e., no macroscopic
variables for which Eq. (6) holds exactly [38]. There may,
however, be macroscopic variables for which the dynamical
dependence (5) is small; in an empirical scenario, for instance,
“small” might be taken to mean statistically insignificant at
some given significance level, or in a Bayesian sense of ev-
idence for no difference from zero. We take the view that
even “near-dynamical independence” yields useful structural
insights into emergence, and adopt the ansatz:

The maximally dynamically independent

macroscopic variables at a given scale

(i.e., those which minimize dynamical dependence)

characterize emergence at that scale. (14a)

The collection of maximally dynamically independent

macroscopic variables at all scales, along with

their degree of dynamical dependence, affords a multiscale

portrait of the emergence structure of the system. (14b)

The question—central to this study—now arises: given a com-
plex dynamical system (specified, perhaps, as a model derived
from empirical data), how, in practice, are we to find the
maximally dynamically independent macroscopic variables
across scales? On the face of it, this would seem to be a
daunting task: those macroscopic variables which maximize
dynamical independence will be needles in the haystack of
all possible macroscopic variables at a given scale—a search-
space which, for all but the most trivial systems, will generally
be vast, and itself complex. We proceed, though, to analysis of
a useful (and nontrivial) class of systems for which, perhaps
surprisingly, this task turns out to be tractable.

III. LINEAR SYSTEMS

In this section we consider linear discrete-time continuous-
state systems, and later specialize to linear state-space (SS)
systems. Linear models are commonly deployed in a variety
of real-world scenarios, especially for econometric and neu-
roscientific time-series analysis. Reasons for their popularity
include parsimony (linear models will frequently have fewer
parameters than alternative nonlinear models [39]), simplicity
of estimation, and mathematical tractability (see below for
further discussion). Our aim here is to describe the space of
linear macroscopic variables, calculate dynamical dependence
for such variables and, in line with our ansatz, outline practical
methods for minimization of dynamical dependence over the
macroscopic variable space.

Our starting point is that the microscopic system may be
modeled as a wide-sense stationary, purely nondeterministic,
stable and invertible, zero-mean vector [40] stochastic process

Xt = [X1t X2t . . . Xnt ]T, t ∈ Z, defined on the vector space
Rn. Wide-sense stationarity guarantees that the process has
a unique stable and causal vector moving-average (VMA)
representation [41]

Xt = εt +
∞∑

k=1

Bkεt−k or Xt = H (z) · εt , (15)

where εt is a white-noise innovations process with positive-
definite covariance matrix � = E[εtε

T
t ], and

H (z) = I +
∞∑

k=1

Bkzk (16)

the transfer function, with z the back-shift operator (in the
frequency domain, z = e−iω, where ω is angular frequency
in radians). The VMA coefficient matrices Bk are square-
summable, and all roots of H (z) lie strictly outside the unit
disk |z| � 1 in the complex plane. The cross-power spectral
density (CPSD) matrix for the process exists at almost all
frequencies, and is given by [42]

S(ω) = H (ω)�H∗(ω), (17)

where “*” denotes conjugate transpose [43]. Conversely, if a
CPSD S(ω) is given, then under certain regularity conditions
[44, Def. 1.1] unique H (z) and � exist that satisfy Eq. (17),
and there are stable algorithms by which this spectral fac-
torization may be computed numerically [35,44]. A standard
result [45, Theorem 4.2] states that

1

2π

∫ 2π

0
log |S(ω)| dω = log |�|. (18)

Invertibility requires that the process Xt also have a stable
vector-autoregressive (VAR) representation

Xt =
∞∑

k=1

AkXt−k + εt or H (z)−1 · Xt = εt . (19)

The VAR coefficients Ak are again square-summable, and all
poles (as well as roots) of H (z) lie strictly outside the unit
disk; stability requires that the spectral radius ρ = max {|z| :
|H (z−1)| = 0} of the process is <1. Following Geweke [29,
Eq. (2.4)] we assume the slightly stronger condition that S(ω)
be uniformly bounded away from zero almost everywhere.
This guarantees invertibility and, importantly, that any sub-
process of Xt is also invertible.

Note that at this stage we do not assume that the in-
novations εt are (multivariate) Gaussian. Note too, that
even though we describe the system as “linear,” this does
not necessarily exclude processes with nonlinear generative
mechanisms—we just require that the conditions listed above
are met. Wold’s Decomposition Theorem [46] guarantees a
VMA form (15) provided that the process is wide-sense sta-
tionary and purely nondeterministic; if in addition the Geweke
spectral condition [29, Eq. (2.4)] holds, the VAR form (19)
also exists, and all our conditions are satisfied. Thus, our anal-
ysis here also covers a large class of stationary “nonlinear”
systems, with the caveat that for a given nonlinear genera-
tive model, the VMA/VAR representations will generally be
infinite-order, and as such may not represent parsimonious
models for the system.
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Since we are in the linear domain, we restrict our-
selves to linear coarse-grained macroscopic variables [47]
(cf. Sec. II B). A surjective linear mapping L : Rn → Rm,
0 < m < n, corresponds to a full-rank m × n matrix, and the
coarse-graining equivalence relation (3) identifies L, L′ iff
there is a nonsingular linear transformation � of Rm such that
L′ = �L. Note that since L is full-rank, Yt = LXt is purely
nondeterministic, and by the Geweke spectral condition it is
also invertible. Considering the rows of L as basis vectors
for an m-dimensional linear subspace (hyperplane) of Rn,
a linear transformation simply specifies a change of basis
for the subspace. Thus, we may identify the set of linear
coarse-grainings with the Grassmannian manifold Gm(n) of
m-dimensional hyperplanes in Rn.

The Grassmannian [48] is a compact smooth manifold of
dimension m(n − m). It is also a nonsingular algebraic variety
(the set of solutions of a system of polynomial equations over
the real numbers), a homogeneous space (it “looks the same
at any point”), and an isotropic space (it “looks the same
in all directions”). We have Gm(n) = O(n)/[O(m) × O(n −
m)], where O(n) is the Lie group of real orthogonal matrices;
this quotient structure induces a canonical Riemannian metric
on Gm(n) [49], and there is a natural definition of principal an-
gles between linear subspaces of Euclidean spaces, via which
various invariant (noncanonical) metrics may be defined [50].

By transformation-invariance of dynamical dependence,
we may assume without loss of generality that the row-vectors
of L form an orthonormal basis; i.e.,

LLT = I. (20)

The manifold of linear mappings satisfying (20) is known
as the Stiefel manifold Vm(n) ≡ O(n)/O(n − m), which, like
the Grassmannian is a compact, homogeneous and isotropic
algebraic variety, with dimension nm − 1

2 m(m + 1). Under
the Euclidean inner product, every m-dimensional subspace
of Rn has a unique orthogonal complement of dimension
n − m [51], which establishes an isometry of Gm(n) with
Gn−m(n); for instance, in R3, every line through the origin has
a unique orthogonal plane through the origin, and viceversa.
The condition (8) is thus automatically satisfied for linear
coarse-grainings; specifically, given L satisfying (20), we
may always find a surjective linear mapping M : Rn → Rn−m

where the row-vectors of the (n − m) × n matrix M form
an orthonormal basis for the orthogonal complement of the
subspace spanned by the row-vectors of L. The transformation
	 : Rn → Rn

	 =
[

L
M

]
(21)

is then nonsingular and orthonormal; i.e., 		T = 	T	 = I .
Given a linear mapping L, our task is to calculate the

dynamical dependence T(X → Y ) for the coarse-grained
macroscopic variable Yt = LXt . In the context of linear sys-
tems, it is convenient to switch from transfer entropy to
Granger causality (Sec. II C and Appendix B), and we write
the GC dynamical dependence as F(X → Y ). In case the
innovations εt in Eqs. (15) and (19) are multivariate-normal,
as noted previously the equivalence of TE and GC is exact
[30]; else we may either consider the GC approach as an ap-
proximation to “actual” dynamical dependence, or, if we wish,

consider dynamical dependence framed in terms of GC rather
than TE as a linear prediction-based measure in its own right.
We note that key properties of dynamical (in)dependence
including transformation invariance (7), the existence of com-
plementary mappings (8) [cf. Eq. (21)], transitivity (10), and
relationship to the (Granger-)causal graph (12) carry over
straightforwardly to the GC case.

