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Phase slips are a typical dynamical behavior in coupled oscillator systems: the route to phase synchrony is
characterized by intervals of constant phase difference interrupted by abrupt changes in the phase difference.
Qualitatively similar to stick–slip phenomena, analysis of phase slip has mainly relied on identifying remnants
of saddle-nodes or “ghosts.” We study sets of phase oscillators and by examining the dynamics in detail, offer a
more precise, quantitative description of the phenomenon. Phase shifts and phase sticks, namely, the temporary
locking of phases required for phase slips, occur at stationary points of phase velocities. In networks of coupled
phase oscillators, we show that phase slips between pairs of individual oscillators do not occur simultaneously,
in general. We consider additional systems that show phase synchrony: one where saddle-node ghosts are absent,
one where the coupling is similarity dependent, and two cases of coupled chaotic oscillators.
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I. INTRODUCTION

Of the various forms of synchronization [1–3] that
are known to occur in coupled dynamical systems, phase
synchrony—when the amplitudes of oscillation are uncor-
related but the phases are identical [4–7]—is one of the
simplest. Recognized as a weak form of synchrony between
two coupled systems [4–6], phase synchronization is widely
observed in lasers [8], Josephson junctions [9,10], neurons
[11,12], electronic circuits [13,14], cardiac and respiratory
rhythms [15], brain dynamics [12,16], ecological systems
[17], or camphor ribbons [18,19], for example. In recent years,
growing interest in networks of coupled oscillators has further
extended its domain [6,20], and now phase synchronization
has been observed in networks of coupled chaotic oscillators
[21], delay-coupled chemical oscillators [22], networks of
phase oscillators [23,24], coupled map networks [25], flow
models of production networks [26], and networks of bursting
neurons [27]. Making extensive use of phase oscillator mod-
els [28–30], the concept of phase synchronization has been
utilized in complex networks for purposes of control, with
applications in vehicle coordination [31–33] and designing
power networks [34,35].

The manner in which two coupled oscillators can phase
synchronize has been studied in some detail, and it appears
that near the onset of phase synchrony, the dynamics shows
a phase version of stick–slip dynamics [5,36]: the dynam-
ics of the oscillators becomes highly correlated, the phase
difference becomes constant for a time interval, changes
rapidly, becomes constant again, and so on. Qualitatively, this
corresponds to alternating periods of synchrony with brief in-
termediate periods of asynchrony between the two oscillators.
The role of ghost points, namely, remnants of saddle nodes
[36,37] in effecting phase slippage, has also been explored in
some detail. Our goal here is to analyze, in continuation with
previous works [2,6,29], aspects of phase synchronization that

have remained relatively unexplored, such as the temporal
relationship between phase slips in individual oscillators and
the locations of the slips in coupled systems.

In the present paper, we show that phase slips occur when
the dynamics in the phase space of the system is at stationary
points of the flow velocities. Consider a general n-dimensional
dynamical system

Ẋ = F(X), (1)

where X is the vector (x1, x2, . . . , xn)ᵀ and F ≡
(F1(X), . . . , Fn(X))ᵀ, a stationary point in the state space,
Xpp ≡ (xpp

1 , xpp
2 , . . . , xpp

n )ᵀ, such that

ẍi(Xpp) = 0, i = 1, 2, . . . , n, (2)

namely,

n∑
j=1

ẋ j · ∂Fi

∂x j

∣∣∣∣
X=Xpp

= 0, i = 1, 2, . . . , n (3)

is termed a perpetual point [38]. These are distinct from fixed
points of the flow, namely, those that satisfy

ẋi(X) = 0, i = 1, 2, . . . , n, (4)

and appear to determine the occurrence of phase slippage.
The concept of perpetual points is relatively new, and has

been introduced to recognize a class of points complementary
to fixed points with potentially comparable relevance [38].
These have been seen to be useful as a tool to locate hidden
attractors [39–41], which are known not to be associated
to any fixed points, in continuous as well as discrete-time
systems [38,42]. They find applications in mechanical systems
in understanding rigid body motion and energy dissipation
[43,44] and help regulate the dynamics of slow-fast
oscillations, bursting, canards, or mixed-mode behavior
[45]. Perpetual points are moreover essential in understanding

