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Suppression and frequency control of repetitive spiking in the FitzHugh-Nagumo model
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The FitzHugh-Nagumo equation is a simple model equation that exhibits spiking. The output signal of
a neuron is represented in the spiking frequency or firing rate. We consider a few control methods for
spiking from the viewpoint of nonlinear dynamics. The repetitive spiking can be suppressed in the FitzHugh-
Nagumo model by the periodic sinusoidal force with high frequency. We study the transition to the suppressed
state numerically and perform a linear stability analysis to understand the suppression of the spiking. Next,
we study coupled FitzHugh-Nagumo equations. We find that the periodic forcing makes the system chaotic, and
the desynchronization induced by chaos weakens the total output of spiking in a certain parameter range. Finally,
we propose a method of feedback control for the spiking frequency. We can get the desired spiking and bursting
frequency using this feedback control. The feedback control method is analyzed using a mapping for the input.
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I. INTRODUCTION

Neural systems exhibit various nonlinear dynamics. The
Hodgkin-Huxley equation is a typical nonlinear equation that
expresses the spiking of a giant axon of a squid [1]. A
neuron is in a stationary state if there is no external input;
however, it is excited and emits a spiking signal if the input
to the neuron is beyond a threshold. The FitzHugh-Nagumo
equation is a simple model equation that exhibits a similar
spiking phenomenon [2,3]. Many authors have studied the
Hodgkin-Huxley equation and the FitzHugh-Nagumo model
from a viewpoint of nonlinear dynamics. For example, Holden
studied the entrainment phenomena in the Hodgkin-Huxley
equation under a periodic external force [4]. Rajasekar and
Lakshmanan studied the period-doubling bifurcations and
chaos in the FitzHugh-Nagumo model under the periodic
forcing [5].

In general, the control methods of nonlinear systems have
been studied by many authors [6,7]. The control of synchrony
in coupled limit-cycle oscillators has also been studied by
several authors [8,9]. The control of neural systems by ex-
ternal forces is important for the therapy of neurotic diseases.
Deep brain stimulation (DBS) is used as a therapy for Parkin-
son’s disease and essential tremors. In DBS for Parkinson’s
disease, high-frequency electrical stimulation is given to the
subthalamic nucleus (STN) in the brain. Abnormal neuronal
activity can be suppressed by DBS, although the mechanism
is not completely understood [10]. Pyragas, Novicenko, and
Tass studied the suppression of spontaneous oscillation of
a single neuron by high-frequency stimulation using several
model equations including the Hodgkin-Huxley equation and
FitzHugh-Nagumo model [11].

We consider a few control methods for the spiking in the
FitzHugh-Nagumo model from the viewpoint of nonlinear
dynamics. In Sec. II, we study the suppression of the spik-
ing by high-frequency stimulation for the FitzHugh-Nagumo
equation again. We study the transition to the suppressed state
more in detail. In Sec. III, we study the suppression and

desynchronization in coupled FitzHugh-Nagumo equations,
since the neural system can be described as a coupled system
of many neurons. In Sec. IV, we propose a simple control
method for the spiking frequency. We can get the spiking and
bursting frequencies we want with the feedback control. An
approximate map for the effective input is derived and the
analysis is compared with the direct numerical simulation. In
Sec V, we summarize the results.

II. SUPPRESSION OF REPETITIVE SPIKING IN THE
FITZHUGH-NAGUMO MODEL BY PERIODIC FORCES

The FitzHugh-Nagumo model is a simple model equa-
tion of excitable and oscillatory systems. In this paper, we
study a modified model equation of the form

du

dt
= u(u + a)(1 − u) − v,

dv

dt
= ε(u − bv). (1)

This equation has third-order nonlinearity. The nullclines are
expressed as v = u(u + a)(1 − u) and v = u/b. The origin
u = v = 0 is always a stationary solution. It can be predicted
from the nullclines that the system becomes excitatory for
a < 0 and oscillatory for a > 0 if ε is sufficiently small. This
is a useful point of this model in contrast to the standard
FitzHugh-Nagumo model:

dx

dt ′ = x − x3

3
− y,

dy

dt ′ = ε′(x − c − dy). (2)

The standard FitzHugh-Nagumo model (2) can be
derived from Eq. (1) by the change of variables: x = 3/√

1 + a + a2{u − (1 − a)/3}, y = 9/(1 + a + a2)3/2{v −
(1 − a)(1 + 2a)(2 + a)/27}, and t ′ = (1 + a + a2)/3t .
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FIG. 1. Time evolutions of u(t ) at (a) F = 0 and (b) F = 0.04 at a = 0.01, ε = 0.002, and ω = 0.5.

