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Finding community structure using the ordered random graph model
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Visualization of the adjacency matrix enables us to capture macroscopic features of a network when the
matrix elements are aligned properly. Community structure, a network consisting of several densely connected
components, is a particularly important feature and the structure can be identified through the adjacency matrix
when it is close to a block-diagonal form. However, classical ordering algorithms for matrices fail to align matrix
elements such that the community structure is visible. In this study, we propose an ordering algorithm based on
the maximum-likelihood estimate of the ordered random graph model. We show that the proposed method allows
us to more clearly identify community structures than the existing ordering algorithms.
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I. INTRODUCTION

In a structural analysis of networks, extracting macroscopic
structures from network data is a central task. For instance,
there is a plethora of studies on extracting a community struc-
ture, which is commonly defined as a network that consists
of several sets of densely connected vertices [1–7]. A banded
structure is another type of macroscopic structure, in which
the vertices with close indices are more likely to be connected.
Extraction of the banded structure is referred to as the linear
arrangement or graph layout problem in graph theory [8–15],
also termed envelope reduction problem [9,16–18].

The alignment of adjacency matrix elements, or the
ordering of vertices, is critical for the visual identifica-
tion of macroscopic structures in networks [19,20]. Let us
demonstrate two examples. In Fig. 1(a), the network has a
community structure. Whereas the community structure is
not visible when vertices are not carefully aligned, as shown
in the left matrix, the adjacency matrix exhibits a nearly
block-diagonal structure when vertices are properly aligned,
as shown in the right matrix. In Fig. 1(b), the network has a
banded structure. Again, the banded structure is not visible in
the left matrix. However, when vertices are properly aligned,
as shown in the right matrix, nonzero elements are rendered
to be concentrated around the diagonal part.

Importantly, a network may exhibit both community and
banded structures simultaneously. However, as demonstrated
in Sec. V, previous linear arrangement methods often fail
to capture community structures, whereas they allow for the
identification of banded structures. In this study, we propose
a linear arrangement method that allows us to capture com-
munity structures in addition to banded structures. It is an
inference method based on the maximum-likelihood estimate
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in which we use the ordered random graph model (ORGM)
[21] as a network generative model.

The rest of the paper is organized as follows: In Sec. II, we
introduce the basic terminology and related work. Following
the introduction of the ORGM in Sec. III, we formulate the
inference method and a greedy algorithm for the optimization
of the vertex sequence in Sec. IV. Section V describes the re-
sults of the application of the proposed algorithm to synthetic
networks and real-world datasets. Finally, Sec. VI is devoted
to a discussion of the proposed inference method.

II. DEFINITIONS AND RELATED WORK

Let G = (V, E ) be a network, where V (|V | = N) is the set
of vertices and E (|E | = M) is the set of edges. Throughout
this study, we consider undirected networks without multi-
edges and self-loops. We denote the ordered set of raw vertex
indices as {0, 1, . . . , N − 1} =: I. We assign each vertex to
a raw vertex index i ∈ I. We define the vertex sequence
π = (π0, π1, . . . , πN−1) by a permutation of the raw vertex
indices I, where we use one-line notation [22,23] to represent
the permutation. For example, the raw vertex index i ∈ I
is mapped to πi ∈ I by π. We denote the inferred vertex
sequence by π̂. We let A be the adjacency matrix of a network,
where Ai j = 1 if there exists an edge between vertices i and j,
and 0 otherwise. Herein, A is a symmetric and binary matrix
in which the diagonal elements are all zero.

Matrix reordering is considered in a variety of contexts.
In the minimum linear arrangement problem, we search for
the optimal vertex sequence that minimizes the following cost
function [8]:

N−1∑
i, j=0

Ai j |πi − π j |. (1)

The exact minimization of Eq. (1) is NP-complete [24],
and several lower and upper bounds of the cost function and
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(a)

(b)

FIG. 1. Networks with (a) a community structure and (b) a
banded structure. Each network is visualized using adjacency ma-
trices with different alignment. We define π in Sec. II. For both
networks, we align matrix elements according to two vertex se-
quences, (a) π1 and π2 and (b) π3 and π4, where vertex i corresponds
to the πith column (or row) of the adjacency matrix. The (πi, π j )
element is filled with black when vertices i and j are connected. The
numbers attached to the matrices represent the raw indices of the
vertices.

associated vertex ordering have been discussed in the lit-
erature [9,11–15]. Reordering of symmetric matrices is
considered in the context of the envelope reduction problem
for the efficient computation of sparse matrices. Several meth-
ods to reduce the size of the envelope, which is defined in
[16] as a banded region around the diagonal part involving
all nonzero elements, have been proposed [9,16,17,25,26].
Reordering of rectangular matrices has been established as a
seriation problem, which has its origin in archaeology [27,28].
For example, the so-called consecutive ones problem consid-
ers the reordering of the binary matrix such that the ones in
each row are aligned consecutively [29–32]. Ranking of ver-
tices is studied as a reordering problem of directed networks
[33,34]. Clustering methods associated with the ranking are
reported in [35–37]. Recently, the reordering problem has also

(a) (b)

FIG. 2. Schematic of the ORGM. (a) The adjacency matrix is
divided into the shaded region close to the diagonal (�in) and the rest
(�out) by the envelope function F represented by red dashed lines.
(b) An example of a network generated by (a) with pin = 0.5 and
pout = 0.1.

been studied using neural networks [38,39]. The ordering of
vertices can also be considered in the context of the latent
space network model, as a way of one-dimensional embed-
ding [40].