2470-0045/2023/108(1)/014209(9) 014209-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5618-2278
https://orcid.org/0000-0003-0123-5146
https://orcid.org/0000-0002-9085-8224
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.014209&domain=pdf&date_stamp=2023-07-28
https://doi.org/10.1103/PhysRevE.108.014209


GOGOI, KUMARASAMY, PRASAD, AND RAMASWAMY PHYSICAL REVIEW E 108, 014209 (2023)

systems with prolonged transient dynamics such as neural
processing, transient chaos, and ecology [38,46,47].

In the following Sec. II, we consider the Kuramoto model
[28,45] of two coupled phase oscillators, where we carry out
the analysis in detail and show how this extends to the cases
of three or more oscillators. We consider different coupling
forms in Sec. III; the analysis carries over for the case of
extended coupling as well as when the coupling is modulated
by a similarity-dependent term [48]. In Sec. IV, we consider
chaotic systems for further generalization. We conclude the
paper with a discussion and summary in Sec. V.

II. COUPLED PHASE OSCILLATORS

Since our focus is on phase dynamics, we consider a sys-
tem of n phase oscillators with the nearest coupling [36,45],

θ̇i = ωi + ε

2
[sin(θi+1 − θi ) + sin(θi−1 − θi )] i = 1, . . . , n,

(5)

where the θi’s are the oscillator phases, ωi’s the oscillator
frequencies, and ε is the coupling strength. We analyze the
cases for n = 2, 3 and for a network of oscillators.

A. The n = 2 case

For n = 2, namely,

θ̇1 = ω1 + ε sin(θ2 − θ1),

θ̇2 = ω2 + ε sin(θ1 − θ2), (6)

a change of variables to φ = θ2 − θ1 and ψ = θ2 + θ1 is
convenient since clearly ψ̇ = (ω1 + ω2) is conserved. The
approach to synchrony can be gauged via the nontrivial dy-
namics

φ̇ = �ω − 2ε sin φ, (7)

where �ω = ω2 − ω1.
For illustration purposes, we take ω1 = 1, ω2 = −2,

so �ω = −3. When ε > |�ω|/2, there are two fixed
points that exist at φ = sin−1(�ω/2ε) (stable) and φ = π −
sin−1(�ω/2ε) (unstable). These are indicated in Fig. 1(a) for
the case ε = 1.55. The stable fixed point (FP1, the closed
circle) is at φ ≈ 4.96 and the unstable one (FP2, the open
circle) at φ ≈ 4.46. Independent of the initial values of θ1

and θ2, the system always reaches the phase-locked state at
FP1. For the individual oscillators, this implies reaching a syn-
chronous state wherein their phase difference remains locked
even though the phases themselves evolve. The extrema of
θ̇1 and θ̇2, namely, θ̈1 = −θ̈2 = 0 occur when φ = π/2, 3π/2
and are marked by the two filled black squares (P1 and P2)
in Fig. 1(a). These are the perpetual points (PPs) of the
system.

The two stationary points move towards each other when
ε is decreased, and when ε = |�ω|/2, they annihilate each
other at a saddle-node bifurcation. The perpetual points con-
tinue to exist [see Fig. 1(b) for ε = 1.45] and these now dictate
the dynamics of the system. Phase-slips occur, as illustrated
in the evolution of φ, shown in Fig. 2(a) (the dashed red line):
the variation is stepwise, consisting of recurring flat segments
connected by short, steep portions. The nearly constant val-

FIG. 1. Schematic representation of the unstable (open circle)
and stable (closed circle) fixed points, and the perpetual points (filled
squares) for the choice of parameters ω1 = 1, ω2 = −2 in Eq. (7).
(a) For ε = 1.55 > |�ω|/2, there are two fixed points (FP1 and FP2)
and two perpetual points (P1 and P2), and (b) the slow (P2) and the
fast (P1) perpetual points when ε = 1.45 < |�ω|/2.

ues of φ, indicative of temporary phase locking between the
oscillators occur around P2 (φ = 3π