In this section, we consider Eq. (1) with b = 0 for the
sake of simplicity. The linear perturbations δu and δv around
u = v = 0 satisfy

dδu

dt
= aδu − δv,

dδv

dt
= εδu. (3)

The eigenvalue λ satisfies

λ2 − aλ + ε = 0

and is expressed explicitly as

λ = a ± √
a2 − 4ε

2
.

When a > 0, the stationary solution becomes unstable, which
leads to periodic excitation of the large amplitude of O(1).

When a periodic force is applied to the equation of u,
Eq. (1) becomes

du

dt
= u(u + a)(1 − u) − v + F sin ωt,

dv

dt
= εu. (4)

When high-frequency stimulation is applied, there is a pos-
sibility that repetitive spiking is suppressed. The zeroth
approximation of the solution to Eq. (4) is expressed as

u = uc cos ωt + us sin ωt, v = v0

where uc and us satisfy

− ωuc sin ωt + ωus cos ωt

� F sin ωt + a(uc cos ωt + us sin ωt ).

Therefore, uc, us, and v0 satisfy

uc � − Fω

ω2 + a2
, us = − Fa

ω2 + a2
, v0 = (1 − a)

F 2

2(ω2 + a2)
.

When a is sufficiently small, uc � −F/ω, us � 0, and
v0 � (1 − a)F 2/(2ω2).

We assume a solution of the form

u = uc cos ωt + δu, v = v0 + δv. (5)

Using the approximation u3 � u3
c cos3 ωt + 3u2

c cos2 ωtδu and
u2 � u2

c cos2 ωt + 2uc cos ωtδu, linearized equations for δu
and δv are obtained as

dδu

dt
= {a − 3F 2/ω2 cos2 ωt + 2(1 − a)uc cos ωt}δu − δv,

dδv

dt
= εδu. (6)

If cos2 ωt � 1/2 and cos ωt � 0 are assumed by the temporal
average, Eq. (6) becomes

dδu

dt
= {a − 3F 2/(2ω2)}δu − δv,

dδv

dt
= εδu. (7)

If δu = δu0eλt and δv = δv0eλt are substituted into Eq. (7),
the linear growth rate λ is evaluated as

λ = [a − (3/2)F 2/ω2] ±
√

[a − (3/2)F 2/ω2]2 − 4ε

2
.

If a < (3/2)F 2/ω2, then Reλ < 0 and δu and δv decay to
zero, that is, the periodic solution u = uc cos ωt of small am-
plitude is stabilized. This implies that the repetitive spiking of
large amplitude is suppressed. This mechanism is almost the
same as the one proposed by Pyragas et al. [11].

We have performed a numerical simulation of Eq. (4) with
the Runge-Kutta method. Figures 1(a) and 1(b) show time
evolutions of u(t ) at (a) F = 0 and (b) F = 0.04 for a = 0.01,
ε = 0.002, and ω = 0.5. The initial condition is u = 0.1 and
v = 0.1. At F = 0, repetitive spiking is observed. The period
is T � 600. The oscillation of large amplitude is suppressed
at F = 0.04 for the frequency ω = 0.5 which is around 48
times larger than 2π/T . Figure 2(a) shows the right and left
boundaries in the parameter space of (ω, F ). The repetitive
spiking is suppressed in a parameter region between the two
boundaries. The left boundary is a new finding in our numer-
ical simulation. There is a minimum value Fc � 0.0135 for
the amplitude F around ω = 0.176 to suppress the repetitive
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FIG. 2. (a) Boundary lines in the parameter space of (ω, F ) above which the repetitive pulsation is suppressed. The dashed line is
F = √

2a/3ω. (b) Parameter values of ω and F where the repetitive pulsation is suppressed. Magnification of the phase diagram in (a) around
ω = 0.2 and F = 0.016. (c) Maximum value of u as a function of ω at F = 0.015.

spiking since the parameter region of the suppressed state is
bounded by the two boundary lines. The dashed line denotes
a theoretical approximation Fc = √

2a/3ω by the linear equa-
tion Eq. (7). The theoretical line is a good approximation of
the right boundary. The phase boundary is complicated near
the critical parameter ω = 0.176 and F = 0.0135 where the
two boundary lines meet as shown in Fig. 2(b). Figure 2(c)
is the maximum value of u as a function of ω at F = 0.015.
The maximum value takes a value near 1 when the repetitive
spiking occurs, and a value near 0.1 when the suppression
occurs. This figure shows that the occurrence of suppression
depends on ω sensitively at F = 0.015.

