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Target control of complex networks: How to save control energy
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Controlling complex networks has received much attention in the past two decades. In order to control complex
networks in practice, recent progress is mainly focused on the control energy required to drive the associated
system from an initial state to any final state within finite time. However, one of the major challenges when
controlling complex networks is that the amount of control energy is usually prohibitively expensive. Previous
explorations on reducing the control energy often rely on adding more driver nodes to be controlled directly by
external control inputs, or reducing the number of target nodes required to be controlled. Here we show that the
required control energy can be reduced exponentially by appropriately setting the initial states of uncontrollable
nodes for achieving the target control of complex networks. We further present the energy-optimal initial states
and theoretically prove their existence for any structure of network. Moreover, we demonstrate that the control
energy could be saved by reducing the distance between the energy-optimal states set and the initial states of
uncontrollable nodes. Finally, we propose a strategy to determine the optimal time to inject the control inputs,
which may reduce the control energy exponentially. Our conclusions are all verified numerically, and shed light
on saving control energy in practical control.
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I. INTRODUCTION

In the past two decades, network science plays a key role
in modern science for studying complex systems [1–8]. Typ-
ically, the nodes of a network could represent components
of the complex system, and the edges describe interactions
between the components [9–11]. Recently, the combination
of the classical control theory and network science has proved
to be a powerful tool for understanding complex systems such
as biological systems [12,13], social networks [14,15], brain
networks [16–18], and so on [19–23]. A network system is
said to be controllable if it can be driven from an arbitrary
initial state to any final state with proper external control
inputs in finite time [2,24–29].

For a controllable network system, the external inputs to
achieve the same control task are not necessarily exclusive.
As a result, the control energy measuring how difficult it is to
execute the control task has sparked much interest. Theoret-
ical explorations have been carried out to study the internal
essence of the minimum control energy on the basis of op-
timal control theory [25,28–35]. Reference [35] analyzed the
control energy in different control directions in state space and
concluded that most of the control directions of a controllable
network system are energetically inaccessible, which indi-
cates that the required control energy for controlling complex
networks is usually tremendous. The upper and lower bounds
of the minimum control energy, and the associated scaling
laws for static networks are analytically derived for both full
and target control [25,28–30,32,33]. For temporal networks,

*Corresponding author: liaming@pku.edu.cn

the bounds and scalings of the minimum control energy are
also reported [32,36].

While controlling complex networks with large control
energy is infeasible in practice, limited methods and strategies
are reported on how to save control energy. Reference [36]
first compared the control characteristics between static and
temporal networks, showing that temporal networks demand
orders of magnitude less control energy. And the control en-
ergy decays exponentially with the increase of the number
of control inputs [35], suggesting that applying additional
controllers is an energy-saving strategy. Reference [37] pro-
posed strategies for driver nodes placement that can reduce
control energy. For many biological, technological, and social
systems, controlling the entire network is neither necessary
nor energy saving [38]. Indeed, a more realistic and efficient
strategy is to achieve target control, i.e., to control a subset of
all nodes (or a subsystem) according to the system’s function
or task [25,29,33,38]. The nodes that are targeted to achieve
our preset goal are referred to as target nodes. Interestingly,
the control energy is reported to decay exponentially with the
decrease of target nodes [33]. However, little attention is paid
to the nontarget nodes, i.e., the complementary set of target
nodes. Although achieving the desired final states of target
nodes is the most critical element in a control task, nontarget
nodes, as an indispensable part of the network system, pre-
sumably produce an essential outcome on the control process,
such as the control inputs and the associated control energy.

This paper presents a comprehensive study on conserving
control energy by specifically focusing on the uncontrol-
lable nodes, namely, the nontarget nodes, in uncontrollable
networks under target control. We show that the control
energy differs exponentially for different initial states of
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FIG. 1. The initial states of uncontrollable nodes play a key role in saving control energy. (a) A simple three-node network following the
dynamics given at the bottom has two-dimensional controllable subspace. The controllable nodes are denoted by 1, 2 without loss of generality,
and the yellow region � on the right panel shows the set of final states xf that can be reached from the initial state x(t0) = 0 in finite time
by a proper control input. � is an infinite plane that restricts the evolution of the system states, i.e., x3(tf) = 1

a12
x1(tf) + a13

a12
x2(tf). The vector

v = (0, a12b1, a13b1) shown in the dotted arrow is a direction vector of � ∩ � = {(x1(0), x2(0), x3(0))|x1(0) = 0}. (b) The time evolution of the
system states to achieve a control task with energy-optimal input u∗(t) and different settings of x3(t0). The network weights (a11, a12, a13, b1)
are set as (1,1,3,1), and the control times are assigned as t0 = 0 and tf = 1. For the control task, the initial and target states of controllable
nodes are set as xc(0) = [x1(0), x2(0)]T = 0 and xc(1) = [x1(1), x2(1)]T = [1/

√
2, 1/

√
2]T, respectively. For the state of the uncontrollable

node x3(0), we set x3(0) = 3 in (b) with a solid red curve while x3(0) = 1 in (c) with a solid blue curve. (d) u∗T(t)u∗(t) at different time points
under different x3(0), and u∗(t) is the optimal control input for each case. The red curve and blue curve present the case of x3(0) = 3 and
x3(0) = 1, respectively. The areas of the shaded part below the curves represent the corresponding optimal control energy.

uncontrollable nodes when a control task is given. Then we
give the necessary and sufficient condition for the existence
of the energy-optimal states to maximally save energy, and
prove that the energy-optimal states always exist. And we
further derive the energy-optimal possible states for any net-
work structure analytically. Moreover, we find that the further
the distance between the set of energy-optimal states and the
initial states of uncontrollable nodes, the more control energy
would be required to conduct the control task. Finally, we
propose a control strategy to determine when to apply the con-
trol inputs into the system. Simulations show that the control
strategy can save control energy exponentially.

II. MODEL

We consider the canonical continuous linear time-invariant
dynamics

ẋ(t) = Ax(t) + Bu(t). (1)

Here A ∈ Rn×n is the adjacency matrix of the undirected
network, which represents interactions between the system
components. B ∈ Rn×m is the input matrix that has linearly
independent columns with a single nonzero element 1. bi j �= 0
means node i is controlled directly by the input j, and node i is
thus called the driver node. x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈
Rn is an n-dimensional state vector denoting the states of
the entire network and u(t) = [u1(t), u2(t), . . . , um(t)]T is an
m-dimensional input vector [Fig. 1(a)].

System (1) is called controllable if there exists a proper
control input u(t) driving the system from any initial state
x0 = x(t0) toward any target state xf = x(tf) at finite time tf .
According to the Kalman’s controllability criterion [39], the
controllability matrix of system (1) is

K = [B,AB,A2B, . . . ,An−1B],

whose column space is the controllable subspace �, and its
rank is the dimension of � [Fig. 1(a)]. Here we concentrate on

those systems that are partially controllable by relaxing the re-
striction of full controllability, i.e., rank(K) = r < n. And in
this case, since the dimension of controllable subspace is r, the
states of r nodes can move independently. As a result, there are
r nodes controllable, which can be driven toward the desired
state in finite time by a proper control input u(t), while the left
n − r nodes are uncontrollable. Therefore, we consider these
r controllable nodes to be target nodes. Although pervious
studies reveal that the maximum number of the controllable
nodes is fixed r, these r controllable nodes are usually not
unique [25,38]. Here, without loss of generality, we consider
one of many possible combinations, which can be preselected
according to the control task. Inspired by prior literature [25],
we assume that the first r nodes are controllable, and we
consider that the first m nodes are driver nodes, i.e., x(t) =
[xT

c (t), xT
nc(t)]T and B = [Im×m, 0]T ∈ Rn×m, where xc(t) and

xnc(t) collect the states of controllable and uncontrollable
nodes, respectively. This operation also makes mathematical
expressions more convenient for detailed analysis of control
energy.