In this work, we employ two of the envelope reduction al-
gorithms as a comparison with our method: spectral ordering
and the reverse Cuthill-McKee algorithm. Spectral ordering
[9,16–18] employs the eigenvector of the Laplacian matrix to
find a vertex sequence that approximately minimizes the cost
function,

N−1∑
i, j=0

Ai j (πi − π j )
2. (2)

We sort vertices in the ascending (or descending) order of
the eigenvector associated with the second-smallest eigen-
value of the Laplacian matrix. We employ the normalized
Laplacian L = D−1/2(D − A)D−1/2, where D is the de-
gree matrix defined by D = diag(d0, d1, . . . , dN−1) and di :=∑

j Ai j is the degree. The reverse Cuthill-McKee algorithm
[25,26,41] heuristically finds a vertex sequence. This algo-
rithm permutes vertices using the breadth first search. See [41]
for a detailed explanation.

III. ORDERED RANDOM GRAPH MODEL
AND LIKELIHOOD FUNCTION

A. Ordered random graph model

The ORGM [21] is a random graph model that has het-
erogeneous connection probabilities between vertices based
on the planted (or preassigned) vertex sequence π. After the
vertices are reordered based on π, as illustrated in Fig. 2(a),
we divide the upper-right elements of the adjacency matrix
into two regions, �in and �out. These regions are separated by
an envelope function F (i) ∈ I, which is a discrete function
with respect to the matrix row index i ∈ I, i.e.,

�in = {(πi, π j ) | |πi − π j | � F (πi ), πi < π j},
�out = {(πi, π j ) | |πi − π j | > F (πi ), πi < π j}. (3)

Note that the envelope function is distinct from the envelope
in the envelope reduction problem.
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The vertices i and j are connected with probability pin

when the vertices satisfy (πi, π j ) ∈ �in and are connected
with probability pout when the vertices satisfy (πi, π j ) ∈ �out.
If we set pin > pout, vertices with close vertex indices are
more likely to be connected. The envelope function F defines
whether the vertices are deemed to be “close.” Therefore, as
illustrated in Fig. 2(b), the ORGM can generate networks with
a complex structure that is not restricted to a banded structure,
which is referred to as the sequentially local structure [21].

The probability distribution for the set of the adjacency
matrix elements {Ai j}i< j being generated by the ORGM is
expressed as follows:

P({Ai j}i< j |π, pin, pout, F ) =
∏
i< j

J
Ai j

i j (1 − Ji j )
1−Ai j , (4)

where

Ji j = Prob[Ai j = 1]

=
{

pin if (πi, π j ) ∈ �in or (π j, πi ) ∈ �in

pout if (πi, π j ) ∈ �out or (π j, πi ) ∈ �out.
(5)

While the probability distribution by the Bernoulli distribution
is straightforward, we hereafter assume a Poisson distribution
instead as

P({Ai j}i< j |π, pin, pout, F ) =
∏
i< j

J
Ai j

i j

Ai j!
e−Ji j (6)

because it is easier to work with, especially in the maximum-
likelihood estimate. Although the Poisson distribution pos-
sibly generates multigraphs, in the sparse limit when Ji j =
O(1/N ) with N � 1, we can assume that pin and pout are
sufficiently small, and thus Eqs. (4) and (6) are asymptotically
identical.

In the inference problem, the vertex sequence π is the latent
variable to be inferred and we estimate the envelope func-
tion F and the connection probabilities pin and pout. For the
maximum-likelihood inference of the vertex sequence π̂, we
consider the log-likelihood function corresponding to Eq. (6),

L(π, pin, pout, F |A)

=
∑
i< j

(πi,π j )∈�in or (π j ,πi )∈�in

(Ai j ln pin − pin )

+
∑
i< j

(πi,π j )∈�out or (π j ,πi )∈�out

(Ai j ln pout − pout ), (7)

where we neglected the terms that are independent of the
vertex sequence π, model parameters pin, pout, and F . The
maximum-likelihood estimate of the ORGM for a given adja-
cency matrix A is defined as

argmax
π,pin,pout,F

L(π, pin, pout, F |A). (8)

The exact solution of Eq. (8) would be obtained by consider-
ing all possible vertex sequences, the discrete integer values of
envelope function for each row, and connection probabilities.
However, this is extremely computationally expensive.

FIG. 3. Schematic of the ORGM parametrized by the continuous
envelope function b̃(x̃) [b(x)] represented by a red dashed line, which
is the boundary of the shaded �in and unshaded �out regions.