A. Dynamical dependence for linear systems

With Yt = LXt and 	 as in Eq. (21), by transformation
invariance we have F(X → Y ) = F(	X → Y ) = F(MX →
LX ), where the last equality holds since, given LX −

t , the
all-variable history 	X −

t yields no additional predictive in-
formation about LXt beyond that contained in MX −

t . Now
from Eq. (19) the LX component of the innovations for the
full process 	Xt is Lεt , with covariance matrix L�LT. Thus,
the dynamical dependence is (Appendix B)

F(X → Y ) = log
|�R|

|L�LT| , (22)

where �R is the innovations covariance matrix for the reduced
process LXt . Again using transformation invariance, we note
that transformation of Rn by the inverse of the left Cholesky
factor of � decorrelates and normalizes the innovations εt of
Xt so that � = I , and from Eq. (20) we have L�LT = I in
the transformed system. Thus, from now on, without loss of
generality we assume � = I , and the dynamical dependence
becomes simply

F(X → Y ) = log |�R|. (23)

It remains to calculate �R.
Below (Secs. III B and III C) we shall show how the general

problem of calculation of �R may be achieved in a parametric
scenario if Xt satisfies a state-space or finite-order VAR model,
via solution of a discrete algebraic Riccati equation (DARE).
An alternative nonparametric approach utilizes the CPSD
(17). From Eq. (15) it follows that the transfer function for the
transformed process 	Xt is 	H (z)	T and from Eq. (17) that
the CPSD of 	Xt is 	S(ω)	T. The CPSD of the macroscopic
process Yt = LXt is thus LS(ω)LT, and From Eqs. (18) and
(23) we have immediately

F(X → Y ) = 1

2π

∫ 2π

0
log |LS(ω)LT| dω. (24)

Empirically, the CPSD may be estimated by standard methods
(such as averaged periodogram, multi-taper or wavelets), or
else derived analytically from an estimated parametric model.

Like F(X → Y ), the spectral GC f(X → Y ; ω) (B3) is
invariant under nonsingular linear transformation of source
or target variable at all frequencies [52], and furnishes a fre-
quency decomposition for time-domain GC (B4). To calculate
f(X → Y ; ω), we again apply the orthonormal transformation
(21) and calculate f(X → Y ; ω) = f(MX → LX ; ω). It is then
not hard to show that, under the assumed conditions � = I
and LLT = I , and noting that LTL + MTM = I , we have the
spectral dynamical dependence

f(X → Y ; ω) = log
|LH (ω)H∗(ω)LT|

|LH (ω)LTLH∗(ω)LT| . (25)
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As per Eq. (B5), we may define the band-limited dynamical
dependence as

F(X → Y ; ω1, ω2) = 1

ω2 − ω1

∫ ω2

ω1

f(X → Y ; ω) dω, (26)

and we have the spectral decomposition for dynamical depen-
dence (B4)

F(X → Y ) = 1

2π

∫ 2π

0
f(X → Y ; ω) dω. (27)

Significantly, band-limited dynamical dependence facilitate
analysis of emergence across temporal as well as spatial
scales.

B. Linear state-space systems

We now specialize to the class of linear state-space sys-
tems, under the restrictions listed at the beginning of Sec. III.
Here Xt may be represented by a model of the form

Wt+1 = AWt + Ut state-transition equation, (28a)

Xt = CWt + Vt observation equation, (28b)

where the state process Wt = [W1t W2t . . . Wrt ]T, t ∈ Z, is
defined on Rr , Ut ,Vt are zero-mean jointly multivariate white
noises, C is the observation matrix, and A the state transition
matrix. Note the specialized use of the term “state space”
in the linear systems vocabulary: The state variable Wt is to
be considered a notional unobserved process, or simply as a
mathematical construct for expressing the dynamics of the ob-
served process Xt , which as before stands as the microscopic
variable.

The parameters of the model (26) are (A,C, Q, R, S),
where [

Q S
ST R

]
≡ E

[[
Ut

Vt

][
U T

t V T
t

]]
(29)

is the joint noise covariance matrix (the purely nondeterminis-
tic assumption implies that R is positive-definite). Stationarity
requires that the transition equation (28a) satisfy the stability
condition max{|λ| : λ ∈ eig(A)} < 1. A process Xt satisfying
a stable, invertible SS model (26) also satisfies a stable, invert-
ible vector-autoregressive moving-average (VARMA) model;
conversely, any stable, invertible VARMA process satisfies a
stable, invertible SS model of the form (26) [53].

To facilitate calculation of dynamical dependence (see be-
low), it is useful to transform the SS model (26) to innovations
form:

Zt+1 = AZt + Kεt , (30a)

Xt = CZt + εt , (30b)

with new state variable Zt = E[Wt | X −
t ], white-noise inno-

vations process εt = Xt − E[Xt | X −
t ] with covariance matrix

� = E[εεT], and Kalman gain matrix K [note that the εt

are the same innovations as in the VMA and VAR repre-
sentations (15), (19)]. The transfer function and its inverse
for the innovations-form state-space (ISS) model (28) are

given by [34]

H (z) = I + C(1 − Az)−1Kz, (31a)

H (z)−1 = I − C(1 − Bz)−1Kz, (31b)

respectively, where B = A − KC. The invertibility condition
is thus max{|λ| : λ ∈ eig(B)} < 1. Eq. (31a) facilitates ex-
plicit calculation of the CPSD (17).

A general-form SS (26) may be converted to an ISS (28)
by solving the associated DARE [53,54]:

P = APAT + Q − K�KT, (32a)

� = CPCT + R, (32b)

K = (APCT + S)�−1, (32c)

which under our assumptions has a unique stabilising solu-
tion for P. Stable computational algorithms exist for solving
DAREs numerically [54], with efficient implementations
available in popular software systems such as Matlab and
Python.

From Eq. (26) it is clear that a macroscopic process Yt =
LXt will be of the same form; that is, the class of state-space
systems is closed under full-rank linear mappings. Given an
ISS model (28), we see that Yt satisfies the SS model (no
longer in innovations form),

Zt+1 = AZt + Kεt , (33a)

Yt = LCZt + Lεt . (33b)

Again assuming without loss of generality that � = I ,
and using LLT = I , the SS model (31) has parameters
(A, LC, KKT, I, KLT). To bring it into ISS form we solve the
corresponding “reduced” DARE

PR = APRAT + KKT − KR�RKRT, (34a)

�R = LCPRCTLT + I, (34b)

KR = (APRCT + K )LT[�R]−1, (34c)

and Eq. (34b) furnishes the reduced innovations covariance
matrix �R required for calculation of the dynamical depen-
dence (23).

The spectral dynamical dependence (25) may be calculated
directly using the expression (31a) for the transfer function
H (z) without the need to solve a DARE.

C. Finite-order VAR systems

Finite-order autoregressive systems are an important spe-
cial case of state-space systems. We suppose that a VAR(p)
model, p < ∞, is given by

Xt =
p∑

k=1

AkXt−k + εt . (35)

The model parameters are the n × n coefficients matrices
A1, . . . , Ap and innovations covariance matrix � = E[εtε

T
t ].

The transfer function is given by

H (z) =
(

I −
p∑

k=1

Akzk

)−1

, (36)
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from which the CPSD (17) may be calculated. We may specify
an equivalent ISS model (28) by taking A to be the pn × pn
“companion matrix” [53]

A =

⎡
⎢⎢⎢⎢⎣

A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

⎤
⎥⎥⎥⎥⎦, (37)

C the n × pn matrix

C = [A1 A2 . . . Ap], (38)

and K the pn × n matrix

K = [I 0 . . . 0]T. (39)

The VAR(p) is stable iff the companion matrix (37) is stable.
For calculation of time-domain dynamical dependence, the

reduced covariance matrix �R may be obtained from solution
of the DARE (32) corresponding to the derived ISS model as
in Sec. III B [55]. Spectral dynamical dependence may again
be calculated from the transfer function (25) using the transfer
function (36).

D. Perfect dynamical independence

In the parametric scenario of state-space or VAR models,
we now examine generic conditions under which perfectly dy-
namically independent macroscopic variable can be expected
to exist, where by “generic” we mean that the conditions hold
everywhere except on a measure-zero subset of the model
parameter space.