For a given network system, the permutation matrix

P = [Ic1, Ic2 , ..., Icm , ..., Icr , Inc1 , ..., Incn−r ]
T

can conveniently transfer the system states as we have as-
sumed, where Ii is a unit vector with the ith element being
1 [25]. Nodes labeled as c1, ..., cm are the driver nodes, and
c1, ..., cr are the preselected target nodes of the given net-
work, and the left nodes labeled as nc1, ..., ncn−r are the
uncontrollable nodes. In fact, the m driver nodes are part of
the controllable nodes, as they directly receive independent
control inputs to achieve the full control of other controllable
nodes. In the following part of the paper, the network system
has been transformed by P in advance to ensure that our
assumption holds before further detailed analysis. We aim
to drive the initial states of target nodes from xc0 = xc(t0)
to xcf = xc(tf) with the minimum control energy under the
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control time tf − t0, which is defined as

E =
∫ tf

t0

uT(t)u(t)dt .

Note that the states of uncontrollable nodes xnc(t) and their
final destinations xncf = xnc(tf) are not considered in advance
to achieve the control task in previous explorations, which
means that only the states of controllable nodes are taken into
consideration. However, in the process of executing control
tasks, it is necessary to have knowledge of the initial states
of uncontrollable nodes xnc0 = xnc(t0) because it is one of the
key factors for the system’s control trajectory, which is vital
for conducting the practical control [Fig. 1(b)]. As a result,
the minimum control energy would be greatly influenced by
xnc0, whose derivation and the corresponding control input are
presented in Appendix A.

In order to further analyze the impact of the initial states of
uncontrollable nodes on the control energy, here we employ
the state equation decomposition related to controllability
[40], which always transforms system (1) into the controllable
and uncontrollable parts with block-diagonal structure. In this
way, further analysis can be conducted based on the two parts.

Applying QR factorization into matrix K yields K = QTR;
then the orthogonal matrix QT can be obtained (whose first r
columns are the orthogonal basis of K′s column space), and
the left n − r columns are its orthogonal complement [41]. By
the state variable transformation

x̄(t) = Qx(t), (2)

system (1) is equivalent to

˙̄x(t) = QAQTx̄(t) + QBu(t),

which has the following specific form [25,29,40]:[
˙̄xc(t)
˙̄xnc(t)

]
= ˙̄x(t) =

[
Ac 0
0 Anc

]
x̄(t) +

[
Bc

0

]
u(t),

where x̄c(t) ∈ Rr , Ac ∈ Rr×r , and Bc = [Im×m, 0]T ∈ Rr×m.
Accordingly, the system can be decomposed into the control-
lable part

˙̄xc(t) = Acx̄c(t) + Bcu(t), (3)

and the corresponding uncontrollable part

˙̄xnc(t) = Ancx̄nc(t). (4)

By this means, the control input u applied to (1)
can be regarded as that applied to (3), and so is
the control energy. Denote Q = [QT

c , QT
nc]T with Qc =

[Q1, Q2] and Qnc = [Q3, Q4], where Q1 ∈ Rr×r and Q4 ∈
R(n−r)×(n−r). Then we have x̄c(t) = Qc[xT

c (t), xT
nc(t)]T and

x̄nc(t) = Qnc[xT
c (t), xT

nc(t)]T, which implies that the state of the
controllable part is a linear combination of the states of both
the controllable nodes and the uncontrollable nodes of (1).
Similarly, the state of the uncontrollable part is also a linear
combination of these nodes’ states. The matrices Q1 and Q4

are all invertible since the first r nodes are controllable and the
last n − r nodes are uncontrollable.

It is also worth noting that we specially select the orthogo-
nal matrix Q derived by applying QR factorization into matrix
K since the state variable transformation by such Q does not

change the symmetry of the system matrix QAQT, although
the forms of the variable transformation matrix decomposing
system (1) into the two parts are not unique as stated in [40].
For one thing, Ac and Anc are both symmetric when A is
symmetric, and thus the properties of a symmetric matrix
that have potential advantages for further calculations are
preserved. For another, the controllable part (3) and the uncon-
trollable part (4) are formally decoupled since the submatrices
of QAQT in the secondary diagonal line are zero matrices with
proper size. In addition, the input matrix of the controllable
part (3) is obtained as Bc = [Im×m, 0]T ∈ Rr×m since the first
m nodes of system (1) are driver nodes.

The control input under the minimum control energy for
controlling the controllable part (3) can be theoretically de-
rived (see Appendix A), which is

u∗(t) = BT
c eAT

c (tf −t)W−1
c (t0, tf)ξ(tf − t0),

where

ξ(tf − t0) = eAc(tf −t0)x̄c(t0) − x̄c(tf),

and

Wc(t0, tf) =
∫ tf

t0

eAc(tf −τ)BcBT
c eAT

c (tf−τ)dτ

is called controllability Gramian matrix of controllable
part (3).

To further understand this key point intuitively, here we
consider a network system with three nodes in Fig. 1. The
network structure is shown in Fig. 1(a), where the edges are
consistent with nonzero elements in the system matrix A.
We also derive its controllable region � with the initial state
x0 = 0, which visualizes the restriction on the final state of
the network system. In this case, the controllable region �

is a two-dimensional plane restricting the evolution of the
system states, which indicates that the number of control-
lable nodes is two, i.e., nodes 1 and 2 [yellow in Fig. 1(a)]
are controllable while node 3 [gray in Fig. 1(a)] is uncontrol-
lable. The controllable region passes through the origin x0 =
0, and it can be determined by vector v. v is a direction vector
of � ∩ �, where the plane � = {(x1(0), x2(0), x3(0))|x1(0) =
0}. In Figs. 1(b) and 1(c), we obtain the time evolution
of the states and the corresponding inputs u∗(t) by energy-
optimal control for different values of x3(0). To obtain detailed
derivation of the energy-optimal input, one may refer to Ap-
pendix A. In Fig. 1(b), although the states of target nodes are
all driven from xc0 = 0 to xcf = [1/

√
2, 1/

√
2]T, evolutions

of the system states under x3(0) = 3 (with solid red curve) and
x3(0) = 1 (with solid blue curve) differ significantly. In
Fig. 1(c), the areas of the shaded region below the red and blue
curves represent the corresponding minimum control energy
for x3(0) = 3 and x3(0) = 1, respectively. It is obvious that
the minimum control energy for x3(0) = 1 is significantly less
than that for x3(0) = 3.
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III. RESULTS

A. How the states of uncontrollable nodes affect
the control energy

Since the state of the controllable part is a linear combina-
tion of the states of both the controllable and uncontrollable
nodes, the states of uncontrollable nodes are also needed to
obtain the minimum control energy. For the uncontrollable
part (4), we have

x̄nc(tf) = eAnc(tf −t0)x̄nc(t0)=Qncxf ,

which further yields

xncf = Q−1
4

(
eAnc(tf −t0)Qncx0 − Q3xcf

)
. (5)

For a detailed derivation of Eq. (5), please see Appendix A.
Therefore, controlling the state of controllable nodes x0 to
the desired target state xcf is equivalent to controlling the
controllable part (3) from the initial state

x̄c(t0) = Qc
[
xT

c0, xT
nc0

]T

to the target state

x̄c(tf) = Qc
[
xT

cf , xT
ncf

]T
.