Figure 3(a) shows the maximum value of u for 0.2069 <

ω < 0.207 at F = 0.04 near the left boundary. The transition
to the suppressed state occurs at ω = 0.206 988. Figure 3(b)
shows the time evolution of u at ω = 0.2069, where the spik-
ing appears intermittently. We have calculated the Lyapunov
exponent near this parameter value. The Lyapunov exponent
is positive, which implies that the system is chaotic.

The right boundary of the phase diagram was understood
by the linear equation Eq. (7) but the left boundary cannot
be reproduced by Eq. (7). To understand the left bound-
ary, we consider the linearized equation Eq. (6) again. Here,

cos2 ωt � 1/2 is assumed but we retain the periodic modula-
tion term 2(1 − a)uc cos(ωt )δu. Therefore, δu and δv obey

dδu

dt
= {a − 3F 2/(2ω2) − 2(1 − a)(F/ω) cos ωt}δu − δv,

dδv

dt
= εδu. (8)

We have studied the stability by direct numerical simulations
of Eq. (8) and found that there are two types of boundaries.
Figure 4(a) shows the two boundaries obtained by the numer-
ical simulations of Eq. (8). The right boundary line is well
approximated by F = √

2a/3ω even in this model. We have
further simplified the linearized equation with time-periodic
modulation by assuming that − cos ωt = 1/

√
2 for π/2 <

ωt < 3π/2 and − cos ωt = −1/
√

2 for 3π/2, ωt < 5π/2.
Here, 1/

√
2 is the root mean square value of cos ωt . The

coupled piecewise linear equations are explicitly written as

dδu

dt
= {a − 3F 2/(2ω2) + 2(1 − a)F/(

√
2ω)}δu − δv,

dδv

dt
= εδu (9)
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FIG. 3. (a) Maximum value of u for 0.2069 < ω < 0.207 at F = 0.04 near the left boundary. (b) Time evolution of u at ω = 0.2069 and
F = 0.04.
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FIG. 4. (a) Two boundary lines evaluated by numerical simulations of Eq. (8). (b) λ = log |μ|/(2π/ω) for 0.15 � ω � 0.45 at F = 0.03.
(c) Two boundary lines (dashed lines) evaluated by the eigenvalues of the linear transformation Eq. (13) and two boundary lines as shown in
Fig. 2(a). The parameter values a and ε are a = 0.01 and ε = 0.002.

for π/2 < ωt < 3π/2, and

dδu

dt
= {a − 3F 2/(2ω2) − 2(1 − a)F/(

√
2ω)}δu − δv,

dδv

dt
= εδu (10)

for 3π/2 < ωt < 5π/2. The linear equation can be solved
by the eigenvalues and eigenvectors of the coefficient
matrix of the coupled linear differential equations. The eigen-
values of Eq. (9) are

λ1 =
a − 3F 2/(2ω2) + 2(1 − a)F/(

√
2ω) +

√
{a − 3F 2/(2ω2) + 2(1 − a)F/(

√
2ω)}2 − 4ε

2

and λ2 = ε/λ1. The right and left eigenvectors for the eigenvalue λ1 are respectively t (1, ε/λ1) and (1/(1 − ε/λ2
1),−1/(λ1 −

ε/λ1)). The right and left eigenvectors for the eigenvalue λ2 are respectively t (1, λ1) and (ε/(ε − λ2
1),−λ1/(ε − λ2

1)). Using the
eigenvalues and eigenvectors, a linear transformation of (δu(t ), δv(t )) from t1 = π/(2ω) to t2 = 3π/(2ω) is written as(

δu(t2)
δv(t2)

)
= A

(
δu(t1)
δv(t1)

)
, (11)

where the matrix A is

A = eλ1π/ω

1 − ε/λ2
1

(
1 −1/λ1

ε/λ1 −ε/λ2
1

)
+ eεπ/(λ1ω)

1 − λ2
1/ε

(
1 −λ1/ε

λ1 −λ2
1/ε

)
.

Similarly, the eigenvalues of Eq. (10) are

λ3 =
a − 3F 2/(2ω2) − 2(1 − a)F/(

√
2ω) −

√
{a − 3F 2/(2ω2) − 2(1 − a)F/(

√
2ω)}2 − 4ε

2

and λ4 = ε/λ3. The right and left eigenvectors for the
eigenvalue λ3 are respectively t (1, ε/λ3) and (1/(1 −
ε/λ2

3),−1/(λ3 − ε/λ3)). The right and left eigenvectors for
the eigenvalue λ4 are respectively t (1, λ3) and (ε/(ε −
λ2

3),−λ3/(ε − λ2
3)). Using the eigenvalues and eigenvectors,

a linear transformation of (δu(t ), δv(t )) from t2 = 3π/(2ω) to
t3 = 5π/(2ω) is written as(

δu(t3)
δv(t3)

)
= B

(
δu(t2)
δv(t2)

)
, (12)

where the matrix B is

B = eλ3π/ω

1 − ε/λ2
3

(
1 −1/λ3

ε/λ3 −ε/λ2
3

)
+ eεπ/(λ3ω)

1 − λ2
3/ε

(
1 −λ3/ε

λ3 −λ2
3/ε

)
.