For an ISS model, applying the transformation (21) and
using the condition given in Barnett and Seth [34, Eq. (17)
and f f ] it is easily found that

F(X → Y ) ≡ 0 ⇐⇒ LCAkKMT ≡ 0

for k = 0, . . . , r − 1, (40)

where r is the dimension of the state space. Equation (40) con-
stitutes rm(n − m) multivariate-quadratic equations for the
m(n − m) free variables which parametrize the Grassmannian
Gm(n). For r = 1, we would thus expect solutions yielding
dynamically independent Yt = LXt at all scales 0 < m < n;
however, as the equations are quadratic, some of these solu-
tions may not be real. For r > 1, except on a measure-zero
subset of the (A,C, K ) ISS parameter space, there will be solu-
tions if LC ≡ 0 or KMT ≡ 0 (or both). The former comprises
rm linear equations, and the latter r(n − m) equations, for the
m(n − m) Grassmannian parameters. Therefore, we expect
generic solutions to Eq. (40) if r < n and either m � n − r or
m � r (or r � m � n − r, in which case 2r � n is required).
Generically, for r � n there will be no perfectly dynami-
cally independent macroscopic variables. We note that r <

n corresponds to “simple” models with few spectral peaks;
nonetheless, anecdotally it is not uncommon to estimate par-
simonious model orders < n for highly multivariate data,
especially for limited time-series data.

In the generic VAR(p) case, it is again easy to establish
that the condition for vanishing dynamical dependence is

F(X → Y ) ≡ 0 ⇐⇒ LAkMT ≡ 0

for k = 1, . . . , p, (41)

which constitutes pm(n − m) multivariate-quadratic equa-
tions for the m(n − m) Grassmannian parameters. Generi-
cally, for p = 1 we should again expect to find dynamically
independent macroscopic variables at all scales 0 < m < n,
while for p > 1 we do not expect to find any dynamically
independent macroscopic variables, except on a measure-zero
subset of the VAR(p) parameter space (A1, . . . , Ap).

Regarding spectral dynamical independence, we note that
f(X → Y ; ω) is an analytic function of ω. Thus, by a stan-
dard property of analytic functions, if band-limited dynamical
dependence (26) vanishes on any particular finite interval
[ω1, ω2] then it is zero everywhere, so that by Eq. (27)
the time-domain dynamical dependence must also vanish
identically.

E. Statistical inference

Given empirical time-series data, a state-space or VAR
model may be estimated via standard maximum-likelihood
techniques, such as ordinary least squares [OLS; 56] for VAR
estimation, or a subspace method [57] for state-space esti-
mation. The dynamical dependence, as a Granger causality
sample statistic, may then in principle be tested for signifi-
cance at some prespecified level, and dynamical independence
of a coarse-graining Yt = LXt inferred by failure to reject the
appropriate null hypothesis of zero dynamical dependence
(40) or (41).

In the state-space case (Sec. III B), the asymptotic null
sampling distribution of the maximum-likelihood estima-
tor of the dynamical dependence (23) remains unknown,
and surrogate/resampling methods are appropriate. For VAR
modeling the maximum-likelihood estimator for Eq. (23) is
a “single-regression” Granger causality estimator, for which
an asymptotic generalized χ2 sampling distribution, in both
time and (band-limited) frequency domains, has recently been
obtained by Gutknecht and Barnett [58]. Alternatively, a
likelihood-ratio, Wald or F -test [59] might be performed for
the null hypothesis (41).

For the nonparametric case (24), the CPSD may be es-
timated at a given frequency resolution dω by a standard
method, and the integral approximated by numerical quadra-
ture. Here again, the sampling distribution of the resulting
dynamical dependence estimator is (to the authors’ knowl-
edge) unknown, and surrogate/resampling methods must be
used.

F. Maximizing dynamical independence

At this stage, we have effectively answered question (1a)
of Sec. I for linear systems; that is, we have characterized
dynamically independent macroscopic variables for linear
systems. We now address question (1b): given a (microscopic)
linear dynamical system, how shall we find dynamically
independent—or, following our ansatz (14), at least maxi-
mally dynamically independent—macroscopic variables?
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Whether or not perfectly dynamically independent macro-
scopic variables exist at any given scale, we thus seek to
minimise the dynamical dependence F(X → Y ) over the
Grassmannian manifold of linear coarse-grainings (i.e., over
L for Yt = LXt ). The band-limited dynamical dependence (26)
may also in principle be minimized at a given scale to yield
maximally dynamically independent coarse-grainings associ-
ated with a given frequency range at that scale; we leave this
for future research.

Solving the minimization of dynamical dependence over
the Grassmannian analytically appears, at this stage, in-
tractable in both nonparametric and parametric (state-space or
VAR) cases; we thus proceed to numerical optimization. Opti-
mization of an objective function—in our case the dynamical
dependence—over the (non-Euclidean) Grassmannian mani-
fold is nontrivial, and several approaches have been proposed
in the literature, involving various parametrizations of the
Grassmannian [60]. In our case, the natural parametrization
at scale m is via the corresponding Stiefel manifold, i.e.,
over m × n matrices L with LLT = I; we largely follow the
treatment in Edelman et al. [49], and briefly discuss alternative
parametrizations in Appendix C. Note that for fixed macro-
scopic dimension m the search space scales quadratically with
microscopic dimension n. We have found that the number of
local suboptima increases with n, although the rate of increase
is unclear.

The Stiefel parametrization is redundant; an element of
Gm(n) is represented by an equivalence class of matrices {L}.
This redundancy would seem to rule out population-based op-
timization methods such as cross-entropy optimization [61].
Our exploratory investigations indeed indicated that such al-
gorithms generally fail to converge, apparently because the
population diffuses along equicost surfaces in Vm(n). Simplex
methods [62], which are generally better at locating global op-
tima, also fared poorly, although the reasons are less clear. We
have had success, however, with gradient descent methods—
see below.

Regarding computational efficiency, in the parametric sce-
nario we may apply a useful preoptimization technique. From
Eqs. (40) and (41), respectively, F(X → Y ) vanishes precisely
where the “proxy objective function”

F∗(X → Y ) =
∑

k

‖LQkMT‖2 (42)

vanishes, where Qk = CAkK , k = 0, . . . , r − 1 in the state-
space case, and Qk = Ak , k = 1, . . . , p in the VAR case.
As before M spans the orthogonal complement of L, and
‖U‖2 = trace[UU T] is the squared Frobenius matrix norm.
While F∗(X → Y ) will not in general vary monotonically
with F(X → Y ), simulations indicate strongly that subspaces
L which locally minimise F(X → Y ) will lie in regions of
Gm(n) with near-locally minimal F∗(X → Y ). As a quadratic
function of L, F∗(X → Y ), is considerably less computation-
ally expensive to calculate than F(X → Y ) (note that the
sequence Qk may be precalculated), and we have found that
pre-optimising F∗(X → Y ) leads to significantly accelerated
optimization of F(X → Y ), especially for high-dimensional
and/or high-complexity models. The same techniques may be
used to optimize F∗(X → Y ) as F(X → Y ).

For optimization of F(X → Y ), it will frequently be more
computationally efficient to use the spectral integral form (24)
rather than the parametric forms via solution of the DARE
(34). A good heuristic choice for the frequency resolution
is dω ≈ 1

2ν log ρ/ log ε, where ρ is the spectral radius of
the process (Sec. III), ν the sampling frequency, and ε the
machine floating-point epsilon [63]. We have found that nu-
merical quadrature is generally computationally cheaper than
(and of comparable accuracy to) the corresponding DARE-
based computation provided that ρ is not too close to 1, and
for fixed ρ scales better with system size.

Gradient descent techniques may be classified into those
for which (i) the gradient is unknown or uncomputable, (ii)
those for which just the gradient is exploited, (iii) those for
which both gradient and Hessian are exploited. In Appendix D
we calculate the gradient of F(X → Y ) for the spectral form
(24) and also the gradient of the proxy form F∗(X → Y ) (42)
under the Stiefel parametrization with the canonical metric on
Gm(n). The Hessians may likewise be calculated analytically,
but due to their computational complexity do not appear to of-
fer much advantage over gradient-only techniques. We found
that using Stiefel parametrization (non-Hessian) gradient de-
scent with pre-optimization and multiple random initial values
of L is effective at identification of most local suboptima
over a range of microscopic and macroscopic dimensions. See
Appendix E for benchmark results.