Note that although the control energy is solely defined in
terms of u(t) that is only applied to the controllable part (3),
the minimum control energy would be effected by the state
of the uncontrollable part because it appears in the initial
and target states of (3). For the Gramian matrix Wc(t0, tf),
by some variable substitutions (see Appendix B) we have
Wc(t0, tf) = Wc(0, tf − t0), thus the corresponding minimum
control energy is

Ẽ = ξT(tf − t0)W−1
c (0, tf − t0)ξ(tf − t0).

In the following analysis, we will omit the time variable
tf − t0 of matrices, vectors, and constant for simplifying equa-
tions. The control energy analyzed here refers to the minimum
control energy.

B. Energy-optimal states of uncontrollable nodes

As shown in the previous part (Fig. 1), the initial states
of uncontrollable nodes xnc0 has a remarkable influence on
control energy. Although the states of uncontrollable nodes
xnc(t) is not controllable, the control energy would be different
for different locations of xnc(t). Inspired by this, we would
infer that a proper xnc0 may result in less control energy under
the same control task, which makes it possible to make use
of xnc0 to save control energy to the largest extent. In the
following, we aim to find an optimal initial state x∗

nc0 to save
the control energy Ẽ further.

The optimal x∗
nc0 minimizing the control energy Ẽ can be

derived by solving the optimal problem

min
xnc0

Ẽ = xT
nc0Gxnc0 + ζxnc0 + c

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H = QT
1 WcQ1

G = UTH−1U

c = ηTH−1η

ζ = 2ηTH−1U

η = Rxc0 − xcf

R = QT
1 eAc(tf −t0)Q1 + QT

3 eAnc(tf −t0)Q3

U = QT
1 eAc(tf −t0)Q2 + QT

3 eAnc(tf −t0)Q4.

.

(6)

Here, H is a submatrix of system (1)’s controllability
Gramian, whose first r columns and rows are the correspond-
ing elements in H. The positive semidefinite G and vector ζ

capture the effects of quadratic and linear terms of xnc0 on the
control energy, respectively. R is related to the self-evolutions
of the system, and η describes the control distance of the
control task. For different structures of the network system,
the forms of U are usually different, which is also a key factor
determining the strength of the influence of xnc0 on the control
energy; for example, when a network system consists of two
disjoint subnetworks, one of which is fully controllable, and
the other is uncontrollable. And this leads to U = 0, G = 0,
and ζ = 0, where the uncontrollable initial state xnc0 has no
effect on the control energy. For a detailed derivation of the
problem (6), please refer to Appendix C. For the network
system (1), when the control duration tf − t0, the initial state
xc0, and the desired final state xcf of the target nodes are fixed,
the control energy Ẽ is a univalent function of the initial states
of uncontrollable nodes xnc0.

Congruent transformation is commonly used to simplify
the expression of quadratic forms, which facilitates further
analysis. Here, in order to further analyze the optimal problem
(6) theoretically, by congruent transformation [41] we have

�TG� = � =
(

�q 0
0 0

)
,

where q = rank(G), � and �q are nonsingular, and �q is a q-
dimensional diagonal matrix. Since G is positive semidefinite,
�′

qs diagonal elements are positive by congruent transforma-

tion. By denoting δT = ζ�, we know that the solution of
problem (6) exists if and only if rank(�) = rank(�, δ) (see
Appendix D 1 for proof). It presents the necessary and suffi-
cient condition of the existence of the energy-optimal initial
states of uncontrollable nodes. In order to solve it, the first
step is to determine whether there exists an energy-optimal
solution. We further find that the solution always exists, i.e.,
rank(�) ≡ rank(�, δ) (see Appendix D 2 for proof). Let
xnc0 = �y, and then we have the control energy

Ẽ = xT
nc0Gxnc0 + ζxnc0 + c

=
l∑

i=1

λi

(
yi + δi

2λi

)2

+
q∑

i=1+l

λiy
2
i + c −

q∑
i=1

δ2
i

4λi
,

where l is the location of the last nonzero element of vector δ,
λi is the ith diagonal element of �q, and δi is the ith element of
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δ. Since λi > 0, ensuring that the first two quadratic terms are
zero guarantees that Ẽ attains its minimum value. As a result,
we summarize that the problem (6) always has the energy-
optimal solution, and the solution is

x∗
nc0 = �

⎛
⎜⎝− δ1

2λ1
, . . . ,− δl

2λl
, 0, . . . , 0︸ ︷︷ ︸

q−l

, σ1, . . . , σn−r−q

⎞
⎟⎠

T

,(7)

where σ1, σ2, . . . , σn−r−q are n − r − q arbitrary parameters
and the number of zero element is q − l . The corresponding
optimal control energy is

Ẽ∗ = c − 1

4

q∑
i=1

δ2
i

λi
.

For the solution of problem (6), there are distinct
n − r − q arbitrary parameters σ1, σ2, . . . , σn−r−q indicating
that the number of x∗

nc0 can be 1 (when G has full rank, i.e.,
n − r = q) or countless (when G is singular). Specifically,
when matrix G has full rank, the only solution is x∗

nc0 =
−0.5G−1ζT with the corresponding optimal control energy
Ẽ∗ = c − 0.25ζG−1ζT.

Here we take a six-dimensional network system as an ex-
ample to present the corresponding results in Fig. 2 intuitively.
In Fig. 2(b), one of the optimal initial states x∗

nc0 is found
by Eq. (7) with tf = 1, which is plotted with a black square.
We randomly select xran

nc0 with the same norm as x∗
nc0, and

calculate the corresponding control input u∗(t) in Fig. 2(d).
For different control time tf , we derive the x∗

nc0, and generate
100 different xnc0 uniformly at the same norm as x∗

nc0. In
Fig. 2(c), the control energy with x∗

nc0 is plotted in blue (Ẽ∗),
and the average energy with 100 different xnc0 is plotted in
red (〈Ẽ∗〉), whose range is the pink shadows. Figure 2(c)
shows that control energy varies exponentially when xnc0 are
in different directions but of the same distance to the origin.

Therefore, the control energy can be exponentially differ-
ent with different xnc0. In most previous studies, the control
energy for target control is believed to be determined by
the states of controllable nodes. Hence, this is a surprising
finding since the control energy can be drastically affected
by the states of the uncontrollable nodes other than the con-
trollable nodes, which is counterintuitive. This finding also
provides a novel approach to exponentially saving the control
energy for target control by taking advantage of the derived
energy-optimal solution, Eq. (7). For example, by selecting
appropriate xnc0 the control energy can be largely saved. In
what follows, we propose a possible control strategy to save
the control energy for target control based on the derived
energy-optimal solution of problem (6).