2 ). Since the magnitude of
φ̇ is minimum here (∼0.1), φ varies slowly and the system
dynamics is sticky in the vicinity of P2. A stroboscopic map
of the dynamics is shown in Fig. 2(b), where sin φ is plotted
versus cos φ at equal intervals of time; the high concentration
of points near P2 indicates the long time spent in its vicinity.
As the system moves away from P2, both oscillators speed up
by equal amounts, since θ̇1 + θ̇2 is constant. This makes the
magnitude of φ̇ large (∼5.9) as the system nears the fast per-
petual point P1 located at φ = π

2 . At P1, the oscillators move
with the maximum possible speeds in opposite directions and
the system rapidly experiences a substantial change in φ. As
can be seen in Fig. 2(a) φ̇ vs t (solid curve) displays a trough
each time the system passes through P1. The corresponding
dips in φ are apparent in the φ vs t (dashed) curve: these
sudden changes are the phase slips and signify the maximal
asynchrony between the oscillators [36].

As ε is decreased further, the velocity differential between
the perpetual points drops and phase slips become less promi-
nent. This can be seen in the sequence of φ vs t curves in
Fig. 3(a), and the corresponding φ̇ vs t curves in Fig. 3(b),
for ε = 1.45, 1 and 0.5. The extent of these phase slips can be
measured by the ratio

ρ = tS
T

, (8)

where T is the time period of oscillations and we define
tS as the time spent around the slow perpetual point P2

[see Fig. 2(b)]; we define tS as the time taken for the half-
oscillation passing through P2, namely, the time taken for
the orbit to go from cos φ = 1 to cos φ = −1. In terms of
the phase, this is the time spent in the interval π + 2kπ �
φ � 2(k + 1)π , with integer k. If ρ ≈ 1, then most of the
time is spent around the slow point P2 and the phase slips
are prominent. On the other hand, if the motion is uniform,
ρ = 1

2 , and the phase slips are not visible. In Fig. 4, ρ is
plotted as a function of |�ω| − 2ε, which is the distance
from the saddle-node bifurcation point for Eq. (7). When the
separation is small, ρ ∼ 1, and therefore the phase slips are
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FIG. 2. For the case of n = 2 and ε = 1.45, namely, Eq. (7),
(a) the phase difference, φ (dashed red), and velocity, φ̇ (solid black)
as a function of time, and (b)a plot of sin φ vs cos φ. The points
in (b) are equally spaced in time, showing the difference in the
dynamics near the fast point P1 and the slow point P2.

clearly visible—see Figs. 2(a) and 3(a). As the distance from
the bifurcation point increases, ρ decreases, making the phase
slips less apparent, as can also be seen in Fig. 3(a).

It can be shown that proximity to the ghost of the
saddle-node bifurcation is not a necessary condition for the
phase slip. Consider, for example, the modified phase velocity
equation

φ̇ = δ + ε sin2 φ, (9)

where δ is the distance from the ghost point and ε is now
the velocity difference between the corresponding perpetual
points P1(φ = π

2 , fast) and P2(φ = 0, slow) of this system.
Defining T and tS as before, we compute ρ as a function
of ε for different δ; this is shown in Fig. 5(a). Far from the
saddle-node bifurcation, it is possible to have ρ close to 1
for large enough ε. For instance, the phase slip structure for
δ = 7 with ε = 200 is shown in Fig. 5(b); the corresponding
value of ρ is 0.9.

We thus see that perpetual points give insight into the
dynamics during phase slippage, and provide a way to identify
the exact locations of the slips.

FIG. 3. Also, for n = 2 [see Eq. (7)], (a) the variation of φ with
time for ε = 0.5 (dotted blue), ε = 1 (dashed red), and ε = 1.45
(solid black). The phase slips become more visible with increasing
ε. The phase velocity is shown for the same ε values in (b), with
the velocity at P2 (the peaks of the curves) approaching zero as ε

increases.