G. Interpretation of results

At each macroscopic scale m, the results of dynamical
independence optimization for a microscopic linear system Xt

of dimension n will be a set of linear projections {L : Rn →
Rm}. For any such L, the macroscopic process Yt = LXt min-
imizes, at least locally, the dynamical dependence F(X → Y )
over all projections onto Rm, and may be viewed as a (lo-
cal, approximate) macroscopic “dynamical process in its own
right,” capturing a particular macroscopic perspective on the
microscopic dynamics Xt . Each such L defines a specific m-
dimensional hyperplane—the space in which the macroscopic
dynamics play out—projected from the n-dimensional space
in which the microscopic dynamics play out.

To bolster our intuition, consider the simple case of a
two-dimensional macroscopic variable in a three-dimensional
microscopic space. In some system of coordinates, the projec-
tion L will be of the form:

y1 = L11x1 + L12x2 + L13x3, (43)

y2 = L21x1 + L22x2 + L23x3. (44)

Now suppose, say, that L13 = L23 = 0. Then the macroscopic
process Yt resides entirely on the (x1, x2) plane in R3. So, for
example, if Xt represents channels of neural activity recorded
from three brain regions, then the corresponding macroscopic
variable only implicates the first two of those regions. We can
restate the condition L13 = L23 = 0 as the vanishing of the
angle between the plane defined by L and the (x1, x2) plane, or
alternatively, as the vanishing of the angles between the plane
and each of the x1 and x2 axes. If those angles are “small,”
then we might say that the macroscopic plane is “close” to the
(x2, x2) plane. Thus, in our toy neural example, hyperplane
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angles give a handle on the extent to which specific brain
regions participate in the dynamics of a given macroscopic
variable.

Unlike planes (or lines) in three-dimensional space, in
higher dimensions there is no single unique angle between
hyperplanes. Rather, for hyperplanes of dimensions m1 � m2

in n-dimensional Euclidean space there are m1 unique princi-

pal angles 0 � θ1 � . . . � θm1 � π/2, and
√

θ2
1 + · · · + θ2

m1

defines a transformation-invariant [64] measure of distance
between hyperplanes [50]; if this distance is zero then the
hyperplanes are colinear, while if it attains its maximum value
of (π/2)

√
m1 the hyperplanes are orthogonal. Note, though,

that unlike for lower dimensions, if n > 3 and 1 < m < n − 1
the distances (in this case the first principal angles θ1) between
a given m-dimensional hyperplane and each of the xi axes,
i = 1, . . . , n, do not uniquely determine the hyperplane; in
higher dimensions there is more “wiggle room.” For a finer-
grained analysis, we might in addition consider the distances
between an m-dimensional hyperplane and each of the

(n
m

)
coordinate hyperplanes spanned by combinations xi1 , . . . , xim ,
1 � i1 < . . . < im � n, of the coordinate axes; collectively,
these uniquely (over-)determine the given hyperplane.

While in our neural scenario a principal-angles analysis
along the above lines yields insight into the degree to which
specific brain regions participate in the dynamics of a given
macroscopic variable, it has little to say about the internal
dynamics of the macroscopic process. We may, via Eq. (33),
calculate the dynamics of a (nearly) dynamically independent
macroscopic variable explicitly as a linear system in its own
right and, e.g., calculate its causal graph. However, the causal
graph is not transformation-invariant. An interesting (and
seemingly difficult) question for future research, is whether
an invariant “canonical form” for the causal graph of a given
linear system might be derivable through an appropriate linear
transformation.

This concludes our analysis of characterization, discovery
and interpretation of dynamically independent macroscopic
variables in linear systems. In forthcoming work (in prepa-
ration), we demonstrate the techniques presented here in
an empirical application: inference of emergent macroscopic
dynamics from steady-state human MEG data recorded in
placebo and under the influence of LSD, psilocybin, and sub-
anaesthetic ketamine [65].

IV. DETERMINISTIC AND CONTINUOUS-TIME
DYNAMICS

Although the main thrust of this article concerns dynamical
independence for discrete-time stochastic systems, and in par-
ticular discrete-time linear systems (Sec. III), many systems
commonly associated with emergent phenomena feature de-
terministic and/or continuous-time dynamics. For stochastic
processes in continuous time, although the basic information-
theoretic formulation of Sec. II C carries through, transfer
entropy is more nuanced and considerably more complex,
both analytically and to estimate empirically [66], even in the
linear case [67]. For deterministic systems the question imme-
diately arises as to how the information-theoretic framework
might apply, since Shannon information is indeterminate for

nonstochastic variables. Below we preview some suggested
approaches to this challenge.

A. Discrete-state deterministic dynamics

In discrete time, many discrete-state systems of interest,
such as cellular automata, flocking models and chaotic sys-
tems, dynamics take the deterministic Markovian form

xt+1 = ξ (xt ), (45)

with finite or countably infinite microscopic state space X and
state transition function ξ : X → X . Thus, given some initial
condition x0, we have xt = ξ t (x0), t � 0 where ξ t denotes t
iterations of the mapping ξ .

Our preferred strategy for this case is to consider the dy-
namics (45) over an ensemble of realizations with stochastic
initial conditions. Here a random variable X0 on X is intro-
duced to represent the statistical distribution of initial (t = 0)
microscopic states, yielding the microscopic stochastic pro-
cess Xt = ξ t (X0), t � 0, on X . Given a coarse-graining f :
X → Y , dynamical independence for the macroscopic vari-
able Yt = f (Xt ) may then be analyzed along the lines of the
general discrete-time stochastic case (Sec. II C). In practice,
choice of the initial distribution may be based on general
principles (e.g., maximum-entropy), or on domain-specific a
priori considerations. Then, since Yt depends deterministi-
cally on X −

t = {X0, X1, . . . , Xt−1}, the dynamical dependence
(5) of Y on X at time t � 0 is given simply by

Tt (X → Y ) = H(Yt |Y −
t ) = H(Y −

t+1) − H(Y −
t ). (46)

Given a probability mass function p(x0) for X0, a general
expression for the entropy H(Y −

t+1) = H(Y0,Y1, . . . ,Yt ), and
thence Tt (X → Y ), may be calculated.

The initial stochastic conditions approach may also be ex-
tended to discrete-state systems in continuous time (e.g., point
processes [68]).

B. Continuous-state deterministic dynamics

When the state space X is continuous-valued, however,
the above construction fails. In this case conditional entropies
are replaced by conditional differential entropies [14], and it
transpires that for deterministic systems with initial stochastic
conditions both the macroscopic variable supervenience con-
dition (2) and the dynamical dependence (5) are undefined
(in both discrete and continuous time). Specifically, certain
conditional differential entropies which appear in these equa-
tions diverge to −∞ [69]. These divergences, furthermore,
appear to be inherent; it is not hard to show, for example, that
in linear continuous-state deterministic systems of the form
Xt = AXt−1, Yt = LXt (cf. Sec. III A) with Gaussian initial
conditions, they cannot be “finessed away” by the addition
of intrinsic noise (on the process Xt ) and/or extrinsic noise
(on the process Yt ). In both cases, the relevant differential
entropies again diverge as the noise magnitude tends to zero.

An important case of deterministic dynamics in continuous
time is that of flows, defined as the group action ξ : X × R →
X of the additive group R on a set X , such that

ξ (x, 0) = x, (47a)

ξ (ξ (x, s), t ) = ξ (x, s + t ), (47b)
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for x ∈ X , s, t ∈ R. If X is a differentiable manifold, then
the flow is smooth if the function ξ is differentiable, and for
any fixed t the function x �→ ξ (x, t ) is a diffeomorphism. If
x �→ ξ (x, t ) is only a diffeomorphism on a strict subset of
X × R, then ξ is said to define a local flow; from now on, we
use the term “flow” to include local flows. On Euclidean space
X = Rn, smooth flows are essentially equivalent to first-
order autonomous ordinary differential equations (ODEs); the
trajectory x(t ) = ξ (x0, t ) is the unique solution of the au-
tonomous ODE [70] ẋ(t ) = g(x) with initial condition x(0) =
x0, where g(x) = ξ̇ (x, 0). Many classical dynamical systems,
such as Hamiltonian mechanics, flocking, and chaotic dy-
namical systems, are expressed as ODEs and may thus be
considered as flows.