The linear transformation from t = t1 to t3 is expressed as(
δu(t3)
δv(t3)

)
= BA

(
δu(t1)
δv(t1)

)
. (13)

If the absolute value of the eigenvalues μ of the matrix BA
is smaller than 1, δu and δv decay to zero, and the repetitive
spiking is suppressed. Figure 4(b) shows λ = log |μ|/(2π/ω)
for 0.15 � ω � 0.45 at F = 0.03. For ω > 0.1987, the eigen-
value μ is a complex number and λ increases slowly and
becomes positive at ω = 0.3675. For ω < 0.1987, two real
eigenvalues μ+ and μ− appear for the matrix BA, and λ+ =
log |μ+|/(2π/ω) decreases rapidly with ω near ω = 0.1987
and becomes positive for ω < 0.1971. ω = 0.1971 is the left
boundary of the stability of the linear equations expressed
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FIG. 5. (a) Time evolutions of u(t ) at F = 0.003 and ω = 0.0172 for a = 0.0001 and ε = 5 × 10−6. (b) Boundary lines in the parameter
space of (ω, F ) above which the repetitive pulsation is suppressed for a = 0.0001 and ε = 5 × 10−6. The dashed line is F = √

2a/3ω.

by Eqs. (9) and (10). Figure 4(c) shows the right and left
boundary lines of λ+ = 0. At the left boundary, the real eigen-
value μ+ becomes −1. At the right boundary, μ is a complex
number and the absolute value becomes 1. The right boundary
is almost equal to F = √

2a/3ω.
When a and ε are smaller, the critical value of F be-

comes even smaller. We have performed numerical simulation
at a = 0.0001 and ε = 5 × 10−6. Figure 5(a) shows a time
evolution of u at F = 0.003 and ω = 0.0172. The spik-
ing is suppressed after the fifth spiking, and the suppressed
state with high-frequency modulation appears. Figure 5(b)
shows the parameter range of the suppression of spiking.
The dashed line is Fc = √

2a/3ω. The approximation is very
good for this parameter set. The minimum value of F is
0.0012, which is much smaller than the critical value shown in
Fig. 2(a).

The suppression of neuronal spiking by high-frequency
forcing is observed in other systems. Pyragas et al. studied
the suppression in the Hodgkin-Huxley equation and STN
model [11]. However, the lower limit of the frequency was
not studied in detail. We have studied a parameter range of
the suppression in the Hodgkin-Huxley equation. The model
equation is expressed as

Cm
dV

dt
= gNam3h(ENa − V ) + gK n4(Ek − V ) + gL(EL − V )

+ I0 + I1 cos 2π f t,

dm

dt
= αm − (αm + βm)m,

dh

dt
= αh − (αh + βh)h,

dn

dt
= αn − (αn + βn)n, (14)

where ENa = 115, EK = −12, EL = −10.6, gNa = 120,
gK = 36, and gL = 0.3. αm ∼ αn are functions of V as

αm = (V − 25)/10

1 − exp{−(V − 25)/10} , βm = 4 exp{−V/18},

αh = 0.07 exp{−V/20}, βh = 1

1 + exp{−(V − 30)/10} ,

αn = 0.01(V − 10)

1 − exp{−(V − 10)/10} , βn = 0.125 exp{−V/80}.

(15)

The average current I0 is set to 20. Figures 6(a) and 6(b) show
the time evolutions of V at (a) I1 = 350 and (b) I1 = 400
and f = 5. The initial values of V, m, h, and n are zero. The
suppression of spiking occurs at I1 = 400. Figure 6(c) shows
a critical line in the ( f , I1) space above which the suppression
is observed. The critical line decreases rapidly near f = 1.46.
It implies that the suppression is hard for the lower frequency
f < 1.46. There seems to be only one critical line, which is
different from the case of the FitzHugh-Nagumo model. There
is a minimum amplitude I1 � 202.8 for the suppression at
f = 1.9. The existence of the minimum amplitude is the same
as the case of the FitzHugh-Nagumo model.