C. Strategy for determining the energy-optimal time
to apply control inputs

Here we further analyze the control energy Ẽ with respect
to the states of uncontrollable nodes. Specifically, we study the
energy-optimal time t I∗

0 to apply the control inputs when the
final state of target nodes is determined. We denote the set of
x∗

nc0 as X. In Fig. 3(a), we generate 200 × 200 initial states of
uncontrollable nodes and calculate the corresponding control
energy. By Eq. (7), we analytically derive the set X, which is

FIG. 2. Controlling a network with different initial states of un-
controllable nodes. (a) A partially controllable network with four
controllable nodes in yellow and two uncontrollable nodes in gray.
(b) The optimal initial states of uncontrollable nodes is denoted by
x∗

nc0 for the control time t0 = 0 and tf = 1, where xran
nc0 indicates the

randomly selected initial state at the same distance to the origin. For
controllable nodes, the initial state is set as x0 = 0, and the target
state is xcf = [0.71, 0.11, 0.32, 0.62]T, which is randomly selected
on a unit hypersphere. (c) The control energy Ẽ∗ with the energy-
optimal initial states of uncontrollable nodes x∗

nc0 (blue line) and
the average control energy 〈Ẽ〉 of 100 different xran

nc0 (red line) for
different control time tf . These xran

nc0 are generated uniformly in a
circle with radius being ‖x∗

nc0‖2, as (b) shows the case for tf = 1. Here
the control energy is exponentially reduced by the energy-optimal
x∗

nc0. (d) Optimal control inputs with the optimal x∗
nc0 and a randomly

selected xran
nc0 on the circle in (b).

a blue line with its equation being 2.75x5(0) + x6(0) = 28.48.
We can see the control energy tends to be larger when the
distance between states of uncontrollable nodes and the blue
line tends to be longer, which inspires us to explore the rela-
tionship between the control energy and the distance between
states of uncontrollable nodes xnc0 and X. Hence we define the
geometric distance between them by

dmin = min
x∗

nc0∈X
‖xnc0 − x∗

nc0‖2. (8)

The geometric distance of these 200 × 200 states and the
corresponding control energy are shown in Fig. 3(b). We can
see the control energy is a monotonically increasing function
of dmin for the six-dimensional network system. For large net-
works with different degree distributions and other statistical
characteristics, the energy-optimal x∗

nc0 can also be obtained
analytically by our method. In Figs. 3(c) and 3(d), we generate
one Barabási-Albert (BA) network and one Erdös-Rényi (ER)
network with the same scale n = 20 and same average degree
〈k〉 = 5.5. The control time is set as t0 = 0 and tf = 1, and
the initial state is set as 0.2357 while the target is 2 for each
18 controllable nodes (r = 18). Then we calculate the control

014301-5



TAO MENG, GAOPENG DUAN, AND AMING LI PHYSICAL REVIEW E 108, 014301 (2023)

FIG. 3. Control energy with different states of uncontrollable
nodes for the network system shown in Fig. 2(a). For the region
of xnc0 in panel (a), 200 × 200 states of uncontrollable nodes xnc0

are uniformly selected. The initial state is set as xc0 = [1, 1, 1, 1]T

for controllable nodes, and the target state is xcf = [2, 3, 4, 5]T with
the control time t0 = 0 and tf = e−2. The control energy of these
200 × 200 states of xnc0 is calculated and presented in different
colors. The energy-optimal initial states of uncontrollable nodes
x∗

nc0 are plotted in blue, which is aligned with its equation being
2.75x5(0) + x6(0) = 28.48. (b) The control energy with respect to
the geometric distance dmin between xnc0 [200 × 200 selected point in
(a)] and the corresponding energy-optimal initial states. The control
energy increases as the geometric distance dmin grows. For the BA
network and ER network with n = 20, r = 18 and same average
degree 〈k〉 = 5.5, the control energy with the region of xnc0 in (c) and
(d) is calculated. The 200 × 200 initial states of uncontrollable nodes
are also uniformly selected. Here the control time is set as t0 = 0 and
tf = 1. For each controllable node, the initial state is set as 0.2357
and the target is 2.

energy with 200 × 200 initial states of uncontrollable nodes
in the region of Figs. 3(c) and 3(d), respectively.

Therefore, we can make full use of x∗
nc0 to save control

energy to the largest extent. When the initial states of un-
controlled nodes can be adjusted in advance, one can set
it according to the energy-optimal solution denoted by x∗

nc0
to minimize the control energy. In the case of fixed initial
state xnc0, determining an optimal time to implement ex-
ternal inputs is a reasonable alternative to save the control
energy when the original system evolves autonomously. When
one is unable to adjust the initial state xnc0 in advance, the
energy-optimal time t I∗

0 to apply the control inputs can also
be forecasted according to x∗

nc0. This is because both the state
evolutions of target nodes xc(t) and that of uncontrolled nodes
xnc(t) can be obtained when the network dynamics is given,
which makes it possible to find the time t I

0 to implement
control inputs when the former final states of uncontrolled
nodes xnc(t I

0) are relatively close to X. That is, the geometric
distance dmin may be relatively small when we can save the
control energy cost.

Here we propose a strategy to determine the energy-
optimal time t I∗

0 to apply the control inputs for the six-
dimensional network system. For the control task with the
initial state x0, the target state xcf and control duration t I

f − t I
0

are given, and the control input is u(t) = 0, i.e., that system
is originally an autonomous system. We solve the differential
equation, Eq. (1), at first, yielding {x(t)|t ∈ [t0, te )} where
te is a relatively large real number. Then, we can calculate
the energy-optimal x∗

nc0(t) by Eq. (7) and the corresponding
distance dmin(t) when t ∈ [t0, te ) via Eq. (8) simultaneously.
When dmin reaches a minimum value, the energy-optimal time
t I∗
0 would be obtained, i.e., t I∗

0 = arg min [dmin(t)], t ∈ [t0, te ).
To demonstrate an implementation of our strategy, we set

the control duration as t I
f − t I

0 = e−2, aiming to drive the
system from x0 = [1, 1, 1, 1, 0, 0]T to xcf = [2, 3, 4, 5]T. By
applying the proposed method above, we adopt te = 0.3 and
derive the evolution of the system with zero input, i.e., u(t) =
0. The optimal control input u∗(t) for each t I

0 ∈ [0, 0.3) with
step 0.001 is calculated. Simultaneously the corresponding
control energy Ẽ (red curve) and the distance dmin (blue curve)
are obtained for t I

0 ∈ [0, 0.3) in Fig. 4(a). Obviously, we can
derive the energy-optimal time t I∗

0 = 0.173 with Ẽ∗ = e11.85,
where the distance dmin and control energy Ẽ reach the mini-
mum value concurrently. In Figs. 4(b)–4(d), the evolutions of
each state are presented with different time t I

0 to implement
the control inputs. The target state is all achieved in the case
of t I1

0 = 0.1, t I∗
0 = 0.173, and t I2

0 = 0.2. However, the control
energy is tremendously different, and the control energy can
be exponentially smaller than others when t I

0 = t I∗
0 . These

simulations prove that the proposed strategy is effective and
efficient for saving control energy.