For flows, stochastic initial conditions founder on the prob-
lem of diverging differential entropies as described above. As
an alternative formulation, we reconsider the original expres-
sion (4) of dynamical independence. There, independence is
interpreted in a statistical sense; here we propose a “func-
tional” interpretation more aligned with dynamical systems
theory: given a smooth flow ξ : Rn × R → Rn at the mi-
croscopic level, a differentiable coarse-graining function f :
Rn → Rm, 0 < m < n, is considered to define a dynamically
independent macroscopic variable for ξ iff there is a flow
η : Rm × R → Rm on the macroscopic space such that

f (ξ (x, t )) = η( f (x), t ), (48)

for all x ∈ Rn and t ∈ R; i.e., the following diagram com-
mutes:

where 1 denotes the identity function on R [71]. In terms of
ODEs, this is equivalent to the existence of an autonomous
ODE [72] ẏ(t ) = h(y) on Rm such that for any trajectory x(t )
of ξ , y(t ) = f (x(t )) is a trajectory of η. Thus, in the spirit
of Eq. (4), a dynamically independent macroscopic system
is self-determining: given an initial condition y0 ∈ Rm, the
coarse-grained macroscopic system determines its evolution
in time without reference to the microlevel dynamics. Dy-
namical independence in this sense is invariant with respect
to smooth coordinate transformations of both the microscopic
space Rn and the macroscopic space Rm; dynamical inde-
pendence may thus be extended to flows on differentiable
manifolds via overlapping coordinate charts [73].

In preliminary work (in preparation) we derive necessary
and sufficient condition for dynamical independence in the
above sense, and show that dynamically independent coarse-
grainings f : Rn → Rm are built from invariants (conserved
quantities) of the flow, along with a “timelike” scalar func-
tion. Thus, dynamical independence in the functional sense
essentially reduces to the classical problem of invariants of
flows on differentiable manifolds [74]; cf. the example of
a Newtonian galaxy at the beginning of Sec. II C. By the
celebrated First Theorem of Noether [75], for Lagrangian
systems invariants are associated with symmetries of the La-
grangian action. Thus, for such systems Noether’s Theorem

characterizes the dynamically independent macroscopic vari-
ables. However, by no means all systems of interest fall into
this class. (The central role of symmetry in Noether’s Theo-
rem, though, seems worth bearing in mind.)

The functional approach has one drawback: unlike the
transfer entropy measure (5) in the discrete-time stochastic
case, it lacks an information-theoretic interpretation, and does
not yield up an obvious candidate measure for dynamical
dependence, let alone a transformation-invariant one (we are
currently investigating whether such a measure may exist);
there is thus, as it stands, no ready notion of “near-dynamical
independence.” It might also be argued that the functional
approach is unsuited to many-body scenarios as considered
in statistical mechanics, where macroscopic variables are
commonly built on probabilistic mesolevel descriptions of
the system, possibly via a repeated randomness assump-
tion [76–78]. In such cases, dynamical independence might
more appropriately be applied with respect to the stochastic
mesolevel.

V. DISCUSSION

In this paper we introduce a notion of emergence of macro-
scopic dynamical structure in highly multivariate microscopic
dynamical systems, which we term dynamical independence.
Complementary to treatments of emergence which are largely
concerned with part-whole and synergistic relationships be-
tween system components (see Sec. V A below), dynamical
independence instantiates the intuition of an emergent pro-
cess at a macroscopic scale as one which evolves over time
according to its own dynamical laws, distinct from and
independently of the dynamical laws operating at the mi-
croscopic level. More specifically, while prescribed by the
microscopic process, a dynamically independent macroscopic
process is, conditional on its own history, independent of the
history of the microscopic process. Dynamical independence
is quantified by a Shannon information-based (and hence
transformation-invariant) measure of dynamical dependence.
Importantly, dynamical independence may be conditional on
a codistributed externally demarcated process, thus accommo-
dating systems which feature input-output interactions with a
dynamic environment.

Critical to any theory of emergence over a potential range
of spatiotemporal scales, is how we should construe a “macro-
scopic variable.” Here, we try to keep this question as open as
possible, with one key constraint: a macroscopic variable may
be any process co-distributed with the microscopic process
which, in predictive terms, does not “bring anything new to
the table” beyond the microscopic: a macroscopic variable
is prescribed by the microscopic process in the sense that it
does not self-predict beyond the prediction afforded by the
microscopic (and environmental) dynamics. We might thus
conclude that if a macroscopic process appears to emerge
as a process in its own right—with a “life of its own”—this
apparent autonomy is in the eye of a beholder blind to the mi-
crolevel dynamics. Emergence, in our approach, is therefore
best thought of as being associated with particular “ways of
looking” at a system.

A key aspect of our approach is an emphasis on discovery
of emergent macroscopic variables—“ways of looking” at the
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system—given a microlevel description. Although specific
problem domains may present “natural” and/or intuitively
appealing prospective emergent macroscopic variables (which
may be tested for degree of emergence by our dynamical
dependence measure), this is by no means always the case.
For neural systems, for example, it is in general far from
clear how to identify candidate emergent processes. Groups of
neurons firing in synchrony might intuitively suggest an emer-
gent variable, but there may be many more (and more subtle)
patterns of neural activity that may count as emergent with-
out being intuitively apparent to an observer. Our approach
addresses this issue by formalising and operationalising the
discovery process, through consideration of the full space of
all admissible macroscopic variables; discovery of emergent
variables then becomes a search/optimization problem across
this space. We introduce an ansatz that proposes the results
of this search, across all scales, as an informative account of
the emergence structure of the given system—an “emergence
portrait.” Parametric modeling, furthermore, opens up the pos-
sibility of data-driven discovery of emergent variables. We
developed our approach by presenting an explicit calculation
of dynamical dependence, along with a detailed account of
the search/optimization process, for the important class of
linear systems, suitable for wide deployment across a range
of domains, including neural systems.

A. Related approaches

A difference between our approach and many related
approaches in the literature is our emphasis on discov-
ery of emergent phenomena. Other differences concern
the role of the environment (Sec. V B), and in particular
the system/environment distinction [79]. Dynamical inde-
pendence furthermore, in contrast to some treatments of
emergence, does not overtly address part-whole (mereologi-
cal) relationships within the microscopic system.

Our notion of dynamical independence is closely re-
lated to the property of informational closure, introduced by
Bertschinger et al. [11] to address the system-environment
distinction, individuality and autonomy. Essentially, a dynam-
ical system Xt is informationally closed with respect to a
coupled dynamical environment Et if there is zero informa-
tion flow from environment to system; i.e., if the transfer
entropy T(E → X ) vanishes. Closer to dynamical indepen-
dence, Pfante et al. [80] (see also Refs. [81,82]) effectively
consider the microscopic process as the “environment” for
a coarse-grained macroscopic process. Although the motiva-
tion appears to be similar, they only consider discrete-state
systems, single time-step histories, and Markovian dynam-
ics (which are preserved by coarse-graining in the case of
informational closure). Dynamical independence is thus a sig-
nificant generalization of this approach.

To mitigate against “trivial” information closure where
the system is simply decoupled from the environment,
Bertschinger et al. [11] deem an information closure to be
nontrivial, if, in addition to low environment → system in-
formation flow, the system also shares information with the
environment to a significant degree. They accordingly intro-
duce a measure of nontrivial informational closure (NTIC).
We remark that NTIC seems less than relevant to supervenient

macroscopic variables (Sec. II B), since here the microscopic
“environment” and macroscopic process are inherently cou-
pled. Chang et al. [83] apply NTIC specifically to the case
of coarse-grained macroscopic variables in the context of an
environment [84]. Their definition of a C-process requires that
the macroscopic variable Y be (i) dynamically independent
of the system-environment “universe” (X, E ), and (ii) NTIC
with respect to the environment E . Note that condition (i) is
not equivalent to dynamical independence of Y with respect
to the system in the context of the environment (53). While
they clearly recognize the importance, in empirical scenar-
ios, of “[finding] appropriate coarse-graining functions which
map microscopic processes to macroscopic C-processes,” they
do not offer any concrete proposals on how this might be
achieved.

Another relevant construct is G-emergence [Granger emer-
gence; 8]. Seth [8] first operationalizes the “self-causation”
or “self-determination” of a variable Y with respect to an
external (multivariate) variable Z as G-autonomy [85]

ga(Y | Z ) = I(Yt : Y −
t | Z−

t )

= H(Yt | Z−
t ) − H(Yt | Z−

t ,Y −
t ), (49)

which measures the degree to which inclusion of its own past
enhances prediction of Yt by the past of the external variable
Zt . Given a microscopic process Xt and a macroscopic process
Yt , the G-emergence of Y from X is then specified as [86]

ge(Y | X ) = ga(Y | X ) + T(X → Y ). (50)

This expression operationalizes the notion that an emer-
gent macroscopic process is, in a predictive sense, at once
autonomous from, but also dependent on, the microscopic
process—again recalling the conceptual definition of “weak
emergence” from Ref. [4]. G-emergence differs from dynami-
cal independence in two main respects. First, it requires that a
macroscopic variable be nontrivially self-predictive. Second,
it includes a micro-to-macro term to assure, in an ad hoc way,
that they are related, in contrast to the principled approach to
coarse-graining taken by dynamical independence.