III. DESYNCHRONIZATION OF SPIKING IN COUPLED
FITZHUGH-NAGUMO EQUATIONS

BY PERIODIC FORCES

Neurons interact with each other in a complicated manner
in real neural networks in brains. As one of the simplest mod-
els, we study globally coupled FitzHugh-Nagumo equations:

dui

dt
= ui(ui + a)(1 − ui ) − vi + F sin ωt + K

N

N∑
j=1

(u j − ui ),

dvi

dt
= εui, for i = 1, 2, . . . , N (16)

where K is the coupling constant and N is the total number of
neurons. The parameters a and ε are fixed to be a = 0.01 and
ε = 0.002. The total number N is assumed to be 1000.
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FIG. 6. Time evolutions of V in the forced Hodgkin-Huxley equation Eq. (14) at (a) I1 = 350 and (b) I1 = 400 for f = 5. (c) Critical line
in the ( f , I1) space above which the suppression is observed.

As shown in the previous section, the suppression of spik-
ing does not occur for small values of ω < 0.17 in a single
FitzHugh-Nagumo equation. However, a weak chaos can oc-
cur in the single FitzHugh-Nagumo equation. Figure 7(a)
shows a time evolution of u at ω = 0.1 and F = 0.0074 for
the FitzHugh-Nagumo equation Eq. (4). Almost periodic spik-
ing is observed; however, the temporal modulation below the
threshold is not periodic but chaotic. Figure 7(b) shows the
Lyapunov exponent as a function of F at ω = 0.1 for Eq. (4).
Weak chaos appears for 0.0071 � ω � 0.0078.

In coupled oscillator systems, the limit-cycle oscillators
tend to be synchronized even for very small K > 0. However,
the synchronization does not occur for chaotic oscillators if
K is smaller than a critical value Kc [12,13]. In a globally
coupled system like Eq. (16), the chaos induces desynchro-
nization for small K and the average value ū = ∑N

j=1 u j/n
does not show spiking even if each oscillator exhibits spiking,
because the timing of the spiking is randomly distributed.
There is a transition from the desynchronized state to the syn-
chronized state as K is increased [14]. Figure 8(a) shows the
time evolutions of ū (solid line) and ui (dashed line, i = 750)
in Eq. (14) at K = 0.0001, ω = 0.1, and F = 0.0074. The
spiking is observed for ui; however, small-amplitude fluctu-
ations are observed in the time evolution of ū. Figure 8(b)
shows (ui, vi ) (i = 1, 2, . . . , 1000) at t = 50 000 in the phase

space of u and v. The distribution of (ui, vi ) implies the desyn-
chronization. The desynchronization makes the total activity
in the globally coupled system depressed. Figure 8(c) shows
the peak value of ū(t ) as a function of F at ω = 0.1 and
K = 0.0001. The average value ū(t ) decreases from around 1
to around 0.1 for 0.0071 � ω � 0.0078. The parameter range
is the same as the one where the weak chaos appears in the
single FitzHugh-Nagumo equation. The desynchronization is
observed for sufficiently small K . We have studied the transi-
tion from the desynchronized state to a synchronized state as
K is increased at F = 0.074 and ω = 0.1 for N = 1000. The
single FitzHugh-Nagumo model exhibits chaos by the peri-
odic forcing at F = 0.074 and ω = 0.1. We have calculated
the root mean square 	u = 〈(ū(t ) − 〈ū〉)2〉1/2 of u(t ). Here,
〈z〉 denotes the temporal average of z(t ). The root mean square
	u increases with K and a completely synchronized state is
attained at K = 0.012. At intermediate values of K , various
partially synchronized states appear. Figure 8(d) shows the
time evolutions of ū (solid line) and ui (dashed line, i = 750)
at K = 0.005, ω = 0.1, and F = 0.0074. At the parameter
values, a three-cluster state is observed. That is, the 1000
neural oscillators are split into three clusters of 99, 556,
and 345 oscillators. In each cluster, oscillators are mutually
synchronized. The time evolution of ū exhibits three peaks,
because of the three synchronized clusters.
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FIG. 7. (a) Time evolution of u at F = 0.0074 and ω = 0.1 for Eq. (4). (b) Lyapunov exponent as a function of F at ω = 0.1.
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(d) Time evolutions of ū (solid line) and ui (dashed line, i = 750) at K = 0.005, ω = 0.1, and F = 0.0074.