B. n oscillators in a ring

1. n = 3

The equations of motion for n = 3 oscillators with periodic
boundary conditions are

θ̇1 = ω1 + ε

2
( sin(θ2 − θ1) + sin(θ3 − θ1)),

θ̇2 = ω2 + ε

2
( sin(θ1 − θ2) + sin(θ3 − θ2)),

θ̇3 = ω3 + ε

2
( sin(θ1 − θ3) + sin(θ2 − θ3)). (10)

Defining φi j = θ j − θi and �ωi j = ω j − ωi, one can easily
obtain the equivalent set of equations

φ̇12 = �ω12 + ε

2
(−2 sin φ12 + sin φ23 + sin φ31),

φ̇23 = �ω23 + ε

2
(−2 sin φ23 + sin φ31 + sin φ12), (11)

φ̇31 = �ω31 + ε

2
(−2 sin φ31 + sin φ12 + sin φ23),

describing the relative dynamics between individual oscilla-
tors. Note that since φ12 + φ23 + φ31 = 0, one can get the
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FIG. 4. The extent of the phase-slip ρ as a function of the offset,
|�ω| − 2ε. This calculation uses Eq. (7) with �ω = −3.

reduced set of equations

φ̇12 = �ω12 + ε

2
(−2 sin φ12 + sin φ23 − sin φ123),

φ̇23 = �ω23 + ε

2
(−2 sin φ23 + sin φ12 − sin φ123), (12)

FIG. 5. For the modified phase velocity function Eq. (9), extent
of the phase slip ρ as a function of ε for different δ in (a), and (b) the
phase φ as a function of time for δ = 7, far from the saddle-node
ghost, with ε = 200.

FIG. 6. Plots of φ̇12 (dashed blue) and φ̇23 (solid violet) as a
function of time for Eq. (12) with �ω12 = 4.3, �ω23 = 4.2, and
ε = 4.5. The stationary points for φ̇12 are marked S1, S2, S3, and S4,
and those for φ̇23 are marked S′

1, S′
2, S′

3, and S′
4. The corresponding

phase-slip structures can be seen in the φ12 (solid black) and φ23

(dashed red) curves.

where φ123 ≡ φ12 + φ23. Perpetual points are simultaneously
the extrema of φ̇12 and φ̇23, and it is straightforward to show
that at such points, the condition

φ̇12 cos φ12 = φ̇23 cos φ23 = −φ̇123 cos φ123 (13)

holds.
For arbitrary �ω12,�ω23, this condition is not easily sat-

isfied, so perpetual points are uncommon. Thus, in general,
phase slips in φ12 and φ23 will not occur simultaneously, as
shown in the example in Fig. 6 for �ω12 = 4.3 and �ω23 =
4.2, with ε = 4.5. There are four stationary points each for
φ̇12 and φ̇23, indicated as Sk and S′

k , k = 1, . . . , 4 in Fig. 6.
The slips occur at S1, S3, S′

1, and S′
3, while around S4 and

S′
4 the dynamics is sticky. Asynchrony between phase slips is

also observed in coupled map systems [49].
If we set �ω12 = �ω23, Eq. (12) is invariant under the

interchange φ12 ↔ φ23, so in this case the variables φ̇12 and
φ̇23 evolve identically. The stationary points of the velocities
are therefore identical and can be recognized as perpetual
points, the locations of which are easily determined as

P1 : (| cos−1 α| ± 2kπ, | cos−1 α| ± 2lπ ),

P2 : (| cos−1 β| ± 2kπ, | cos−1 β| ± 2lπ ),

P3 : (−| cos−1 β| ± 2kπ,−| cos−1 β| ± 2lπ ),

P4 : (−| cos−1 α| ± 2kπ,−| cos−1 α| ± 2lπ ),

where α = (−1 + √
33)/8, β = (−1 − √

33)/8, and k, l are
integers, independent of �ω12 and �ω23. These are
marked on Fig. 7 for �ω12 = �ω23 = 1, ε = 1.13, and,
as can be seen, the slips in φ12 (solid-black curve) and
φ23 (dashed-red curve) occur simultaneously at points P2

and P4.
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FIG. 7. Plot of φ̇12 and φ̇23 as a function of time, for Eq. (12) with
�ω12 = �ω23 = 1 and ε = 1.13 (the dashed-blue curve). Perpetual
points are marked P1, P2, P3, and P4, and the simultaneous phase-
slip structures are seen in the φ12 (solid black) and φ23 (dashed red)
curves.