We recognize immediately the second (transfer entropy)
term in Eq. (50)—designed to ensure that the macro and the
micro are related—as our dynamical dependence (5) in the
absence of a coupled environment, although for G-emergence
it “pulls in the opposite direction”, in the sense that increasing
T(X → Y ) increases G-emergence, but decreases dynami-
cal independence. Note also, though, that our supervenience
requirement (2) on macroscopic variables—which holds in
particular for coarse-grained variables—actually stipulates (in
the absence of an environment) that the G-autonomy con-
tribution ga(Y | X ) in (50) vanishes identically, thus leaving
G-emergence as precisely our dynamical dependence rather
than independence, for the situations we consider for dynam-
ical independence.

A recent approach with both parallels and differences to
ours is that of Rosas et al. [87] (see also Mediano et al.
[88]). In contrast to our approach, their concern is explicitly
with mereological causal relationships, such as downward
causation, what they term causal decoupling and, in par-
ticular, causal emergence. The latter is quantified as the
unique predictive capacity of a supervenient feature over the
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microscopic system, beyond the predictive capacity of (parts
of) the microscopic system. This is almost the obverse of
dynamical independence, which hinges on prediction of the
macroscopic rather than the microscopic process. Superve-
nience for “features” as defined by Rosas et al. [87], it should
be noted, does not generally correspond to our notion of
supervenience for macroscopic variables. In contrast to our
supervenience condition (2), the comparable condition in Ref.
[87, Sec. II] is, in our notation

I(Xt : Y −
t | X −

t ) ≡ 0. (51)

Although coarse-grained variables trivially satisfy both
Eqs. (2) and (51), the latter again speaks to prediction of the
microscopic, rather than macroscopic variable.

To express causal emergence in information-theoretic
terms, Rosas et al. [87] make use of a partial information de-
composition [PID; 89,90]. One challenge for this approach is a
lack of consensus on what a “canonical” PID might look like.
Further, current PID candidates tend to be computationally in-
tractable (but see, e.g., Ref. [91]) and scale poorly with system
size and macroscopic scale. In addition, the proposed mea-
sures are frequently framed in terms of discrete-valued (often
finite) systems, and it is often unclear how they might be
realized—or they become counterintuitive and/or exhibit dis-
continuous behavior—when extended to continuous-valued
variables [92]. Connected with the last point, many (though
not all; e.g., Ref. [91]) lack the transformation invariance of
Shannon information [93,94]. In recognition of the compu-
tational burden attached to PIDs, Rosas et al. [87] define
Shannon information-based “large system approximations”
for their measures, although it is unclear to what extent these
reflect the intent of the respective PID formulations.

Closer in spirit to our approach is the theory of emer-
gent brain macrostates propounded by Allefeld et al. [15].
Along similar lines to dynamical independence, they con-
sider dynamics for macroscopic systems which are in a sense
“self-contained” with respect to the microscopic dynam-
ics; however, unlike our more general information-theoretic
approach, they associate such dynamics with a (1st-order,
discrete) Markov property: “...the Markov-property criterion
distinguishes descriptive levels at which the system exhibits
a self-contained dynamics (‘eigendynamics’), independent
of details present at other levels.” Emergent macroscopic
processes are then identified with coarse-grainings which pre-
serve the Markov property [“Markov partitions” [95]].

Since low-level neural processes, and indeed neurophys-
iological recordings of these processes, do not naturally
take the form of first-order discrete-valued Markov pro-
cesses, Allefeld et al. [15] devise a discrete approximation
scheme [96]. They then seek Markovian coarse-grainings
of the discretized Markov model in the form of metastable
macrostates [97] and (putatively emergent) dynamics that
transition between such macrostates at slow timescales com-
pared to the underlying microscopic dynamics. This latter
idea, more closely aligned with a thermodynamical perspec-
tive on coarse-graining [98,99], seems worthy of further
investigation in regard to dynamical independence [100].

Along comparable lines, Strasberg et al. [77], in an attempt
to reconcile the repeated randomness assumption in statistical
mechanics [76] with microscopic reversibility, introduce a

concept which they term “microstate independence” which
holds, roughly, if all microstates compatible with the observed
(coarse-grained) macrostate give rise to the same dynamics.
Although a precise definition is not given, it seems that mi-
crostate independence should imply dynamical independence.
Although it cannot hold strictly for Hamiltonian system due
to time reversibility at the microstate level, on the basis of a
detailed mathematical argument and some plausible heuristic
assumptions it is claimed as in some sense generic in the case
where the macroscopic observable is “slow” and “coarse,”
and the dynamics thus approximately Markovian on a coarse
timescale.

Hoel et al. [101] formulate a notion of causal emergence
based on effective information [102]. Here, although macro is
supervenient on micro, a coarse-grained macroscopic variable
is deemed emergent to the extent that it leads to a gain in
effective information. Effective information is calculated by
comparing the distribution of prior states that could have
caused a given current state (the “causal distribution”), with
the uniform distribution over the full repertoire of possible
prior states. The KL-divergence of the causal distribution with
respect to the uniform distribution is then averaged over the
distribution of current states. The procedure is motivated by
the Pearlian approach [103] which identifies causation with
the effects of counterfactual interventions (perturbations) on
the system; the uniform (maximum entropy) distribution then
stands as an injection of random perturbations. A drawback of
effective information, however, is that it assumes the existence
of a uniform distribution of states, thus ruling out a large
class of (in particular, continuous-state) physical systems, for
which the uniform distribution does not exist; and even if it
exists, it is not clear that the effective information will be
transformation-invariant. It may also be argued that a uniform
distribution over prior states is in any case a purely notional,
unphysical construct, and that its deployment consequently
fails to reflect causation “as it actually happens”—that is, as
stochastic dynamics play out over time. In a related approach,
Friston et al. [104] present a recursive partitioning of neu-
ronal states based on effective connectivity graphs [105] and
Markov blankets [106], which they associate with emergent
intrinsic brain networks at hierarchical spatiotemporal scales
[107].

Millidge [108] presents a mathematical theory of ab-
straction which shares some commonalities with theories of
emergence. An abstraction is considered as a set of “sum-
maries” of a system which are sufficient to answer a specified
set of “queries” regarding the time evolution of the system.
Like macroscopic variables (in the broad sense), abstractions
discard information about the system’s detailed dynamics—
in this case such information as turns out to be irrelevant
to the specific queries. It is proposed that the irrelevant in-
formation be considered via the maximum-entropy principle
[109], whereby uncertainty about detailed system behavior is
maximized within the constraint of retention of the ability to
answer the queries. Like dynamically independent macrovari-
ables, abstractions might be considered to have a “life of
their own” insofar as they retain sufficient information to
predict their own behaviors at a macroscopic level. In com-
mon with our approach, Millidge [108] places an emphasis
on data-driven discovery of abstractions, by minimising their
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“leakiness”—that is, their departure from accurate prediction
of the associated macrophenomena (cf. dynamical depen-
dence). In contrast to dynamical independence, abstractions
might be said to be driven by the agenda of the observer
(in the form of specific queries), rather than, as in our case,
unconstrained and intrinsic to the dynamical structure of the
microsystem.

Finally, our approach is also clearly related to the gen-
eral idea of dimensionality reduction in information theory,
machine learning, and beyond. Importantly, dynamical in-
dependence defines a very specific basis for dimensionality
reduction, one which flows explicitly from the dynamics of the
underlying microscopic system. This might be contrasted, for
example, with principal components analysis (PCA), which is
essentially determined by correlations within a dataset. In case
the data derives from a dynamical process (e.g., econometric
data, neuroimaging data, etc.), these correlations are contem-
poraneous, and as such fail to reflect in full the temporal
dynamics of the generative process.