The mean-field type coupling as in Eq. (16) is not realistic
in actual neural networks. Gerster et al. studied the FitzHugh-
Nagumo oscillators on complex networks [15]. Here, we show
some numerical results of a random network where the cou-
pling is randomly cut off with probability p from the globally
coupled system. The model equation is expressed as

dui

dt
= ui(ui + a)(1 − ui ) − vi + F sin ωt

+ K
N∑

j=1

Ai, j (u j − ui ),

dvi

dt
= εui, (17)

where Ai, j takes zero with probability p and 1 with prob-
ability 1 − p. We have performed numerical simulation at
F = 0.074, ω = 0.1, and p = 0.7 for N = 200. The sin-
gle FitzHugh-Nagumo oscillator exhibits chaos. Figure 9(a)
shows the root mean square 	u as a function of K . The root
mean square increases with K from K � 0.000 01. Figure 9(b)
shows the time evolutions of ū (solid line) and ui (dashed line,
i = 50) at K = 0.000 01. A desynchronized state appears even
in this random neural network. Figure 9(c) shows the time
evolutions of ū (solid line) and ui (dashed line, i = 50) at
K = 0.000 05. A partially synchronized state appears in this
coupling strength.

To summarize this section, the periodic forcing can gen-
erate weak chaos in some parameter ranges, which induces
desynchronization in coupled systems. The spiking disappears
in the average activity in the coupled system. The collective
spiking by the synchronization induces a negative effect such
as tremors. Desynchronization might be another mechanism
for the success of DBS.

IV. FEEDBACK CONTROL OF SPIKING FREQUENCY
IN THE FITZHUGH-NAGUMO MODEL

In this section, we consider the FitzHugh-Nagumo model
of the form

du

dt
= u(u + a)(1 − u) − v + I,

dv

dt
= ε(u − bv), (18)

where a = 0.02 and ε = 0.002. Figure 10(a) shows the period
T of the repetitive spiking as a function of the input I for
b = 0 (dashed line) and b = 1 (solid line). The period does
not depend on I at b = 0, because Eq. (18) is transformed to
Eq. (1) by the change of variable: v − I → v. However, the
period T decreases with I and diverges near I = −0.008 718
at b = 1. For 0 < b < 1, a similar behavior to the case of
b = 1 is observed, although the critical value of I for spiking
increases with b. Figure 10(b) shows the trajectories in the
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FIG. 9. (a) Root mean square 	u as a function of K in a random network of FitzHugh-Nagumo oscillators at F = 0.074, ω = 0.1, and
p = 0.7. (b) Time evolutions of ū (solid line) and ui (dashed line, i = 50) at K = 0.000 01. (c) Time evolutions of ū (solid line) and ui (dashed
line, i = 50) at K = 0.000 05.
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−0.008 718 07 (large loop) and −0.008 718 06 [small loop around (u, v) = (0, 0)] for b = 1.

phase space (u, v) at I = −0.008 718 06 and −0.008 718 07
for b = 1. There is a transition from the limit-cycle oscilla-
tion of large amplitude at I = −0.008 718 06 to that of small
amplitude at I = −0.008 718 07. Repetitive spiking is ob-
served at I = −0.008 718 06 but the spiking does not occur at
I = −0.008 718 07.

To control the spiking frequency, we consider a model
equation where I changes with time:

du

dt
= u(u + a)(1 − u) − v + In,

dv

dt
= ε(u − v),

dI

dt
= ε′

(
1

Tp
− δ(u − u0)θ (du/dt )

)
(19)

where a = 0.02, ε = 0.002, u0 = 0.5, ε′ = 0.000 05, δ(x) is
the delta function, and θ (x) is the Heaviside step function
which takes 1 only for x > 0. I (t ) increases constantly with
ε′/Tp owing to the first term of the third equation in Eq. (19).
On the other hand, I (t ) decreases by ε′ when u passes through
u = u0 under the condition of du/dt > 0. The input In for u
takes a constant value I (tn) between tn � t < tn+1, where tn
is the time just before the passage through u = u0. In other
words, the input for u changes stepwise when u passes through
u = u0 under the condition of du/dt > 0.

If the spiking period T is larger than Tp in Eq. (19), I tends
to increase on average and the spiking period decreases. On
the other hand, if the spiking period T is smaller than Tp, I
tends to decrease on average and the spiking period increases.
Owing to the negative feedback effect, the spiking period Tp

is finally obtained if the control succeeds. Figure 11(a) shows
the time evolution of I at Tp = 600, ε′ = 0.000 05, and b = 1.
Figure 11(b) shows the time evolution of the spiking period in
the same numerical simulation. Initially, I is set to be zero.
I decreases with time and the period approaches the goal
value Tp = 600. Figure 11(c) is the time evolution of u after
the feedback control, which demonstrates that the periodic
pulsation of T = 600 is reproduced.