To efficiently solve the maximum-likelihood estimate, we
modify the definition of the envelope function F . Instead of
a discrete envelope function on the matrix, as illustrate in
Fig. 3, we treat the matrix as a two-dimensional plane such
that the (i, j) element of the matrix corresponds to the (i, j)
coordinate, and consider a continuous envelope function b̃(x̃)
on this plane. We let the upper-left corner of the plane be the
origin, (0,0). Given a point on the diagonal line, x̃ [0 � x̃ �√

2(N − 1)] is the distance between (0,0) and the point, while
b̃(x̃) represents the distance from the point to the boundary of
�in and �out in the direction perpendicular to the diagonal
line. When coordinate (πi, π j ) is projected to the diagonal
line, the distance between the origin and projected point is
x̃πiπ j , where x̃i j = (i + j)/

√
2. The distance between (πi, π j )

and the projected point is |πi − π j |/
√

2. Using the continuous
envelope function, we redefine the regions �in and �out as

�in = {
(πi, π j ) | |πi − π j | �

√
2b̃(x̃πiπ j ), πi < π j

}
,

�out = {
(πi, π j ) | |πi − π j | >

√
2b̃(x̃πiπ j ), πi < π j

}
. (9)

Specifically, we define the continuous envelope function
b̃(x̃) as a superposition of sine-squared functions,

b̃(x̃) =
K∑

k=1

ak sin2

(
πk√

2(N − 1)
x̃

)
, (10)

where K is a hyperparameter specifying the limit of com-
plexity of the envelope function, which is treated as a fixed
constant.

Hereafter, we rescale b̃(x̃), x̃, and x̃i j such that

b(x) =
√

2b̃(x̃), x = x̃√
2
, xi j = x̃i j√

2
= i + j

2
. (11)
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Algorithm 1. The pseudocode of the maximum-likelihood estimate of the vertex sequence π̂.

Input : G
Output : π̂, p̂in, p̂out, {âk}
Parameters : K , β, η, ε1, ε2, Ns

π̂ ← πspectral; � Initialize π̂ by spectral ordering

{âk} ← {ak}init ; � Initialize {âk} with random value

δL ← ∞; � Initialize

L0 ← −∞; � Initialize

while|δL| > ε1do
{ p̂in, p̂out} ← {pin, pout}; � Update p̂in and p̂out by Eq. (16),(17)

while |∇ak Lβ | > ε2 do
for k = 1 to K do

âk ← âk + η
∂Lβ

∂ak
; � Iteratively update {âk} by Eq. (22)

end
end
for s = 1 to Ns do

Randomly choose a pair of vertices {	, m};

L	m ← 
L	m; � Calculate 
L by Eq. (25)

if 
L	m > 0 then
{π̂	, π̂m} ← {π̂m, π̂	}; � Update π̂ by greedy algorithm

end
end
L ← L; � Calculate L by Eq. (15)

δL ← L − L0;
L0 ← L;

end

Therefore,

�in = {
(πi, π j ) | |πi − π j | � b

(
xπiπ j

)
, πi < π j

}
,

�out = {
(πi, π j ) | |πi − π j | > b

(
xπiπ j

)
, πi < π j

}
, (12)

b(x) =
√

2
K∑

k=1

ak sin2

(
πk

N − 1
x

)
, (13)

where 0 � x � N − 1. The coordinate (xi j, xi j ) represents the
projected point of (i, j) on the diagonal line.

The envelope function satisfies that b(x) = 0 at both ends
of the diagonal line, x = 0 and x = N − 1. The envelope
function is parametrized by the set of real-valued coefficients
{ak} := {a1, . . . , aK}. We restrict the set {ak} such that the
envelope function should not leak out of the upper triangle
of the matrix; that is, 0 � b(x) � min{2x, 2(N − 1 − x)} for
0 � x � N − 1.

This modeling of the envelope function enables us to
capture the community structures from the inferred vertex
sequence. Note that while the number of superpositions K
may represent the number of groups, as demonstrated in
Sec. V, it is not always the case. Although the inference will
be computationally infeasible when K is considerably large,
empirically, we found that K � 2 is often sufficient to identify
community structures.

By using the continuous envelope function and the Heavi-
side step function,

�(x) =
{

1 if x > 0
0 otherwise, (14)

the log-likelihood function given by Eq. (7) is expressed as

L(π, pin, pout, {ak}|A)

= (ln pin − ln pout )
∑
i< j

Ai j�
[
b
(
xπiπ j

) − |πi − π j |
]

− (pin − pout )
∑
i< j

�[b(xi j ) − |i − j|]

+ M ln pout − N (N − 1)

2
pout. (15)

In the second term of Eq. (15), we used the fact that πi and
π j can be replaced with i and j because this term is invariant
under the permutation of vertices. As stated in Sec. IV B, this
formulation renders the update of the vertex sequence more
efficient.

