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Dynamical matching in a three-dimensional Caldera potential-energy surface
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In a previous paper, we used a recent extension of the periodic-orbit dividing surfaces method to distinguish
the reactive and nonreactive parts in a three-dimensional (3D) Caldera potential-energy surface. Furthermore, we
detected the phenomenon of dynamical matching in a 3D Caldera potential-energy surface. This happened for a
specific value of the radius r of the periodic orbit dividing surfaces (r = 0.25). In this paper, we demonstrated
that the chemical ratios of the number of reactive and nonreactive trajectories to the total number of trajectories
converges for a range of the radius r of the periodic-orbit dividing surfaces. This is important not only for
validating the previous paper and to confirm that the method can detect the phenomenon of dynamical matching
independently of the chosen radius of the construction of the dividing surface but also for investigating the

application of the method to other Hamiltonian models.
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I. INTRODUCTION

The classical Caldera potential is a two-dimensional (2D)
potential-energy surface (PES) introduced by Carpenter [1,2]
in his development of the concept of dynamical matching in
reactions of organic molecules. Since then the Caldera PES
has been used to describe a variety of organic molecular
reactions, such as the vinylcyclopropane-cyclopentene rear-
rangement [3,4], the stereomutation of cyclopropane [5], and
the degenerate rearrangement of bicyclo[3.1.0]hex-2-ene [6,7]
or that of 5-methylenebicyclo[2.1.0]pentane [8].

The original Caldera PES has a well that is surrounded
by four index-1 saddle points. The two higher-energy index-1
saddles correspond to the reactants and the two lower-energy
index-1 saddles correspond to the products (see, for example,
Ref. [9]). As we remarked above, an interesting phenomenon
is the dynamical matching (see Refs. [1,9]). Dynamical
matching means that all trajectories that enter the Caldera re-
gion by crossing the higher-energy index-1 saddles go straight
across the Caldera and exit through the region of the opposite
lower-energy index-1 saddle.

Dividing surfaces provide a method of monitoring the pas-
sage of trajectories between qualitatively distinct regions of
the phase space. It is important that these dividing surfaces
are phase-space objects since the nature of the trajectories
will generally change as the total energy is varied. The
construction of such phase-space dividing surfaces for 2
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degrees-of-freedom Hamiltonian systems using an unstable
periodic orbit (“periodic-orbit dividing surfaces”) was pio-
neered by Pechukas, Pollak, and co-workers in Refs. [10-15].

The phenomenon of dynamical matching has been stud-
ied for 2D Caldera PES using dividing surfaces (see
Refs. [16,17]) and the method of Lagrangian descriptors
([18,19]. Studies of dynamical matching in the Caldera PES
after symmetry breaking and/or bifurcation of the critical
points of the PES have been carried out in Refs. [17-21].

We note that all of these studies of dynamical matching
have been carried out for 2D Caldera PES. In this work,
we consider an extension of the 2D symmetric Caldera
potential-energy surface coupling the axis of symmetry of this
potential with a harmonic oscillator in the z direction. Re-
cently, we have constructed an alternative method to construct
dividing surfaces in Hamiltonian systems with 3 or more
degrees of freedom without knowing the. normal hyperbolic
invariant manifold (NHIM) (avoiding the extensive and dif-
ficult calculations of normal form theory—see, for example,
Refs. [22-26]). We used the periodic orbit, which is actually
a one-dimensional submanifold of the normally hyperbolic
invariant manifold, as a starting point to construct a dividing
surface [27,28]. We constructed a torus using as a basis a
periodic orbit and we extended this to a (2n — 2)-dimensional
object in the (2n — 1)-dimensional energy surface. We illus-
trated our methods using benchmark examples for 2 and 3
degrees of freedom Hamiltonian systems to demonstrate the
corresponding algorithm for this construction. We proved that
this object was a dividing surface and it has the no-recrossing
property. For the construction of these objects, in all of our
previous work we used a fixed value of radius . This value
of r is not arbitrary but it has a range of values with a
maximum (see Refs. [27,28]). This maximum was computed
in the benchmark examples (integrable models) that we used
in these papers very easily. Subsequently we applied, for the
first time, this method to detect the phenomenon of dynamical
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TABLE I. Critical points of the Caldera potential for ¢; =35,
;=3 c3=-0.3, ¢4, =0.2, and ¢5 = 0.03 (RH and LH are the
abbreviations for right hand and left hand, respectively).