Figure 12(a) shows the relationship between Tp and I after
the feedback control at b = 1 for ε′ = 0.000 05. T = Tp is
attained until Tp = Tpc = 608.7. However, a period-doubling
bifurcation occurs, and the stable stationary solution cannot
be obtained for Tp > Tpc. This is probably due to the steep
slope of the T (I ) curve in Fig. 10(a). Figure 12(b) shows a
relationship between Tp and I after the feedback control at
b = 1 for ε′ = 0.000 01. At ε′ = 0.000 01, T = Tp is attained
until Tp = Tpc = 615.96. A similar period-doubling bifurca-
tion occurs at the critical value. The feedback control succeeds
for a wider parameter range for smaller ε′.

Figure 13(a) shows the relationship between In and In+1

where Im is the input for u and equal to I (tm) just before the
mth passage time tm of u = u0 with du/dt > 0. The parameter
values are Tp = 609.93 and ε′ = 0.000 05, where a chaotic
behavior is observed in Fig. 12(a). A parabolalike curve is
observed. The chaotic behavior is caused by the parabolalike
mapping, which is similar to the chaos in the logistic map.
From the differential equation of I (t ) in Eq. (19), the mapping
from In to In+1 can be approximately constructed as

In+1 = In + ε′ T (In)

Tp
− ε′. (20)

This is because I decreases suddenly by ε′ at t = tn and
increases steadily with the rate ε′/Tp during a period from
the nth to (n + 1)th passing of u = u0 with du/dt > 0. If the
period is approximated at the period T (In) of the limit-cycle
oscillation for the constant I shown in Fig. 10(a), the increase
of I during the period is evaluated at ε′T (In)/Tp, and there-
fore Eq. (20) is derived. The stationary state In+1 = In = Is is
obtained when T (Is) is equal to Tp and therefore ε′T (Is)/Tp −
ε′ = 0 in Eq. (20). If the stationary solution is a stable solution
in the mapping Eq. (20), the feedback control succeeds, and
the target frequency 1/Tp is obtained by the time evolution of
Eq. (19). The substitution of T (In) in Fig. 10(a) into Eq. (20)
yields a plot of In and In+1. Figure 13(b) shows the mapping
Eq. (20) using T (I ) in Fig. 10(a) at b = 1. It is close to the plot
in Fig. 13(a) obtained by the direct numerical simulation. The
period-doubling bifurcation occurs when dIn+1/dIn = −1 in
Eq. (20). The critical point of the period-doubling bifurcation
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FIG. 11. (a) Time evolution of I at Tp = 600, ε ′ = 0.000 05, and b = 1. (b) Time evolution of the period of each pulsation at Tp = 600,
ε ′ = 0.000 05, and b = 1. (c) Time evolution of u for Tp = 600 after the feedback control.

is estimated as

∣∣∣∣dT

dI

∣∣∣∣ = 2
Tp

ε′ , (21)

because dT/dI < 0 in Fig. 10(a). For ε′ = 0.000 05, the crit-
ical value is estimated as Tpc = 609.3 using Eq. (21). For
the smaller parameter of ε′ = 0.000 01, the critical value is
Tpc = 617.0. These results are consistent with the direct nu-
merical simulation shown in Figs. 12(a) and 12(b), that is, the
approximation using Eq. (21) for the critical value is rather
good.

In brains, there are various types of neurons. Some neurons
exhibit bursting, where the spiking and nonspiking periods
alternate. That is, the neuron exhibits spikes several times and
then stops the spiking during the succeeding interval period.
There are various model equations for the burst phenomena
such as the Hindmarsh-Rose model and Plant-Kim model
[16,17]. In general, a long timescale dynamics other than the
spiking dynamics is involved in the burst firing. For example,
a low-threshold Ca2+ current with a long timescale is involved
in the burst firing in some neural systems [18]. We construct a

simple model based on the FitzHugh-Nagumo model as

du

dt
= u(u + a)(1 − u) − v + Ie − Ii + I0,

dv

dt
= ε(u − v),

dIe

dt
= ε′(Aδ(u − u0)θ (du/dt ) − Ie),

dIi

dt
= ε′′(Bδ(u − u0)θ (du/dt ) − Ii ), (22)

where Ie and Ii are interpreted as excitatory and inhibitory
currents of long timescales induced by the spiking, and ε′
and ε′′ are decay constants respectively for Ie and Ii. When
the FitzHugh-Nagumo oscillator is excited and u goes over
u0, Ie and Ii jump by Aε′ and Bε′′. Then, Ie and Ii decay
with damping rate ε′ and ε′′. I0 is a constant input. When
the FitzHugh-Nagumo oscillator is excited, the excited state
continues for a while by the excitatory input Ie and then the
suppressed state continues for a long time by the inhibitory
input Ii, since ε′′ is set to be smaller than ε′. Figure 14(a)
shows the time evolution of u at A = 1.5, B = 3, ε′ = 0.001,
ε′′ = 0.0001, and I0 = −0.008. The spiking repeats six times,