IV. DISCUSSION

In the past two decades, much attention has been paid to
controlling complex networks. One of the major challenges
to perform control tasks is how to save control energy. Here,
our results first show that, surprisingly the initial states of
uncontrollable nodes has a significant impact on saving con-
trol energy. The necessary and sufficient condition for the
existence of the energy-optimal states of uncontrollable nodes
is given, and we prove that they always exist for any network
structure. Furthermore, the possible optimal solutions are all
given analytically. We also point out that a large distance
between the energy-optimal solution and the states of un-
controllable nodes results in more control energy needed to
conduct a control task. In addition, in order to save control
energy, we propose a strategy to determine the appropriate
time to implement external control inputs. Simulations show
that exponential control energy can be saved by applying our
strategy, which suggests that large networks can be controlled
by a relatively small number of inputs when the control energy
is limited.

Although the nonlinear dynamics and network temporality
often appear in natural complex systems [42], the internal
interactions of the system’s components are usually difficult
to detect. In addition, the nonlinear dynamics varies signif-
icantly between different types of complex systems, which
makes it hard to derive the general results. To deal with the
nonlinearity, one general strategy is to explore the linearized
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FIG. 4. Control strategy determining the energy-optimal time to
inject the external control inputs. Here we apply the proposed strat-
egy to the network system presented in Fig. 2(a) with a control time
t I
f − t I

0 = e−2, where t I
0 indicates the time when we inject the external

control input. The initial state is set as x0 = [1, 1, 1, 1, 0, 0]T at initial
time t0 = 0, and the target state is xcf = [2, 3, 4, 5]T for controllable
nodes. (a) We derive the system’s state evolutions with zero input for
t ∈ [0, t I

0 ) before we inject the external control input, where t I
0 is uni-

formly selected from [0,0.3] with step 0.001. In this way, we obtain
300 different initial states to apply the external control inputs. Then
we derive the optimal control input for each initial state and calculate
the corresponding control energy Ẽ in red and the geometric distance
dmin in blue. Manifestly the distance dmin and the control energy Ẽ
share the same monotonicity, where the optimal time t I∗

0 = 0.173 for
minimizing the control energy to Ẽ∗ = e11.85. [(b)–(d)] For different
time to implement control input t I1

0 = 0.1, t I∗
0 = 0.173, and t I2

0 = 0.2,
the state time evolutions are shown separately. Yellow regions rep-
resent the self-evolution of the system without control, after which
the control inputs are injected. Although the target is achieved in
all cases, the control energy is different, and we show Ẽ1 = e17.51,
Ẽ∗ = e11.85, and Ẽ2 = e16.11, respectively.

version of the nonlinear system [43]. For temporal networks,
which are reported universal in many real complex networks,
our framework of static networks also provides effective ap-
proaches to analyze each snapshot. To save more control
energy when controlling the temporal networks, one can adopt
target control for each snapshot, and our methods can further
analyze the appropriate time to inject control inputs into each
snapshot.

In practical control of real complex systems, the definitions
of control energy are diverse. In this paper, the control energy
is defined by the integration of control inputs, which only
describes the external efforts to steer a complex network. In
future work, internal efforts such as the trajectory of the sys-
tem states could be considered when considering the general
control energy [44]. Network structure and properties, such as
degree distribution, centrality, betweenness, and multilayer-
ness, are diverse in applications of practical network systems
[45–48]. These properties can affect the control energy by
Eq. (7) as we have shown in this paper, which is worth ex-
ploring systematically. Here, the methods proposed to save
control energy may serve as preliminary results and provide
feasible methods for subsequent explorations in these aspects.
In addition, there are high levels of uncertainty in some com-
plex systems, such as biological systems, whose edge weights
are often drawn from a given distribution rather than being
exactly known [34,49]. For temporal networks whose network
evolution is only probabilistically known, the required mini-
mum control energy can be orders of magnitude more than the
deterministic temporal networks [34]. Future investigations
could analyze the minimum control energy for these types
of nondeterministic networks, as well as the energy-saving
control strategies, as we have done for static networks.
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APPENDIX A: DERIVING THE MINIMUM
CONTROL ENERGY

In this paper, we consider the linear time-invariant dynam-
ics (1), assuming there are r preselected controllable nodes
labeled as c1, c2, . . . , cr , and n − r uncontrollable nodes la-
beled as nc1, nc2, . . . , ncn−r . Our control task is to drive the
states of r controllable nodes from xc0 to xcf with the mini-
mum control energy in fixed control duration tf − t0.

In the following, we theoretically derive the optimal con-
trol input minimizing the control energy. Then we present
the analytic relation of control energy and the initial states of
uncontrollable nodes, which makes it possible to analyze the
impact of the initial states of uncontrollable nodes on control
energy.

In order to drive the states of r controllable nodes from
xc0 to xcf with the minimum control energy, we first perform
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controllable decomposition on system (1), which yields the
dynamics of the controllable part (3) and uncontrollable part
(4).

Then from Eqs. (2) and (4) we have

x̄nc(tf) = Qncxf

= Q3xcf + Q4xncf

and

x̄nc(tf) = eAnc(tf −t0)x̄nc(t0),

respectively. Thus we obtain

Q3xcf + Q4xncf = eAnc(tf −t0)x̄nc(t0),

which yields

xncf = Q−1
4

(
eAnc(tf −t0)Qncx0 − Q3xcf

)
. (A1)

Therefore, controlling the initial states of controllable nodes
x0 to the desired target state xcf is equivalent to controlling
the controllable part (3) from the initial state x̄c(t0) = Qcx0 to
the target state x̄c(tf) = Q1xcf + Q2xncf .

Here we present how to derive the minimum control energy
as well as the optimal control input under this control task.
The problem can be summarized as follows:

min
u(t)

E =
∫ tf

t0

uT(t)u(t)dt

subject to

⎧⎪⎨
⎪⎩

˙̄xc(t) = Acx̄c(t) + Bcu(t)
x̄c(t0) = x̄c0

x̄c(tf) = x̄cf .

The optimal solution to the minimization problem can be
found according to the optimal control energy theory. We use
the Hamiltonian function

H[x̄(t), v̄(t), ū(t)] = uT(t)u(t) + vT(t)[Acx̄(t) + Bcu(t)],

and the following dynamical relations can be determined:

State Equation : ˙̄xc(t) = ∂H
∂v

= Acx̄c(t) + Bcu(t),

Costate Equation : v̇(t) = −∂H
∂ x̄

= −AT
c v(t),

Stationary Equation : 0 = ∂H
∂u(t)

= u(t) + BT
c v(t).

By solving the Stationary Equation, we derive the optimal
input as

u∗(t) = −BT
c v(t). (A2)

Furthermore, from the Costate Equation we get

v(t) = e−AT
c (t−tf)v(tf). (A3)

By Eqs. (A2) and (A3), we have

u∗(t) = −BT
c e−AT

c (t−tf)v(tf). (A4)

Therefore the State Equation can be solved with the input
Eq. (A4), that is,

x̄(t) = eAc (t−t0)x̄c0 −
∫ tf

t0

eAc(t−τ)BcBT
c eAT

c (tf −τ)dτ v(tf).