From Eq. (10), using the equality sin φ12 = sin φ23, one
gets

θ̇2 = ω2, (14)

namely, the angular velocity of the second oscillator is con-
stant, independent of ε, and therefore so is the sum θ̇1 + θ̇3.
When ε is increased, the velocities of the other two oscillators
approach ω2, see Figs. 8(a)–8(d). Synchronization is reached
once they equal ω2. The φ12 vs t (solid black) and φ23 vs t
(dashed red) curves in Fig. 7 capture the relative motion of θ1

and θ3 with respect to θ2 near synchronization.
Similar to the case discussed in the previous section, the

relative dynamics of the oscillators can be analyzed using the
perpetual points. Figure 7 shows that maximum time is spent
around the perpetual point with the global velocity minimum

FIG. 8. For Eq. (10) with ω1 = 1, ω2 = 2, and ω3 = 3, the
phases, θ1 (solid blue), θ2 (solid red), and θ3 (solid black) at (a) ε =
0.87, and (b) ε = 1.13 and phase velocities θ̇1, θ̇2, and θ̇3 at (c) ε =
0.87 and (d) ε = 1.13.

FIG. 9. For the case of n = 15 and ε = 28 in Eq. (5), the varia-
tion of θ1 (solid magenta), θ7 (solid-green), −θ9 (solid-brown), −θ15

(solid maroon), together with θ̇1 (dashed red), θ̇7 (dashed blue),
θ̇8 (dashed black), −θ̇9 (dashed blue), and −θ̇15 (dashed red) as a
function of time.

(P1), while slips occur at the fast perpetual points (P2 and
P4). The dynamics at P1 in this case corresponds to maximum
alignment of θ̇1 and θ̇3 with θ̇2.

2. n > 3

For any n, the sum of angular velocities
∑

i θ̇i = ∑
i ωi ≡

n�. If synchronization occurs, all oscillators must therefore
end up with the same constant angular speed, θ̇i = �, and
the oscillators with their natural frequencies closest to � can
be expected to reach this speed the earliest, considering the
symmetry of the coupling. For odd n, if the ωi’s are chosen
such that ωi+1 − ωi = constant for all i < n, then for the cen-
tral oscillator, θk where k = (n + 1)/2, first reaches a constant
speed, θ̇k = ωk when ε is increased. When this occurs, from
Eq. (5) with a little algebra, it can be seen that

θ̇k+i − θ̇k = θ̇k − θ̇k−i, (15)

for any i � k − 1.
For the case of

∑
i ωi = 0 in Eq. (5) that has been studied

earlier [36], we impose the additional constraint �ωi+1,i =
ωi+1 − ωi is constant. Numerical results are presented for the
case of n = 15 oscillators in Fig. 9 with ω1 = −7,�ωi+1,i =
1 and ε = 28. As can be seen in Fig. 9, the central oscillator,
k = 8, is stationary: θ̇k = 0. Equation (15) then gives θ̇k+1 =
−θ̇k−1, θ̇k+2 = −θ̇k−2, and so on. Thus, the curves for θ̇1 and
−θ̇n (dashed red) are identical, as are θ̇k−1 and −θ̇k+1 (dashed
blue). Therefore, velocity extrema are identical for oscillator
θi and oscillator θn+1−i, and phase slips are simultaneous for
oscillator pairs (θi, θn+i−1). Note that they are not simultane-
ous among all oscillators in general: the slips for θ1 and θn

occur at S1 and S2, while for θk−1 and θk+1 they occur at S′
1.

This symmetry is maintained when n is even as well.
During the approach to synchronization, the oscillator pairs
move together, namely, θ̇i = θ̇n+1−i. Extrema of the phase
velocity are thus also symmetric, and this results in temporal
relationships between the phase slips in individual oscillators
(results not shown).
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FIG. 10. For Eq. (18), a plot of φ̇ vs φ plots for α = 1 (black)
and for α = 2 (dashed red) showing the perpetual points.