FIG. 12. (a) Relationship between Tp and the period after the feedback control at b = 1 for ε ′ = 0.000 05. (b) Relationship between Tp and
the period after the feedback control at b = 1 for ε ′ = 0.000 01.
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FIG. 13. (a) Relationship between In and In+1 at Tp = 609.93 for ε ′ = 0.000 05. (b) Relationship between In and In+1 by Eq. (20) at
Tp = 609.93 for ε ′ = 0.000 05.

and then the nonspiking state appears. The total period is
T = 16 268.2 at the parameter values. We propose a feedback
control method similar to Eq. (19) to generate the burst phe-
nomenon with a target period Tp as

du

dt
= u(u + a)(1 − u) − v + Ie − Ii + In,

dv

dt
= ε(u − v),

dIe

dt
= ε′[Aδ(u − u0)θ (du/dt ) − Ie],

dIi

dt
= ε′′[Bδ(u − u0)θ (du/dt ) − Ii],

dI

dt
= ε′′′

(
1

Tp
− δ(u − u0)θ (du/dt )θ (Tn − tm − T0)

)
. (23)

The input In takes a constant value I (Tn) between Tn � t <

Tn+1, where Tn is the time just before the passage through
u = u0 with du/dt > 0 satisfying Tn − tm > T0. Here, tm is
the last time when u passes u0 with du/dt . That is, Tn is the
passage time of u = u0 after a long interval of the nonspiking

state. Figure 14(b) shows the time evolution of In starting from
I (t ) = 0 at t = 0 for Tp = 16 268.2. ε′′′ = 0.0001 and T0 is set
to 3000 to generate the burst phenomenon with a nonspiking
interval larger than 3000. The other parameters are set to be
A = 1.5, B = 3, ε′ = 0.001, and ε′′ = 0.0001. In approaches
−0.008 finally. Figure 14(c) shows the time evolution of u
by Eq. (23). The bursting time sequence with period Tp is
reproduced.

Thus, we have shown that the spiking and bursting time
sequences with target periods can be generated with feedback
control.

V. SUMMARY

In this paper, We have considered a few control methods
for the spiking phenomenon from the viewpoint of nonlinear
dynamics.

First, we have studied the suppression of repetitive spik-
ing by the periodic forcing in the FitzHugh-Nagumo model.
The periodic solution of small amplitude is stabilized by the
fast periodic modulation. It is analogous to the stabilized
inverted pendulum by a periodic modulation. We have found
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FIG. 14. (a) Time evolution of u by Eq. (22) at A = 1.5, B = 3, ε ′ = 0.001, ε ′′ = 0.0001, and I0 = −0.008. (b) Time evolution of In by
Eq. (23) starting from I (t ) = 0 at t = 0 for Tp = 16 268.2 and T0 = 3000. (c) Time evolution of u by Eq. (23).
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two boundary lines for the suppressed state in the FitzHugh-
Nagumo model. We have found that there is a minimum value
for the amplitude F of the periodic forcing to achieve the sup-
pression in the FitzHugh-Nagumo model and the Hodgkin-
Huxley model. The existence of the threshold of the amplitude
for the spike suppression is the main result of this paper.

Next, we have studied globally and randomly coupled
FitzHugh-Nagumo oscillators to study the suppression of
repetitive spiking in the neural network. We have found
that the periodic forcing makes the single FitzHugh-Nagumo
equation chaotic, and the total sum of spiking becomes small
owing to the chaos-induced desynchronization. Although
these dynamical behaviors are interesting, both the single
FitzHugh-Nagumo model and coupled FitzHugh-Nagumo os-

cillators are too simple as model systems to apply directly to
actual neural networks in the basal ganglia, which is closely
related to Parkinson’s disease. We would like to apply our
methods to more biologically relevant model equations in the
future.

Finally, we have proposed a feedback method of the input
to control the spiking frequency. Since the output signal of a
neuron is often represented in the spiking frequency, it is im-
portant to control the spiking frequency. The feedback control
method could be analyzed with the mapping of the input In.
Furthermore, we have assumed long-timescale currents Ie and
Ii induced by the spiking of the FitzHugh-Nagumo oscillator
to generate the burst phenomenon and applied the feedback
method to control the total period of bursting.
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