Due to x̄c(tf) = x̄cf , we obtain

v(tf) = −W−1
c (t0, tf)

(
x̄cf − eAc(tf −t0)x̄c0

)
,

where Wc(t0, tf) = ∫ tf
t0

eAc(tf −τ)BcBT
c eAT

c (tf −τ)dτ is nonsingular
because of the controllable system (3). Thus we derive the
optimal control input

u∗(t) = BT
c eAT

c (tf −t)W−1
c (t0, tf)ξ(tf − t0)

and the corresponding minimum control energy

Ẽ = ξT(tf − t0)W−1
c (t0, tf)ξ(tf − t0), (A5)

where ξ(tf − t0) = eAc(tf −t0)x̄c0 − x̄cf .

APPENDIX B: PROOF OF Wc(t0, tf) = Wc(0, tf − t0)

For the controllability Gramian matrix

Wc(t0, tf) =
∫ tf

t0

eAc(tf −τ)BcBT
c eAT

c (tf −τ)dτ,

by variable substitution t = tf − τ we have

τ ∈ [t0, tf ] → t ∈ [tf − t0, 0] and dt = −dτ,

which yields

Wc(t0, tf) =
∫ tf

t0

eAc(tf −τ)BcBT
c eAT

c (tf −τ)dτ

= −
∫ 0

tf −t0

eAct BcBT
c eAT

c t dt

=
∫ tf −t0

0
eAct BcBT

c eAT
c t dt . (B1)

Similarly, for

Wc(0, tf − t0) =
∫ tf −t0

0
eAc(tf −t0−τ)BcBT

c eAT
c (tf−t0−τ)dτ,

by variable substitution h = tf − t0 − τ we obtain

τ ∈ [0, tf − t0] → h ∈ [tf − t0, 0] and dh = −dτ,

which yields

Wc(0, tf − t0) =
∫ tf −t0

0
eAc(tf −t0−τ)BcBT

c eAT
c (tf −t0−τ)dτ

= −
∫ 0

tf −t0

eAchBcBT
c eAT

c hdh

=
∫ tf −t0

0
eAct BcBT

c eAT
c t dt . (B2)

By Eqs. (B1) and (B2), we know Wc(t0, tf) = Wc(0, tf − t0).

APPENDIX C: ANALYTIC RELATION
OF CONTROL ENERGY AND INITIAL STATES

OF UNCONTROLLABLE NODES

In this section, we obtain the analytic relation of control
energy and the initial states of uncontrollable nodes for the
convenience of analyzing the effect of the initial states on
saving control energy.
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For ξ(tf − t0), we have

ξ(tf − t0) = eAc(tf −t0)x̄c0 − x̄cf

= eAc(tf −t0)Qcx0 − Qcxf

= eAc(tf −t0)(Q1xc0 + Q2xnc0) − Q1xcf − Q2xncf .

(C1)

Substituting Eq. (A1) into Eq. (C1), we derive

ξ(tf − t0) = eAc(tf −t0)(Q1xc0 + Q2xnc0) − Q1xcf − Q2xncf

= eAc(tf −t0)(Q1xc0 + Q2xnc0) − Q1xcf

− Q2Q−1
4

[
eAnc(tf−t0)(Q3xc0 + Q4xnc0) − Q3xcf

]
= (

Q2Q−1
4 Q3 − Q1

)
xcf + (

eAc(tf −t0)Q2

− Q2Q−1
4 eAnc(tf −t0)Q4

)
xnc0 + (

eAc(tf −t0)Q1

− Q2Q−1
4 eAnc(tf −t0)Q3

)
xc0.

For the orthogonal matrix Q, we have

QTQ =
(

QT
1 QT

3

QT
2 QT

4

)(
Q1 Q2

Q3 Q4

)
=

(
Ir 0

0 In−r

)
,

and thus

QT
1 Q1 + QT

3 Q3 = Ir, (C2)

QT
1 Q2 + QT

3 Q4 = 0. (C3)

By Eq. (C3) we have

QT
3 = −QT

1 Q2Q−1
4 . (C4)

Substituting Eq. (C4) into Eq. (C2), we get(
QT

1

)−1 = Q1 − Q2Q4
−1Q3.

So we obtain

ξ(tf − t0) = (
Q2Q−1

4 Q3 − Q1
)
xcf + (

eAc(tf −t0)Q2

− Q2Q−1
4 eAnc(tf −t0)Q4

)
xnc0 + (

eAc(tf −t0)Q1

− Q2Q−1
4 eAnc(tf −t0)Q3

)
xc0

= (
QT

1

)−1{−xcf + (
QT

1 eAc(tf −t0)Q2

+ QT
3 eAnc(tf −t0)Q4

)
xnc0 + [(

QT
1

)
eAc(tf −t0)Q1

+ QT
3 eAnc(tf −t0)Q3

]
xc0

}
,

which yields

Ẽ = ξTW−1
c ξ

= [ − xcf + (
QT

1 eAc (tf−t0)Q2 + QT
3 eAnc(tf −t0)Q4)xnc0

+ (
QT

1 eAc(tf −t0)Q1 + QT
3 eAnc(tf−t0)Q3

)
xc0

]T
Q−1

1 W−1
c

× (
Q−1

1

)T[− xcf + (
QT

1 eAc(tf −t0)Q2 + QT
3 eAnc(tf −t0)Q4

)
xnc0

+ (
QT

1 eAc(tf −t0)Q1 + QT
3 eAnc(tf−t0)Q3

)
xc0

]
.

For simplification, denote H(t0, tf) = QT
1 Wc(t0, tf)Q1, U(tf −

t0) = QT
1 eAc(tf −t0)Q2+QT

3 eAnc(tf −t0)Q4, R(tf − t0) = QT
1 eAc(tf −t0)

Q1+QT
3 eAnc(tf −t0)Q3, G(t0, tf)=UT(tf − t0)H−1U(tf−t0), η(tf−

t0) = R(tf − t0)xc0 − xcf , ζ(t0, tf) = 2ηTH−1(t0, tf)U(tf − t0),

and c(t0, tf) = ηT(tf − t0)H−1(t0, tf)η(tf − t0). Since Wc(t0,
tf) = Wc(0, tf − t0), we have G(t0, tf) = G(0, tf − t0), ζ(t0,
tf) = ζ(0, tf − t0), and c(t0, tf) = c(0, tf − t0). By omitting the
time variable tf − t0 of these matrices, vectors, and constant,
we have

Ẽ = [ − xcf + (
QT

1 eAc(tf −t0)Q2 + QT
3 eAnc(tf −t0)Q4

)
xnc0

+ (
QT

1 eAc(tf −t0)Q1 + QT
3 eAnc(tf −t0)Q3

)
xc0

]T
Q−1

1 W−1
c

× (
Q−1

1

)T[− xcf + (
QT

1 eAc(tf −t0)Q2 + QT
3 eAnc(tf −t0)Q4

)
xnc0

+ (
QT

1 eAc(tf −t0)Q1 + QT
3 eAnc(tf −t0)Q3

)
xc0

]
= (Uxnc0 + Rxc0 − xcf )TH−1(Uxnc0 + Rxc0 − xcf )

= (Uxnc0 + η)TH−1(Uxnc0 + η)

= xT
nc0UTH−1Uxnc0 + 2ηTH−1Uxnc0 + ηTH−1η

= xT
nc0Gxnc0 + ζxnc0 + c.