III. OTHER COUPLING SCHEMES

To elucidate the role of stationary points, we consider a
system that does not undergo a saddle-node bifurcation but
has phase slips. Consider, for instance, a system of n phase
oscillators with nearest-neighbor coupling of the form

θ̇i = ωi −
[

sin(θi+1 − θi )

2
+ sin(θi−1 − θi )

2

]

+ ε

2
[− sin2(θi+1 − θi + α) + sin2(θi−1 − θi − α)],

(16)

where θi and ωi are, respectively, the phase and the natural
frequency of the ith oscillator, i = 1, 2, 3, . . . , n. For n = 2,
this becomes

θ̇1 = ω1 − sin(θ2 − θ1)

2
− ε

2
sin2(θ2 − θ1 + α),

θ̇2 = ω2 − sin(θ1 − θ2)

2
+ ε

2
sin2(θ1 − θ2 − α). (17)

Choosing ω2 = 2 and ω1 = 1 and defining φ = θ2 − θ1 gives

φ̇ = 1 + sin φ + ε sin2(φ + α). (18)

For our analysis, we fix ε = 3, and choose the parameter
being varied to be α. Note that there is no saddle-node bi-
furcation when α is varied in Eq. (18) irrespective of ε and,
consequently, there are no saddle-node remnants. The rela-
tive positions of the perpetual points do change with α and
this shifts the locations of the phase slips. Since θ̇1 + θ̇2 =
ω1 + ω2 is constant, the relative dynamics between individual
oscillators is similar to that seen in the Kuramoto oscillators,
Eq. (7). The φ̇ vs φ plots in Fig. 10 for Eq. (18) present the
four PPs for φ when α = 1 (black curve): 0.70 ± 2 jπ (P1),
2.24 ± 2 jπ (P2), −2.72 ± 2 jπ (P3), and −1.08 ± 2 jπ (P4).
Similarly, when α = 2 (dashed-red curve) the four PPs are
−0.26 ± 2 jπ (P′

1), 1.06 ± 2 jπ (P′
2), 2.57 ± 2 jπ (P′

3), and
−1.94 ± 2 jπ (P′

4), where j is an integer. Phase slips occur at
the faster PPs, P1 and P2 for α = 1, and P′

1 and P′
2 for α = 2,

while dynamics is sticky around P4 and P′
4; see Fig. 11.

FIG. 11. φ and φ̇ as a function of time for Eq. (18) for the cases
of α = 1 (black) and for α = 2 (dashed red) demonstrating phase
slips at perpetual points; see Fig. 10.

Thus, even in the absence of a saddle-node bifurcation,
phase slips occur, and their locations can be directly correlated
with the velocity extrema or perpetual points.

We further consider another form of the coupling which is
similarity dependent [48], with an inverse dependence on the
phase distance. Thus the coupling strength is maximal when
the phase variables are identical and minimal when they are
the most dissimilar. Such couplings arise naturally in mobile
systems such as swarmalators [50] and has been shown to
induce extreme events as well as to facilitate inhomogeneous
limit cycles to oscillation death transitions in coupled oscilla-
tors [48,51]. A simple example of such coupling is given as

θ̇i = ωi + ε

2

[
− 1

α − cos(θi+1 − θi )
+ 1

α − cos(θi−1 − θi )

]
,

(19)

where θi and ωi are the phase and natural frequency of the ith
oscillator, and α > 1. For n = 2, we then have

θ̇1 = ω1 − ε

[
1

α − cos(θ2 − θ1)

]
,

θ̇2 = ω2 + ε

[
1

α − cos(θ1 − θ2)

]
. (20)

The coupling in Eq. (20) has maximum strength when θ2 −
θ1 = 0 and is weakest when θ2 − θ1 = π . For the phase dif-
ference, φ = θ2 − θ1, we now have

φ̇ = (ω2 − ω1) + 2ε

[
1

α − cos φ

]
. (21)