B. Dynamically coupled environment

Suppose that the microscopic process Xt is jointly dis-
tributed with an environmental process Et . We may easily
extend our formalism by simply conditioning on the history
of the environmental process; thus the condition (2) for super-
venience of a macroscopic variable Yt becomes

I(Yt : Y −
t | X −

t , E−
t ) ≡ 0, (52)

and dynamical dependence (5) of Yt on Xt in the context of the
environment Et becomes

Tt (X → Y | E ) = I(Yt : X −
t |Y −

t , E−
t ). (53)

As regards the linear operationalization (Sec. III A), this
may also be readily extended by conditioning the Granger
causalities [110] on the coupled environmental process. We
remark, however, that Eqs. (24) and (25) no longer obtain
as they stand. In this case dynamical dependence in time
and frequency domains may still be computed parametrically
(Secs. III B and III C), or nonparametrically via spectral fac-
torization (17) of the joint CPSD of (X, E ) [35,44]; we leave
this for a future study.

C. Relationship with autonomy

One might be tempted to describe a macroscopic process
Y that is dynamically independent with respect to the mi-
croscopic process X as being “autonomous of X .” We avoid
this usage, though, because conventionally the term auton-
omy carries two distinct connotations [111]: an autonomous
process should not only be independent of external “driving”
processes, but should also self-determine its evolution over
time [8]. As remarked in Sec. I A, a dynamically independent
macroscopic variable need not fulfill the self-determination
criterion; dynamical independence does not equate to au-
tonomy (cf. Sec. V A, Granger autonomy/emergence). In
the extreme case, a dynamically independent macroscopic
variable might in fact be completely random, as in the

following trivial VAR(1) example:

X1,t = aX1,t−1 + bX2,t−1 + ε1,t , (54a)

X2,t = ε2,t , (54b)

where ε1,t , ε2,t are uncorrelated white noises. Here the
macroscopic (coarse-grained) white noise Yt = X2,t is clearly
dynamically independent of the microscopic process Xt . Note,
however, that a completely random macroscopic variable is
not necessarily dynamically independent: if we replace (54b)
with

X2,t = ε2,t + cε1,t−1, (55)

then, while Yt = X2,t is still a white noise, it is no longer
dynamically independent of Xt [112].

We consider this as a positive feature of our definition of
dynamical independence: As per our ansatz (1), if we discover
that our microscopic system features a completely random
macroscopic variable at some scale, this tells us something
useful about the system. We might even, via Eq. (8), choose
to “factor out” this embedded randomness to better reveal
significant causal structure.

D. Discovery of emergent macroscopic processes
in neural systems

Notwithstanding that the generative mechanisms underly-
ing neural processes may be highly nonlinear, linear modeling
is routinely deployed for the functional analysis of neural
systems via neurophysiological recordings (indeed, correla-
tion statistics are associated with linear regression; see also
discussion in Sec. III). Granger causality based on VAR (and
more recently state-space) modeling in particular is a popular
technique for inference of directed functional connectivity
[34,36] from EEG, MEG, and iEEG data [113]. The tech-
niques described in Sec. III F may thus be applied directly
to estimated state-space models for such data, to infer the
emergence portrait of neural systems. Issues of scale remain
significant, but with sufficient computing power do not appear
to be intractable.

While it may be tempting to draw analogies between dy-
namically independent macrovariables in neural systems and
network-level constructs prominent in neuroimaging analyses,
e.g., default-mode networks [114], this would be misleading;
a dynamically independent macrovariable is not a static “net-
work,” but rather a macroscale dynamical entity in its own
right, emerging from interactions on the “microscopic” scale
(in this case, the scale set by neural recording channels asso-
ciated with “small” brain regions). A fascinating question for
future empirical research, is whether specific emergent (dy-
namically independent) macrovariables might be associated
with (“neural correlates” of) large-scale neural phenomena,
such as behaviors, cognition, and specific states of, or disor-
ders of, consciousness.

Whether in the analysis of neural systems or in other appli-
cation domains, the underlying intuition behind any study of
emergence for real-world systems is that identifying emergent
structure is likely to advance our understanding of the physical
phenomena in question. While reasonable, this conclusion is
not a given. Whether emergent dynamical structures turn out
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to be functionally relevant for explaining a particular system’s
behavior will most often be an empirical question.
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APPENDIX A: PROOF OF TRANSITIVITY OF
DYNAMICAL INDEPENDENCE

From property (8) we construct isomorphisms

f × u : X → Y × U , (A1a)

g × v : Y → Z × V, (A1b)

as in the diagram below

so that

(g ◦ f ) × (v ◦ f ) × u : X → Z × V × U (A2)

is an isomorphism. Setting Ut = u(Xt ), Vt = v(Yt ) =
v( f (Xt )), under this isomorphism, we have Xt ∼ (Zt ,Vt ,Ut )
with Yt ∼ (Zt ,Vt ), and by (9)

T(X → Y | Et ) = T(U → Z,V | Et ), (A3a)

T(Y → Z | Et ) = T(V → Z | Et ), (A3b)

T(X → Z | Et ) = T(V,U → Z | Et ). (A3c)

The dynamical independence of Yt from Xt , and of Zt from Yt

then become [cf. (5)]

H(Zt ,Vt | Z−
t ,V −

t , E−
t ) = H(Zt ,Vt | Z−

t ,V −
t ,U −

t , E−
t ),

(A4a)

H(Zt | Z−
t , E−

t ) = H(Zt | Z−
t ,V −

t , E−
t ), (A4b)

respectively, while

T(X → Z | Et ) = H(Zt | Z−
t , E−

t ) − H(Zt | Z−
t ,V −

t ,U −
t , E−

t ).
(A5)

Now by Eq. (A4a), conditional on (Z−
t ,V −

t , E−
t ), the joint

variable (Zt ,Vt ) is independent of U −
t . Thus, again conditional

on (Z−
t ,V −

t , E−
t ), the marginal Zt is itself independent of U −

t .
We thus have [115]

H(Zt | Z−
t ,V −

t , E−
t ) = H(Zt | Z−

t ,V −
t ,U −

t , E−
t ), (A6)

which, together with Eqs. (A4b) and (A5), yields T(X →
Z | Et ) = 0 and Eq. (10) holds as required. �

APPENDIX B: GRANGER CAUSALITY

We begin by noting that the optimal linear prediction
of Xt in the least-squares sense is given by the conditional

expectation E[Xt | X −
t ] = ∑∞

k=1 AkXt−k (19). The residual
prediction errors are then just the innovations εt = Xt −
E[Xt | X −

t ], and in the formulation of Geweke [29] the mag-
nitude of the prediction error is quantified by the generalized
variance [116,117] |�|, where � = E[εtε

T
t ] is the error co-

variance matrix.
Suppose now that the vector process Xt is partitioned into

two subprocesses Xt = [X T
1t X T

2t ]
T. To specify the Granger

causality F(X2 → X1) we compare the prediction error |�11|
of X1t predicted on the joint past X −

t of both itself and X2t , with
the prediction error |�R

11| of X1t predicted only on its own past
X −

1t ; here the superscript “R” refers to the “restricted” VAR
representation,

X1t =
∞∑

k=1

AR
k X1,t−k + εR

1t , (B1)

and �R
11 = E[εR

1tε
RT
1t ] is the corresponding error covariance

matrix. Geweke [29] then defines the Granger causality as the
log-ratio of generalized variances,

F(X2 → X1) = log

∣∣�R
11

∣∣
|�11| , (B2)

which quantifies the degree to which the history of X2t en-
hances prediction of X1t beyond the degree to which X1t

is predicted by its own history alone. We note that if the
innovations are Gaussian, then the generalized variance |�|
is proportional to the likelihood function for Xt , so that
(B2) is a log-likelihood ratio, which under ergodic assump-
tions is asymptotically equivalent to the conditional entropy
H(Xt | X −

t ) [32]; this circumscribes the relationship between
Granger causality and transfer entropy [cf. (5b)]. Under the
classical “large-sample theory” [118–120], the log-likelihood
ratio as a sample statistic furnishes asymptotic F and χ2 tests
for statistical inference on GC (but see also Gutknecht and
Barnett [58]).