In this way, we can separate the initial states of uncontrollable
nodes xnc0 in Eq. (A5) as

Ẽ = xT
nc0Gxnc0 + ζxnc0 + c,

which is an analytic form about control energy and the initial
states of uncontrollable nodes.

APPENDIX D: PROOF OF THE ENERGY-OPTIMAL
SOLUTION AND ITS EXISTENCE

1. The solution of problem (6) exists if and only if
rank(�) = rank(�, δ)

Proof. Necessary: Suppose that rank(�) < rank(�, δ); by
denoting xnc0 = �y, we have

Ẽ = xT
nc0Gxnc0 + ζxnc0 + c

= yT�TG�y + ζ�y + c

=
q∑

i=1

λiy
2
i +

l∑
i=1

δiyi + c,

where l is the location of the last nonzero element of vector δ,
λi is the ith diagonal element of �q, and δi is the ith element
of δ. Since rank(�) < rank(�, δ) as supposed, we have l > q.
Then we get

Ẽ =
q∑

i=1

λiy
2
i +

l∑
i=1

δiyi + c

=
q∑

i=1

λi

(
yi + δi

2λi

)2

+
l∑

i=1+q

δiyi + c −
q∑

i=1

δ2
i

4λi
.

There is a first-order term of the above equation, which is δiyi

for i = 1 + q, . . . , l . Since xnc0 = �y and � is nonsingular,
for any yi there always exists a suitable xnc0, then we have
Ẽ ∈ (−∞,+∞), which means that the optimal problem (6)
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does not have a solution. This is a contradiction.
Sufficiency: As rank(�) = rank(�, δ), we have l � q.

Hence we obtain

Ẽ =
q∑

i=1

λiy
2
i +

l∑
i=1

δiyi + c

=
l∑

i=1

λi

(
yi + δi

2λi

)2

+
q∑

i=1+l

λiy
2
i + c −

q∑
i=1

δ2
i

4λi
. (D1)

Let

y∗ =

⎛
⎜⎝− δ1

2λ1
, . . . ,− δl

2λl
, 0, . . . , 0︸ ︷︷ ︸

q−l

, σ1, . . . , σn−r−q

⎞
⎟⎠

T

,

where σ1, σ2, . . . , σn−r−q are n − q arbitrary parameters and
the number of zero element is q − l . Since λi is positive for
i = 1, . . . , q, it is obvious that the first l elements and the
q − l zero elements of y∗ results in

∑l
i=1 λi(yi + δi

2λi
)2 = 0

and
∑q

i=1+l λiy2
i = 0 in Eq. (D1), respectively. The terms con-

taining variable yi all reach the minimum value 0 in Eq. (D1).
Therefore, if rank(�) = rank(�, δ), the optimal problem has

the solution x∗
nc0 = �y∗. The corresponding optimal control

energy is also obtained as

Ẽ∗ = c − 1

4

q∑
i=1

δ2
i

λi
.

�

2. The solution of problem (6) always exists,
i.e., rank(�) ≡ rank(�, δ)

Proof. If rank(�) < rank(�, δ), we have

Ẽ =
q∑

i=1

λi

(
yi + δi

2λi

)2

+
l∑

i=1+q

δiyi + c −
q∑

i=1

δ2
i

4λi
.

Since xnc0 = �y and � is nonsingular, yi can be an arbi-
trary value by adjusting xnc0. Let

yq+1 =
∑q

i=1
δ2

i
4λi

− c − ∑q
i=1 λi

(
yi + δi

2λi

)2 − 1

δ1+q
,

and y j = 0, j = q + 2, . . . , l , which yields Ẽ = −1 < 0. This
is in direct contradiction with Ẽ � 0. So we derive rank(�) =
rank(�, δ), and problem (6) always has the solution. �

[1] A.-L. Barabási, Network Science (Cambridge University Press,
Cambridge, UK, 2016).

[2] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, Controlla-
bility of complex networks, Nature (London) 473, 167
(2011).

[3] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, Observability of
complex systems, Proc. Natl. Acad. Sci. USA 110, 2460
(2013).

[4] F. Fu, X. Chen, L. Liu, and L. Wang, Social dilemmas in an on-
line social network: The structure and evolution of cooperation,
Phys. Lett. A 371, 58 (2007).

[5] Y.-Y. Liu and A.-L. Barabási, Control principles of complex
systems, Rev. Mod. Phys. 88, 035006 (2016).

[6] N. Masuda and R. Lambiotte, A Guidance to Temporal Networks
(World Scientific, Singapore, 2016).

[7] P. C. V. da Silva, F. Velásquez-Rojas, C. Connaughton, F.
Vazquez, Y. Moreno, and F. A. Rodrigues, Epidemic spreading
with awareness and different timescales in multiplex networks,
Phys. Rev. E 100, 032313 (2019).

[8] X. Chen and L. Wang, Promotion of cooperation induced by ap-
propriate payoff aspirations in a small-world networked game,
Phys. Rev. E 77, 017103 (2008).

[9] Y. Sun, Z. Ji, Y. Liu, and C. Lin, On stabilizability of multi-
agent systems, Automatica 144, 110491 (2022).

[10] Y. Guan and L. Wang, Controllability of multi-agent systems
with directed and weighted signed networks, Syst. Control Lett.
116, 47 (2018).

[11] Z. Lu, Z. Zhang, and Z. Ji, Strong targeted controllability of
multi-agent systems with time-varying topologies over finite
fields, Automatica 142, 110404 (2022).

[12] S. Wuchty, Controllability in protein interaction networks, Proc.
Natl. Acad. Sci. USA 111, 7156 (2014).

[13] M. T. Angulo, C. H. Moog, and Y.-Y. Liu, A theoretical frame-
work for controlling complex microbial communities, Nat.
Commun. 10, 1045 (2019).

[14] H. Chen and E. H. Yong, Energy cost study for controlling
complex social networks with conformity behavior, Phys. Rev.
E 104, 014301 (2021).

[15] H. Chen and E. H. Yong, How zealots affect the energy cost for
controlling complex social networks, Chaos 32, 063116 (2022).

[16] S. Gu, F. Pasqualetti, M. Cieslak, Q. K. Telesford, A. B. Yu,
A. E. Kahn, J. D. Medaglia, J. M. Vettel, M. B. Miller, S. T.
Grafton, and D. S. Bassett, Controllability of structural brain
networks, Nat. Commun. 6, 8414 (2015).

[17] C. W. Lynn and D. S. Bassett, The physics of brain network
structure, function and control, Nat. Rev. Phys. 1, 318 (2019).

[18] S. Deng, J. Li, B. T. Thomas Yeo, and S. Gu, Control theory
illustrates the energy efficiency in the dynamic reconfiguration
of functional connectivity, Commun. Biol. 5, 295 (2022).

[19] P.-A. Noël, C. D. Brummitt, and R. M. D’Souza, Controlling
Self-Organizing Dynamics on Networks Using Models that
Self-Organize, Phys. Rev. Lett. 111, 078701 (2013).