For ω2 = ω1 − 0.3, α = 1.1, and ε = 0.32, the evolution of φ

and φ̇ are depicted in Fig. 12. Solving for φ̈ = 0 in Eq. (21)
gives two perpetual points: φ = 0 and φ = π denoted P1

and P2, respectively, in Fig. 12. From the evolution curve
for φ (black curve) in the figure, it is apparent that φ un-
dergoes slips at the fast perpetual points P1, which signifies
asynchrony between the individual oscillators, and remains
almost constant around the slow perpetual point, P2, signify-
ing short-time synchronization. Additionally, because of the
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FIG. 12. Phase φ (black) and velocity φ̇ (dotted blue) as a func-
tion of time for Eq. (21) for parameters ω2 − ω1 = −0.3, α = 1.1,
and ε = 0.32.

similarity-dependent nature of the coupling, the phase slips in
this case occur whenever the two oscillators cross each other.

IV. COUPLED CHAOTIC SYSTEMS

Phases are not uniquely defined in chaotic systems:
these are typically calculated from any associated observable
through a Hilbert transform. When two chaotic systems are
coupled, phase synchronization occurs as the systems transi-
tion from a state where their Hilbert phases θ1 and θ2 move
with different velocities to a synchronous state where their
phase differences satisfy a weak locking condition |θ1 − θ2| <

C [4]. This route to synchronization, as in the case of phase
oscillators, is observed to be characterized by phase slips. By
analyzing the reduced dynamics of these phases for the cases
of two coupled Rössler and hyperchaotic Rössler systems, we
confirm the role of stationary points of velocities in phase slips
in these systems.

A. Coupled Rössler systems

We first consider two coupled Rössler oscillators,

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε(x2,1 − x1,2),

ẏ1,2 = ω1,2x1,2 + 0.15y1,2, (22)

ż1,2 = 0.2 + z1,2(x1,2 − 10),

where phase slips occur when there is a mismatch between the
frequencies ω1,2 [4].

In general, the evolution of the phase for an autonomous
chaotic oscillator can be described by an equation of the form

θ̇ = ω + F (A), (23)

where ω is the mean frequency and F (A) the amplitude-
dependent part. For Eq. (22), this leads to, with further
simplifications, the following expression for the evolution of
their phase difference φ = θ1 − θ2:

φ̇ = ω1 − ω2 − 2ε sin(φ) + F1(A1) − F2(A2). (24)

Now, since in the Rössler attractor the amplitude depen-
dence of frequency is small, the term F1(A1) − F2(A2) can

FIG. 13. Slips in the phase difference, φ, between the coupled
Rössler oscillators (solid-red curve), Eq. (22), compared with the
evolution of the velocity (blue curve), φ̇.

be neglected and Eq. (24) becomes similar to Eq. (7), which
describes two coupled phase oscillators [4]. We show this in
Fig. 13 for the case ω1,2 = 1 ± 0.015. The slips in the phase
difference φ (red curve) occur at the maxima of φ̇ (marked
as S on the blue curve), at φ ≈ (3π/2 ± 2 jπ ), and the corre-
spondence is identical to that of Fig. 2(a).

B. Coupled hyperchaotic Rössler systems

Phase slips are also observed in two coupled hyperchaotic
Rössler oscillators,

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε(x2,1 − x1,2),

ẏ1,2 = ω1,2x1,2 + 0.25y1,2 + w1,2,

ż1,2 = 3.0 + x1,2z1,2,

ẇ1,2 = −0.5z1,2 + 0.05w1,2 + ε(w2,1 − w1,2),

(25)

with a parameter mismatch ω1,2 = 1 ± 0.0005 [52].
After a little algebra, the evolution of the phase difference

φ = θ1 − θ2 can be derived as [52]

φ̇ = �ω + a sin φ + b sin
φ

2
+ η, (26)

where

�ω = ω1 − ω2,

a = (0.25 + ε) cos(θ1 + θ2) − ε

2

(
A1

A2
+ A2

A1

)
,

b = 2

(
z1

A1
cos

(
θ1 + θ2

2

)
− w1

A1
sin

(
θ1 + θ2

2

))
,

η =
(

z1

A1
− z2

A2

)
sin θ2 +

(
w1

A1
− w2

A2

)
cos θ2,

− ε

2

(
A2

A1
− A1

A2

)
sin

(
θ1 + θ2

)
. (27)