Unlike transfer entropy, Granger causality may also be
defined in the frequency domain: the spectral GC from X2t

to X1t at angular frequency ω ∈ [0, 2π ] is given by [29,34]

f(X2 → X1; ω) = log
|S11(ω)|

|S11(ω) − H12(ω)�22|1H∗
12(ω)| . (B3)

Here S(ω) is the CPSD matrix (17), H (z) the transfer func-
tion (15), and �22|1 = �22 − �21�

−1
11 �12 a partial covariance

matrix. Spectral GC averages across the broadband frequency
range [0, 2π ] to yield time-domain GC [29]:

F(X2 → X1) = 1

2π

∫ 2π

0
f(X2 → X1; ω) dω. (B4)

Given a frequency band [ω1, ω2] ⊆ [0, 2π ], we may define
the “band-limited” (time-domain) Granger causality [52]

F(X2 → X1; ω1, ω2) = 1

ω2 − ω1

∫ ω2

ω1

f(X2 → X1; ω) dω,

(B5)
which may be interpreted as the information transfer from X2

to X1 associated with frequencies ω1 � ω � ω2.
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FIG. 1. Distributions of CPU time per dynamical dependence optimization run, for state-space systems of dimension n = 16 (state
dimension r = 11), for macroscopic dimension m = 4, 8, and 12 (columns), and frequency resolution dω = ν/128, ν/256, and ν/512 (rows),
where ν is the Nyqvist sampling frequency. Histograms were compiled from 1000 independent runs; “failures” denote the number of runs that
failed to converge to a local minimum within the specified number of gradient-descent steps: 100 000 for pre-optimization and 10 000 for full
optimization. See main text for details.

APPENDIX C: ALTERNATIVE PARAMETRIZATIONS FOR
OPTIMIZATION ON THE GRASSMANNIAN MANIFOLD

An alternative approach is to use local coordinate charts for
the Gm(n). Any full-rank m × n matrix L can be represented
as

L = �[Im×m M]�, (C1)

where � is an n × n permutation matrix (i.e., a row or column
permutation of In×n), � an m × m nonsingular transforma-
tion matrix, and M is m × (n − m) full-rank. For given �,
Gm(n) is then locally and diffeomorphically mapped by the
m × (n − m) full-rank matrices M [121]. But note that for
given �, M, while there is no redundancy in the (injective)
mapping M : Rm(n−m) → Gm(n), the space of such M is un-
bounded and doesn’t cover the entire Grassmannian, which
again makes numerical optimization awkward.

A partial resolution is provided by a surprising mathemat-
ical result due to Knuth [122] (see also Ref. [123]), which
states roughly that given any fixed δ > 1, for any full-rank
m × n matrix L0 there is a neighbourhood of L0, a permutation

matrix �, and a transformation � such that for any L in the
neighbourhood of L0, all elements of M satisfying Eq. (C1) are
bounded to lie in [−δ, δ]. That is, in the local neighbourhood
of any subspace in the Grassmannian, we can always find a
suitable permutation matrix � such that Eq. (C1) effectively
parametrizes the neighbourhood by a bounded submanifold of
Rm(n−m). During the course of an optimization process, then,
if the current local search (over M) drifts outside its δ bounds,
we can always find a new bounded local parametrization of
the search neighbourhood “on the fly.” Finding a suitable
new � is, however, not straightforward, and calculating the
requisite � for Eq. (C1) is computationally expensive [124].
Nor is this scheme particularly convenient for population-
based optimization algorithms, which will generally require
keeping track of different permutation matrices for different
subpopulations, and—worse—for some algorithms (such as
CE optimization), it seems that the procedure can only work if
the entire current population resides in a single (�,�)-chart.

Other suggested approaches in the literature to optimiza-
tion on Grassmannian manifolds include the “proxy matrix”
algorithm of Nagananda et al. [125], and the “involution”
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FIG. 2. Distributions of CPU time per dynamical dependence optimization run, for state-space systems of dimension n = 32 (state
dimension r = 21). See Fig. 1 and main text for details.

parametrization of Lai et al. [60]; regarding the latter, though,
it is not apparent how to efficiently convert the parametrized
form of a Grassmannian element into a linear projection oper-
ator L as required for calculation of dynamical dependence.

APPENDIX D: GRADIENT OF DYNAMICAL
DEPENDENCE ON THE GRASSMANNIAN

Let Xt be a linear process (Sec. III), L an m × n matrix
with LLT = I , and Yt = LXt . Under the assumption of decor-
related innovations (i.e., � = I), the dynamical dependence
F = F(X → Y ) for the corresponding Grassmannian element
{L} is given by Eq. (24), and the gradient under the canonical
metric for Gm(n) by [49, Sec. 2.5.2]

∇F = ∂F
∂L

(I − LTL), (D1)

where ∂F
∂L denotes the m × n matrix with entries ∂F

∂Lαi
, α =

1, . . . , m, i = 1, . . . , n [126]. From the formula for the deriva-
tive of a log-determinant (for compactness we drop the omega

argument of S)

∂

∂Lαi
log |LSLT| = trace

(
[LSLT]−1 ∂

∂Lαi
[LSLT]

)
(D2)

Using the Hermitian property of S, so that ST = S̄ (complex
conjugate), we may calculate that

∂

∂Lαi
[LSLT]βγ = δαβ[LS]γ i + δαγ [LS̄]βi, (D3)

so that Eq. (D2) yields

∂

∂L
log |LSLT| = 2Re{[LSLT]−1LS.} (D4)

We may check that multiplying Eq. (D4) on the right by LT

yields 2I , so that by Eqs. (24) and (D1),

∇F = 2

(
1

2π

∫ 2π

0
Re{[LS(ω)LT]−1LS(ω)}dω − L.

)
(D5)

We may similarly calculate the gradient of the “proxy”
dynamical dependence F∗(X → Y ) given by Eq. (42). Given
an n × n matrix Q, using the identity LTL + MTM = I and
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FIG. 3. Distributions of CPU time (log scale) per dynamical dependence optimization run, for state-space systems of dimension n = 64
(state dimension r = 43). See Fig. 1 and main text for details.

setting P = LTL, we may derive

‖LQMT‖2 = trace[LQMTMQTLT]

= trace[QQTP] − trace[QPQTP]. (D6)

We may calculate

∂

∂L
trace[QQTP] = 2LQQT, (D7)

and after some algebra that

∂

∂L
trace[QPQTP] = 2L(QPQT + QTPQ). (D8)

Thus, from Eq. (42) and the Grassmannian gradient formula
[49], we have

∇F∗ = 2L
∑

k

(QkQT
k −QkLTLQT

k −QT
k LTLQk )(I−LTL).

(D9)

APPENDIX E: DYNAMICAL DEPENDENCE
OPTIMIZATION FOR LINEAR SYSTEMS:

BENCHMARK RESULTS

In benchmark tests, we used (non-Hessian) gradient de-
scent with a naïve line-search strategy whereby the step size
is increased by a constant factor if following the gradient
results in smaller dynamical dependence, otherwise decreased
by a constant factor. The algorithm terminates when either
step size or gradient magnitude fall below given tolerances,
dynamical dependence falls below a given tolerance [127],
or the number of iterations exceeds a specified maximum.
For state-space or VAR models, pre-optimization (Sec. III F)
using the proxy dynamical dependence (42) followed by dy-
namical dependence optimization using the spectral form (24)
allows for successful optimization of dynamical dependence
up to system dimension n ≈ 100 in minutes per restart on a
standard multi-core workstation, provided the spectral radius
is not too close to 1.

Figures 1–3 plot histograms of the distribution of CPU
time (log scale), for randomly generated state-space sys-
tems of dimension 16, 32, and 64, respectively (state
dimensions were r ≈ 2n/3; see Sec. III B). Simulations,
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written in Matlab, were performed on a Xeon 12-core,
3.5 GHz workstation running Linux. At each state-space
(microscopic) dimension and each macroscopic dimension,
we performed 1000 optimization runs, comprising pre-
optimization followed by full optimization. Each individual
run was performed independently on a different randomly
generated state-space model, with initial projection uniformly
random on the Grassmannian. Runs terminated when the gra-
dient descent step size or gradient magnitude fell below a
tolerance set to 10−8. Runs timed-out (“failed”) if the number
of steps (100 000 for pre-optimization and 10 000 for full
optimization) was exceeded. We see that CPU times per run
are very roughly log-normally distributed, and increase with

microscopic dimension, macroscopic dimension and fre-
quency resolution.

Optimization times in our benchmark tests reported here
are somewhat pessimistic: in practice we find that, for a
given microscopic system and macroscopic dimension, mul-
tiple independent pre-optimization runs with random initial
projections will converge to the same local optima [128];
gradient descent on the actual dynamical dependence then
need only be performed starting at the unique preopti-
mized projections. Since restarts are independent and may be
run concurrently, parallel high-performance computing offers
considerable scope for improved efficiency. GPU computing
potentially also offers significant efficiency improvements.
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