IV. MAXIMUM-LIKELIHOOD ESTIMATE

In this section, we estimate the model parameters as well
as the vertex sequence π̂. We denote the estimated model
parameters as p̂in, p̂out, and {âk}. We iteratively conduct the in-
ference of the vertex sequence together with model-parameter
learning until convergence. We show the pseudocode of this
iterative process in Algorithm I. It is usually infeasible to find
the exact vertex sequence that maximizes the log-likelihood
function by searching all possible solutions. Thus, we employ
a greedy heuristic to infer the vertex sequence. For the ef-
ficient search of the optimal solution, we use the results of
spectral ordering [18] as the initial vertex sequence, where
nonzero elements have already been aligned near the diagonal
elements. We continue iteration until the variation of L gets
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smaller than a threshold ε1. To avoid being trapped into a local
optimum, we conduct the entire optimization process sev-
eral times with randomly chosen starting points with respect
to {ak}.

A. Parameter learning

Given an inferred vertex sequence π̂, we update p̂in and
p̂out based on the saddle-point conditions of L. As a result, we
obtain the following updating equations:

p̂in =
∑

i< j Ai j�
[
b
(
xπ̂iπ̂ j

) − |π̂i − π̂ j |
]

∑
i< j �[b(xi j ) − |i − j|] , (16)

p̂out =
∑

i< j Ai j�
[ − b

(
xπ̂iπ̂ j

) + |π̂i − π̂ j |
]

∑
i< j �[−b(xi j ) + |i − j|] . (17)

Before considering the update of the set of coefficients
{âk}, we note that the log-likelihood function L is not differen-
tiable with respect to {ak} because the Heaviside step function
is discontinuous on the boundary of �in and �out. Instead, we
approximate the log-likelihood function as follows:

Lβ (π, pin, pout, {ak}|A)

= (ln pin − ln pout )
∑
i< j

Ai j�β

[
b(xπiπ j ) − |πi − π j |

]

− (pin − pout )
∑
i< j

�β[b(xi j ) − |i − j|]

+ M ln pout − N (N − 1)

2
pout, (18)

where β is a hyperparameter and �β (x) is a sigmoid function
defined as

�β (x) = 1

1 + e−βx
, (19)

which approaches the Heaviside step function as β → ∞.
To obtain the saddle-point condition for the set of coeffi-

cients {âk}, we solve the set of equations

∂Lβ

∂a1
= ∂Lβ

∂a2
= · · · = ∂Lβ

∂aK
= 0. (20)

The derivative ∂Lβ/∂ak is expressed as

∂Lβ

∂ak
= − ln pin − ln pout

4

×
∑
i< j

Ai j

√
2β sin2

(
πk

N−1 xπiπ j

)
cosh2

{
β

2

[
b
(
xπiπ j

) − |πi − π j |
]}

+ pin − pout

4

∑
i< j

√
2β sin2

(
πk

N−1 xi j
)

cosh2
{

β

2 [b(xi j ) − |i − j|]} . (21)

Unfortunately, the set of equations (20) is implicit with respect
to {ak} and, thus, is not easy to solve. Therefore, we employ
the gradient descent method. That is, we maximize Lβ by
iteratively updating each âk as

âk ← âk + η
∂Lβ

∂ak
, (22)

FIG. 4. Density plot of β/ cosh2{β[b(xi j ) − |i − j|]/2} with re-
spect to i and j when β = 1. Here, we set N = 100, K = 2, and
a1 = a2 = 5. The values are almost equal to zero, except for the band
around the envelope function.

where η is the learning rate that determines the rate of up-
date. We iterate the update until the convergence specified
by |∇ak Lβ | = √∑

k (∂Lβ/∂ak )2 < ε2, where ε2 is a predeter-
mined threshold. For the efficient search of the saddle point,
we decrease the learning rate as iteration goes on as η = η0/t ,
where η0 is a hyperparameter and t is the iteration step.

Even when we use the gradient descent method, the update
for {âk} is still computationally expensive because we need to
evaluate with respect to N (N − 1)/2 pairs of vertices in the
second summation in Eq. (21),

∑
i< j

√
2β sin2

(
πk

N−1 xi j
)

cosh2
{

β

2 [b(xi j ) − |i − j|]} . (23)

However, when β is sufficiently large, the contribution
from a term in this summation is negligible when |b(xi j ) −
|i − j|| � 0 because β/ cosh2(βx/2) ≈ 0 if |βx| � 1, as
shown in Fig. 4. In other words, this term is well approx-
imated by the sum over the elements near the envelope
function,

2(N−1)∑
d=0

∑
i< j

i+ j=d, |b(d/2)−|i− j||�δ

√
2β sin2

(
πk

N−1
d
2

)
cosh2

{
β

2

[
b
(

d
2

) − |i − j|]} , (24)

where δ is the width of the band around the envelope func-
tion in which we count the elements; we set δ such that
β/ cosh2(βδ/2) < 10−6. The number of pairs of vertices to
be taken into account is now reduced to O(N ).