Since a and b are fast fluctuating variables, their time aver-
ages can be considered in Eq. (26) and a simplified expression
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FIG. 14. For the coupled hyperchaotic Rössler oscillators,
Eqs. (25), with ε = 0.16, (a) F (φ, ε) vs φ [see Eq. (29)] and
(b) V (φ, ε) vs φ [see discussion after Eq. (29)]. In (c), phase φ is
shown as a function of time (solid-red line) in the left panel while the
right panel shows (a) rotated by 90◦, with the extrema Sk , and points
A, B, C, A′, and B′ being marked (see text). The horizontal dashed
lines in (c) are a guide to the eye to visualize the phase slips of ±2π ,
which may occur, for example, from A to C (+2π ) or from A′ to
C (−2π ).

can be obtained,

φ̇ = F (φ, ε) + η, (28)

where

F (φ, ε) = �ω + 〈a〉 sin φ + 〈b〉 sin
φ

2
, (29)

with 〈·〉 denoting time averages. The additional term η in
this case causes the irregularities in the phase-slip structure,
as shown in Fig. 14(c) (solid-red curve) for ε = 0.16. The
phase slips here are induced by a combined effect of the
perturbative term and the extrema of F (φ, ε). For an illustra-
tion, we plot F (φ, ε) and the corresponding potential V (φ, ε)
[= − ∫ φ F (φ′, ε) dφ′] against φ in Figs. 14(a) and 14(b), re-
spectively. The extrema of F (φ, ε) are marked as S1, S2, S3,
and S4. Consider the system at A, at the bottom of a well, in
Fig. 14(b). It sticks around A until fluctuations dislodge it to
the left or to the right. If it is perturbed to the right, past S4

and beyond B, it slips past S1 and settles at C, which results
in a net shift of +2π . On the other hand, if it is pushed to the
left, from point A′, for example, slippage occurs across S2,
resulting in a −2π shift, with the system again ending up at C.

The correlation is apparent from the correspondence between
φ vs F (φ, ε) (dotted blue) and φ vs t (solid red) curves as
presented in Fig. 14(c).

The above analysis for Rössler and hyperchaotic Rössler
systems therefore verifies the role of stationary points in in-
ducing phase slips in oscillators in general.

V. SUMMARY

In this paper, we have investigated two basic aspects of
phase slips: why they occur and where they are located. Our
study shows that both involve the stationary points of veloc-
ities. The temporal relation between the slips in individual
oscillators is not as straightforward as previously thought [36],
and under a general setting phase slips are in fact typically
nonsimultaneous. The analysis complements the treatment of
the cascade of phase slips and phase synchronization being a
consequence of the saddle-node ghost [36,37].

By systematically investigating two-, three-, and n-coupled
phase oscillators, we establish the causal relationship between
stationary points of the velocities and phase slips. The relative
positions of these points dictate where phase slips occur, and
the corresponding velocity magnitudes decide to what extent
they occur. The same mechanism is responsible for phase
slips in systems where saddle-node bifurcations are absent,
as we show for a modified system [Eq. (9)]. Its presence
when the form of coupling is altered, such as for the case of
similarity-dependent coupling [Eq. (19)], further establishes
its generality.

The ideas presented in this paper find relevance well be-
yond the case of phase oscillators. Stationary points locate
phase slips in coupled chaotic systems involving amplitudes,
which we have verified for two coupled Rössler systems and
for two coupled hyperchaotic Rössler systems. They may
also be used to describe phase slips observed in coupled,
structurally nonequivalent systems, which are important in
various physical and biological fields [53]. The observed
asynchrony between phase slips in individual phase oscil-
lators described by these points can moreover be linked to
the unsynchronised phase slips observed in coupled, forced
chaotic systems [54]. Other possible applications include an-
alyzing outputs of semiconductor laser arrays and chaotic
maps [4,49,55].

Given the current interest in complex networks, a promis-
ing direction for future research would be to extend the present
analysis to topologically different networks of coupled chaotic
systems. A detailed study of the temporal relationship be-
tween phase slips among the individual oscillators in such
networks should be of considerable interest.
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