[20] F. Velásquez-Rojas, P. C. Ventura, C. Connaughton, Y. Moreno,
F. A. Rodrigues, and F. Vazquez, Disease and information
spreading at different speeds in multiplex networks, Phys. Rev.
E 102, 022312 (2020).

[21] P. S. Skardal and A. Arenas, Control of coupled oscillator net-
works with application to microgrid technologies, Sci. Adv. 1,
e1500339 (2015).

[22] P. S. Skardal and A. Arenas, On controlling networks of limit-
cycle oscillators, Chaos 26, 094812 (2016).

[23] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, Net-
works formed from interdependent networks, Nat. Phys. 8, 40
(2012).

014301-10

https://doi.org/10.1038/nature10011
https://doi.org/10.1073/pnas.1215508110
https://doi.org/10.1016/j.physleta.2007.05.116
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1103/PhysRevE.100.032313
https://doi.org/10.1103/PhysRevE.77.017103
https://doi.org/10.1016/j.automatica.2022.110491
https://doi.org/10.1016/j.sysconle.2018.04.010
https://doi.org/10.1016/j.automatica.2022.110404
https://doi.org/10.1073/pnas.1311231111
https://doi.org/10.1038/s41467-019-08890-y
https://doi.org/10.1103/PhysRevE.104.014301
https://doi.org/10.1063/5.0085222
https://doi.org/10.1038/ncomms9414
https://doi.org/10.1038/s42254-019-0040-8
https://doi.org/10.1038/s42003-022-03196-0
https://doi.org/10.1103/PhysRevLett.111.078701
https://doi.org/10.1103/PhysRevE.102.022312
https://doi.org/10.1126/sciadv.1500339
https://doi.org/10.1063/1.4954273
https://doi.org/10.1038/nphys2180


TARGET CONTROL OF COMPLEX NETWORKS: HOW TO … PHYSICAL REVIEW E 108, 014301 (2023)

[24] A. Li and Y.-Y. Liu, Controlling network dynamics, Adv.
Complex Syst. 22, 1950021 (2019).

[25] T. Meng, G. Duan, A. Li, and L. Wang, Control energy scaling
for target control of complex networks, Chaos, Solitons Fractals
167, 112986 (2023).

[26] Y. Guan, S. Ren, and A. Li, Edge controllability of signed
networks, Automatica 147, 110694 (2023).

[27] Y. Guan, A. Li, and L. Wang, Structural controllability of di-
rected signed networks, IEEE Trans. Control Netw. Syst. 8,
1189 (2021).

[28] G. Duan, A. Li, T. Meng, G. Zhang, and L. Wang, Energy cost
for controlling complex networks with linear dynamics, Phys.
Rev. E 99, 052305 (2019).

[29] G. Duan, A. Li, T. Meng, and L. Wang, Energy cost for target
control of complex networks, Adv. Complex Syst. 22, 1950022
(2019).

[30] G. Yan, J. Ren, Y.-C. Lai, C.-H. Lai, and B. Li, Controlling
Complex Networks: How Much Energy Is Needed? Phys. Rev.
Lett. 108, 218703 (2012).

[31] G. Lindmark and C. Altafini, Minimum energy control for com-
plex networks, Sci. Rep. 8, 3188 (2018).

[32] A. Li, S. P. Cornelius, Y.-Y. Liu, L. Wang, and A.-L.
Barabási, Control energy scaling in temporal networks,
arXiv:1712.06434.

[33] I. Klickstein, A. Shirin, and F. Sorrentino, Energy scaling of
targeted optimal control of complex networks, Nat. Commun.
8, 15145 (2017).

[34] P. De Lellis, A. Di Meglio, F. Garofalo, and F. Lo Iudice, The
inherent uncertainty of temporal networks is a true challenge
for control, Sci. Rep. 11, 6977 (2021).

[35] G. Yan, G. Tsekenis, B. Barzel, J.-J. Slotine, Y.-Y. Liu, and
A.-L. Barabási, Spectrum of controlling and observing complex
networks, Nat. Phys. 11, 779 (2015).

[36] A. Li, S. P. Cornelius, Y.-Y. Liu, L. Wang, and A.-L. Barabási,
The fundamental advantages of temporal networks, Science
358, 1042 (2017).

[37] G. Lindmark and C. Altafini, Centrality measures and the role
of non-normality for network control energy reduction, IEEE
Control Syst. Lett. 5, 1013 (2021).

[38] J. Gao, Y.-Y. Liu, R. M. D’Souza, and A.-L. Barabási, Target
control of complex networks, Nat. Commun. 5, 5415 (2014).

[39] R. E. Kalman, Mathematical description of linear dynam-
ical systems, J. Soc. Ind. Appl. Math., Ser. A 1, 152
(1963).

[40] W. J. Rugh, Linear System Theory (Prentice Hall, Upper Saddle
River, NJ, 1996), Vol. 2.

[41] R. A. Horn, Matrix Analysis (Cambridge University Press,
Cambridge UK, 2012).

[42] M. T. Angulo and J.-J. Slotine, Qualitative stability of nonlinear
networked systems, IEEE Trans. Automat. Control 62, 4080
(2017).

[43] J.-M. Coron, Control and Nonlinearity (American Mathemati-
cal Society, Providence, RI, 2007), Vol. 136.

[44] A. Li, L. Wang, and S. Frank, The optimal trajectory to control
complex networks, arXiv:1806.04229.

[45] G. Yan, N. D. Martinez, and Y.-Y. Liu, Degree heterogeneity
and stability of ecological networks, J. R. Soc. Interface 14,
20170189 (2017).

[46] Y. Wang, Y. Yang, A. Li, and L. Wang, Stability of multi-layer
ecosystems, J. R. Soc. Interface 20, 20220752 (2023).

[47] A.-L. Barabási and R. Albert, Emergence of scaling in random
networks, Science 286, 509 (1999).

[48] A. D. Broido and A. Clauset, Scale-free networks are rare, Nat.
Commun. 10, 1017 (2019).

[49] I. Klickstein and F. Sorrentino, Controlling network ensembles,
Nat. Commun. 12, 1884 (2021).

014301-11

https://doi.org/10.1142/S0219525919500218
https://doi.org/10.1016/j.chaos.2022.112986
https://doi.org/10.1016/j.automatica.2022.110694
https://doi.org/10.1109/TCNS.2021.3059836
https://doi.org/10.1103/PhysRevE.99.052305
https://doi.org/10.1142/S021952591950022X
https://doi.org/10.1103/PhysRevLett.108.218703
https://doi.org/10.1038/s41598-018-21398-7
http://arxiv.org/abs/arXiv:1712.06434
https://doi.org/10.1038/ncomms15145
https://doi.org/10.1038/s41598-021-86059-8
https://doi.org/10.1038/nphys3422
https://doi.org/10.1126/science.aai7488
https://doi.org/10.1109/LCSYS.2020.3008325
https://doi.org/10.1038/ncomms6415
https://doi.org/10.1137/0301010
https://doi.org/10.1109/TAC.2016.2617780
http://arxiv.org/abs/arXiv:1806.04229
https://doi.org/10.1098/rsif.2017.0189
https://doi.org/10.1098/rsif.2022.0752
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1038/s41467-021-22172-6