B. Inference of the vertex sequence

We solve for the optimal vertex sequence by randomly
choosing a vertex pair and exchanging their indices when
the log-likelihood function increases. Considering all possible
pairs is computationally expensive when the network size is
large because the number of pairs increases with O(N2). We
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FIG. 5. The estimated model parameters of the ORGM by the maximum-likelihood estimate with K = 1. We generate networks by the
ORGM with N = 100, K = 1, pin = 0.8 with various values of a1 and pout. The dashed lines represent the cases where the estimated values
coincide with the true values of the model. Each symbol and bar represent the average and standard deviation over 20 network instances,
respectively.

then randomly choose Ns = nsN pairs of vertices for each
iteration, where ns is a hyperparameter. When exchanging the

indices π̂	 and π̂m, the variation of the log-likelihood function
is given by


L	m = (ln p̂in − ln p̂out )

⎛
⎜⎜⎜⎝

∑
j>	

j 	=m

A	 j
{
�

[
b
(
xπ̂mπ̂ j

) − |π̂m − π̂ j |
] − �

[
b
(
xπ̂	π̂ j

) − |π̂	 − π̂ j |
]}

+
∑
i>m
i 	=	

Ami
{
�

[
b
(
xπ̂iπ̂	

) − |π̂i − π̂	|
] − �

[
b
(
xπ̂iπ̂m

) − |π̂i − π̂m|]}
⎞
⎟⎟⎠. (25)

Here, we used the fact that only the first summation in Eq. (15)
is relevant to the variation of the log-likelihood function in
terms of the vertex sequence, as we mentioned before. For
each pair of vertices (	, m), if 
L	m > 0, we update the vertex
sequence to be π̃	 = π̂m and π̃m = π̂	.

We summarize how this iterative process identifies an op-
timal solution. In the optimally aligned matrix, the density
of nonzero elements in �in is high and the densely aligned
nonzero elements are tightly surrounded by the envelope func-
tion such that zero elements are likely to be excluded from
�in. The combination of updates of the vertex sequence and
the model parameters realizes such an alignment. First, p̂in

and p̂out are updated to the densities of nonzero elements in
�in and �out, as shown in Eqs. (16) and (17), respectively.
Second, we consider the update of the shape of the enve-
lope function, {âk}. Let us assume that one of the nonzero
elements moves from �out to �in by altering the envelope
function. In this case, Eq. (15) shows us that L increases
by (ln p̂in − ln p̂out ) − ( p̂in − p̂out ). Therefore, when �out is
sufficiently sparse, the nonzero elements are more likely to be
included in �in. In contrast, when a zero element moves from
�in to �out, L increases by p̂in − p̂out. Thus, zero elements are
more likely to be excluded from �in. Finally, L is increased

by updating π̂ such that more nonzero elements are included
in �in when p̂in > p̂out, as observed in Eq. (15). Thus, the
vertex sequence is updated so that more nonzero elements are
included in �in.

V. RESULTS

A. Synthetic networks

We examine the performance of the maximum-likelihood
estimate of the ORGM by applying to synthetic networks. In
this section, we set the hyperparameters to be β = 10, η0 =
0.1, ε1 = 10−6, ε2 = 0.1, δ = 2, and ns = 10, and we consider
100 initial states for {ak} and employ the solution with the
largest likelihood.

First, we apply the maximum-likelihood estimate to the
networks generated by the ORGM and examine whether the
algorithm can correctly infer the model parameters. We gen-
erate networks by setting the model parameters of the ORGM
to be N = 100, K = 1, pin = 0.8 with various values of a1

and pout. Figure 5 shows the model parameters estimated by
the maximum-likelihood estimate with K = 1. We observe
that the estimated model parameters are highly accurate when
pout = 0. As pout increases, the estimated parameters divert
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FIG. 6. Left: Estimated {âk} with the maximum-likelihood estimate when applied to the networks generated by the SBM with N = 50,
B = 2, and c = 6. Each symbol and bar represents the average and standard deviation over 20 network instances, respectively. Right: Heat maps
of adjacency matrices for a single network instance when ε = 0.05 (upper row) and ε = 0.25 (lower row). The dashed (red) curves represent
the envelope function. We estimate the vertex sequence with four algorithms: the maximum-likelihood estimate (MLE) with (a) K = 1 and
(b) K = 2, (c) spectral ordering, and (d) reverse Cuthill-McKee algorithm. If vertices i and j are connected and belong to the same group,
the matrix element Ai j is filled with a dark color (blue) or pale color (yellow) depending on the preassigned group label. When i and j are
connected and belong to the different groups, the matrix element Ai j is filled with an even paler color (gray).

from the true values for smaller values of a1. This experiment
implies that the maximum-likelihood estimate of the ORGM
can estimate the model parameters correctly when the number
of nonzero elements in �in is large. In Appendix A, we inves-
tigate how the performance of the estimate gets deteriorated
through the experiments with smaller pin.

Next, we examine to what extent our algorithm can infer
the community structure. To this end, we apply the maximum-
likelihood estimate to the networks with community structure
generated by the stochastic block model (SBM) [42]. The
SBM generates a network as follows. We first define the
number of group B and assign the group memberships to
the vertices σ = (σ0, σ1, . . . , σN−1), σi ∈ {0, 1, . . . , B − 1}.
Then, vertices i and j are connected with the probability qin

when σi = σ j and with the probability qout when σi 	= σ j .
Hereafter, we assume that the size of each group is equal.
The strength of the community structure is represented by the
ratio of the probabilities, ε = qout/qin. The adjacency matrix
exhibits a block-diagonal structure when ε = 0, while the
network is uniformly random when ε = 1. Note that qin and
qout are uniquely determined when N , B, ε and the average
degree c = 2M/N are given.

We generate networks by setting the model parameter of
the SBM to be N = 50 and c = 6 with various values of ε

and we consider 20 network instances for each ε. We perform
the maximum-likelihood estimate with K = 1 and K = 2. We
consider the spectral ordering [18] and the reverse Cuthill-
McKee algorithm [25,26] for comparison. Figure 6 shows the
estimated model parameters {âk} of the ORGM and the heat
maps of the adjacency matrix based on the estimated vertex
sequence. We observe that a2 decreases as the strength of
the community structure becomes weaker when K = 2. This
result indicates that the envelope function has two peaks cor-
responding to the groups when ε is smaller, while these peaks
decay as ε increases and the community structure becomes

weaker. When ε = 0.05, the community structure is visible
through the heat map using the maximum-likelihood method
with K = 1. Furthermore, we can observe that the network
exhibits a mixture of the community and banded structures
when K = 2 is used. Note that it is natural that the instances of
the SBM also exhibit a banded structure because a sparse uni-
form random graph often exhibits a banded structure when the
vertices are properly aligned [21]. The banded structure is also
visible in the heat map using the spectral ordering. The reverse

FIG. 7. The normalized label continuity error between the esti-
mated vertex sequence and the preassigned group labels of the SBM
using the maximum-likelihood estimate (MLE) (K = 1), maximum-
likelihood estimate (MLE) (K = 2), spectral ordering (Spectral), and
reverse Cuthill-McKee algorithm (RCM). The number of groups are
(a) two and (b) five, respectively. In both cases, we set N = 50 and
c = 6, and each symbol and bar represent the average and standard
deviation over 20 network instances, respectively.
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TABLE I. Description of empirical datasets. All the data can be
loaded from GRAPH-TOOL [47].

Dataset N M Data description

Political books [44] 105 441 Co-purchase network of
books on U.S. politics.

Les Misérables [45] 77 254 Character co-appearance
network of Les Misérables.

Football [1,46] 115 613 Network of American
football games between
Division I-A colleges.

Cuthill-McKee algorithm fails to exhibit the banded structure,
whereas the community structure is visible. In contrast, when
ε = 0.25, we cannot find the community structure in all four
heat maps, while we can observe the banded structure in the
heat map using the spectral ordering.

Let us numerically evaluate how the estimated ver-
tex sequence π̂ is consistent with the preassigned group

membership σ. We use the normalized label continuity error
[43], which is defined by

L(π̂, σ ) = N − B − ∑N−2
i′=0 δ{σ [π̂−1(i′)], σ [π̂−1(i′ + 1)]}
N − B − (N − 1)/B

,

(26)

where δ(x, y) is the Kronecker delta and σ [π̂−1(i)] is the
group label of the vertex i′ whose vertex index is π̂i′ = i. The
normalized label continuity error takes zero when all vertices
in each group are aligned maximally consecutively. In other
words, the result of ordering is consistent with the group
labels. It takes a higher value when the neighboring vertices
often belong to different groups.

In Fig. 7(a), we show the normalized label continuity
error for the estimated vertex sequences when the number
of groups is two (B = 2); this is the case we considered in
Fig. 6. When ε is small, we find that the vertex sequences
from the maximum-likelihood estimate with K = 2 and the
spectral ordering are highly consistent with the preassigned
group labels, while the reverse Cuthill-McKee algorithm is

FIG. 8. Heat maps of the adjacency matrices of three real-world datasets ordered by the four algorithms. The matrix element filled with
black represents Ai j = 1. The red dashed line represents the estimated envelope function. The top, middle, and bottom panels represent
the results for the networks of Political Books, Les Misérables, and Football, respectively. Each column represents the results of different
algorithms: our maximum-likelihood estimates of the ORGM with (a) K = 1 and (b) K = 2, (c) spectral ordering, and (d) reverse Cuthill-
McKee algorithm.
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FIG. 9. Heat maps of adjacency matrices that reflect the results of community detection. Matrix elements filled with the same (nongray)
color represent the vertex pairs belonging to the same group, while other nonzero elements are filled with the gray color. For the alignment of
matrix elements, we use the same vertex sequence as in Fig. 8.

less consistent (larger normalized label continuity error). We
consider the SBM with five groups (B = 5) in Fig. 7(b). In
this case, the vertex sequence of the maximum-likelihood
estimate with both K = 1 and K = 2 is more consistent
with the group labels than that of the spectral ordering
contrary to the case with two groups. These experiments
show that the maximum-likelihood estimate aligns vertices
so that the community structure is visible even when the
number of planted peaks in the envelope function K is smaller
than B.

B. Real-world datasets

We demonstrate the performance of the maximum-
likelihood estimate of the ORGM using three real-world
network datasets that are often used in network science: the
networks of Political Books [44], Les Misérables [45], and
Football [1,46] (Table I).

The visualization of the adjacency matrices based on the
inferred vertex sequence is shown in Fig. 8. We show the
results with K = 1 and K = 2, and set the parameters to be
β = 10, η0 = 0.1, ε1 = 10−6, ε2 = 0.1, δ = 2, and ns = 10.
For each case, we consider 1000 initial states for {ak} and

employ the solution with the largest likelihood. Our results
are compared with those of the spectral ordering [18] and
the reverse Cuthill-McKee algorithm [25,26], which are also
shown in Fig. 8.

The maximum-likelihood estimate allows us to capture the
sequentially local structure through the linear arrangement for
all three datasets. The envelope functions, illustrated as red
curves, are inferred relatively close to the diagonal elements,
and the nonzero elements, illustrated as black elements, are
more likely to be placed inside the envelope function for both
cases when K = 1 and K = 2. The maximum-likelihood esti-
mate of the ORGM exhibits a block-diagonal structure more
clearly compared with the results of the spectral ordering and
the reverse Cuthill-McKee algorithm. We also show the results
with K = 3 and K = 4 in Appendix B, where we observe that
a larger value of K does not necessarily allow us to capture
clear community structures.

The result on the Political Books network with K = 2
exhibits two groups corresponding to the two peaks of the
envelope function. We can also confirm that the Political
Books network has a sequentially local structure that is a
mixture of the community and banded structures. For the Les
Misérables and Football networks, we can identify several
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FIG. 10. Computation time of the maximum-likelihood estimate
for a single initial value of {ak}. We consider regular random net-
works with c = 6, and perform the maximum-likelihood estimate
with K = 1 and K = 2. Each symbol and bar, respectively, represents
the average and the standard deviation of the 100 samples of the
initial value, and the dotted lines are the fitted curve by y = axb using
the least squares. When K = 1, a = 1.33 × 10−3 and b = 1.66, and
when K = 2, a = 5.85 × 10−3 and b = 1.55. For the calculation, we
use the 2020 Macbook Pro with Apple M1 chip.

cliquelike groups even when K = 2 is employed. In contrast,
the spectral ordering and the reverse Cuthill-McKee algorithm
often focus more on banded structures.

We next examine whether the optimized vertex sequences
are consistent with an existing community detection method.
We use the Markov-chain Monte Carlo algorithm based on
the non-degree-corrected version of the SBM [48,49], which
is implemented in GRAPH-TOOL [47]. This algorithm auto-
matically determines the number of groups. We obtained
five groups for the Political Books network, seven for the
Les Misérables network, and 10 for the Football network.
We can visually confirm from Fig. 9 that the vertices in
the same group are more closely aligned, indicating that the
vertex sequence obtained via our linear alignment algorithm
is consistent with the results of the community detection
algorithm.

Interestingly, in the Political Books network, the optimal
vertex sequence shows that the two large groups, which are
respectively represented by red and green, are connected via a
small number of vertices, while such vertices in the middle
are regarded to be forming another group, which is repre-
sented by blue, in the community detection method. That is,
the group in the middle serves as a bridge at the ambiguous
boundary of two large groups. Note that if we inferred the
group labels only and aligned the vertices based on those
labels, we would simply conclude that the network has a
community structure with two large groups and one small
group. However, a careful alignment of the vertices allows us
to interpret that the small group is, in fact, a subgraph that
smoothly connects the other large groups. Therefore, we can
obtain a better understanding of a dataset by applying both
linear alignment and community detection algorithms when
the results of these two algorithms are consistent with each
other.

VI. DISCUSSION

In this study, we proposed a linear arrangement algorithm
based on statistical modeling. We employed the ORGM as a
generative model of networks and performed its maximum-
likelihood estimate. Our statistical framework to infer the
sequentially local structure provides a different perspective to
the community detection in a network. While we employed
the maximum-likelihood estimate in this work, our framework
can be extended to Bayesian inference.

Our modeling is more flexible than the classical linear
arrangement methods that are based on a cost function, such
as Eq. (1), and thus our method allows us to capture a se-
quentially local structure that is a mixture of community and
banded structures. For example, in the Football network, the
community structure is not observed in the results of the
spectral ordering and the reverse Cuthill-McKee algorithm.
This is because these methods strongly penalize the nonzero
elements far from the diagonal part. In contrast, our method
is not prone to such a problem because it penalizes matrix
elements in a more flexible manner.

Our linear arrangement algorithm can detect community
structures with ambiguous boundaries, as we observed from
the result of the Political Books network (Fig. 9). In contrast,
many of the previous community detection methods perform
“hard clustering,” in which the detected groups have clear
boundaries because a group label is assigned to each ver-
tex. Such a hard clustering method is not suitable for some
networks, and several other flexible methods were proposed
in the literature. Overlapping community detection methods
[50,51] deal with ambiguous boundaries by assigning multi-
ple group labels to each vertex. Bayesian inference methods
[5,52] infer a probability distribution of group assignment for
each vertex. Although the interpretation of ambiguous bound-
aries of groups in these methods is not identical, they achieve
“soft clustering” using a higher-order group membership. Our
algorithm simply estimates the vertex sequence and allows
us to visually identify the fuzziness of community structures
without introducing higher-order group memberships.

Another advantage of our approach is that we neither need
to give nor infer the number of groups. For example, in clus-
tering methods, such as an inference method based on the
maximum-likelihood estimate of the SBM [53] and spectral
clustering [54], the number of groups needs to be provided
as input. In some methods, such as the Bayesian inference,
the number of groups is determined in a nonparametric man-
ner [5,52]. In contrast, as observed in the results of the Les
Misérables and Football networks (Fig. 8), we can visually es-
timate an appropriate number of groups when the vertices are
optimally aligned. There are pros and cons to our method. The
specification of the number of groups is ambiguous compared
with the clustering methods. On the other hand, our approach
is more flexible for detecting the mixture of the community
and banded structures because the specification of the number
of groups in the clustering methods restricts the structures to
be detected.

In our method, it is important that pin > pout is satisfied.
When pin > pout, as described in Sec. IV B, the nonzero el-
ements tend to be included in �in as the vertex sequence is
updated. In contrast, when pin < pout, the nonzero elements
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FIG. 11. The estimated model parameters of the ORGM by the
maximum-likelihood estimate with K = 1. The networks are gen-
erated by the ORGM with N = 100, K = 1, and pin = 0.6. The
symbols, bars, and dashed lines are used in the same manner as in
Fig. 5.

tend to be excluded from �in as the vertex sequence is up-
dated. Conducting the spectral ordering as a preprocess helps
us prevent this problem, in addition to the efficient search
of the optimal vertex sequence, because the spectral ordering
aligns more nonzero elements near the diagonal elements.

We characterized the envelope function as a superposition
of the sine-squared functions. This modeling makes com-
putation efficient because we only have to tune {ak} and it
is effective for identifying community structures. However,
other modelings are also possible, and exploring a better

FIG. 12. Heat maps of adjacency matrices aligned according to
the results of our maximum-likelihood estimates of the ORGM with
(a) K = 3 and (b) K = 4. The red dashed line again represents
the estimated envelope function. The filling colors of each element
represent the same results of community detection as in Fig. 9.

modeling for the envelope function would be a possible re-
search direction. In addition, identifying the optimal number
of sine waves K is another task. In this study, although we
have treated K as a hyperparameter and successfully found the
sequentially local structures with K = 1 and K = 2, a good
model selection method can potentially find an optimal value
of K . For example, it can be done by considering a Bayesian
framework and adding a prior distribution of K .

Finding an optimal vertex sequence generally requires a
large computational cost. To make the optimization tractable,
we restricted the envelope function to a superposition of sine-
squared functions in the proposed method. We also applied the
transformation in Eq. (15) and the approximation in Eq. (21)
to the log-likelihood function. Furthermore, we employed a
greedy heuristic to realize a fast optimization. Despite these
treatments, the maximum-likelihood estimate of the ORGM
is still computationally expensive. However, our method at
least improves the efficiency of the optimization compared
with the brute-force method which requires O(N!) operations.
In Fig. 10, we show the computation time to find the opti-
mal vertex sequence when we apply the maximum-likelihood
estimate to the regular random networks. We find that the
computation time increases polynomially as the number of
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vertices increases, with the exponent less than two. In addi-
tion, although the computational cost increases when we use
a larger value of K , the exponent is almost same between the
cases with K = 1 and K = 2.

The code of the maximum-likelihood estimate is available
at [55].
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APPENDIX A: ACCURACY OF THE ORGM PARAMETERS

In the main text, we observed that the maximum-likelihood
estimate correctly infers the true model parameters of the
ORGM for larger values of a1 when pin = 0.8. Here, we
examine how the performance of the maximum-likelihood
estimate gets deteriorated as we make pin and pout closer to
those for uniformly random networks. Figure 11 shows the
performance of the ORGM parameter estimation. Herein, we
set pin = 0.6 for the true parameter and considered various
values of pout. As observed in the case with pin = 0.8 in the
main text, a1 is overestimated when the true value is small;

we confirm that this tendency is enhanced as pin becomes
smaller. For the networks with pout � 0.2, the estimates p̂in

and p̂out are accurate whenever â1 is accurate. However, for
the networks with larger values of pout, p̂in and p̂out are not
accurate even when a1 and â1 apparently coincide, implying
that the maximum-likelihood estimate may have reached its
performance limit.

APPENDIX B: MAXIMUM-LIKELIHOOD ESTIMATE
WITH K = 3 AND K = 4 ON REAL-WORLD DATASETS

In the main text, we showed the result of the maximum-
likelihood estimates with K = 1 and K = 2. Here, we show
the results of the maximum-likelihood estimates with K = 3
and K = 4 in Fig. 12. We observe that except for the result
of the Les Misérables network with K = 4, the inferred ver-
tex sequence is similar to the results with K = 2, while the
envelope functions are more complicated. In contrast, in the
result of the Les Misérables network with K = 4, the clique-
like structure is no longer visible because the log-likelihood
function is larger when the elements associated with a hub
at the center of the matrix are included in �in. This example
illustrates that a larger value of K does not always exhibit
a finer community structure and implies the existence of an
optimal value of K .
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