Critical point X y z E
Central minimum 0.000 —0.297 0 —0.448
Upper LH saddle —2.149 2.0778 0 27.0123
Upper RH saddle 2.149 2.0778 0 27.0123
Lower LH saddle —1.923 —2.003 0 14.767
Lower RH saddle 1.923 —2.003 0 14.767

matching in a nonintegrable Hamiltonian model (like that of a
Caldera-type Hamiltonian model) for a fixed value of energy
using a fixed value of radius r. In that case, we could not
compute the maximum value of that radius analytically, and
this means that the interval of the radius [0, 7. ] is unknown.
A natural question that arises after this paper is what is the
effect of changing the radius on the dynamical phenomena
that we observed for a fixed radius? The investigation of this
restriction for nonintegrable cases of Hamiltonian systems is
an interesting topic, and is the subject of this paper. Possible
effects of the change of radius could be a change of dynamical
behavior or the convergence of the radius for the different
types of trajectory behavior. This is important not only for val-
idating the previous paper and to confirm that the method can
detect this phenomenon independently of the chosen radius of
the construction of the dividing surface, but to investigate the
application of the method to other Hamiltonian models. This
will allow us to detect and investigate other chemical phenom-
ena and in general in all fields where we have applications of
the transition state theory (dividing surfaces play a central role
in the transition state theory [24,29]) and dynamical astron-
omy (see Ref. [30]). Hence this paper not only complete the
previous study (see Ref. [31]) but it satisfies the general aim of
investigating the manner in which this method will be applied
in the future, answering a variety of important questions from
many fields of nonlinear dynamics.

In the next section (Sec. II), we describe our model. Then
we present our results (Sec. III) and our conclusions (Sec. IV).

II. MODEL

The potential of our model is the Caldera potential plus
two terms that correspond to a harmonic oscillator in the z
direction (c4z%) and the coupling term (csyz2):

V(x,y,2) = 162 +y5) + oy — e3(x* + 3t — 6x%y?)
+ 42 + sy, (1)

where (x, y, z) are Cartesian coordinates. For the parameters
of the Caldera we have ¢y =5, ¢; = 3, and ¢35 = —0.3 (see
Refs. [9,16-19]) and for the parameters of the other two terms
we use the values ¢4 = 0.2 and ¢s = 0.03. The positions of
the critical points are given in Table I. As we can see in Fig. 1,
the 2D topography of this potential is similar to that of the
2D Caldera potential (see Refs. [9,16,18]). The difference is
that the walls of this potential extend the potential walls of
the 2D Caldera into the z direction. It can be considered as
a natural 3D extension of the corresponding 2D Caldera. The
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FIG. 1. The contours of the 3D Caldera potential.

corresponding Hamiltonian is
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where V(x,y, z) is the potential and py, p,, and p, are the
corresponding momenta (2 = 1). The equations of motion are
given by
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Opx
s
ap, m
. oH P
y=——=—-
ap; m

v
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III. RESULTS

In a previous paper (see Ref. [31]), we constructed the
dividing surfaces from unstable periodic orbits of the higher-
energy upper-right index-1 saddle for a specific value of
the radius of this surface, r = 0.25 (for the value of energy
E = 28). In this section, we construct the dividing surfaces
from unstable periodic orbits of the higher-energy upper-right
index-1 saddle for »r = 0.1 and r = 0.4 (for the same value
of energy). The results will be the same for the case of the
other upper index-1 saddle because of the symmetry of the
potential. Using this method, we have as a basis the projection
(3, py) of the periodic orbits of the family of unstable periodic
orbits of the upper index-1 saddles. This projection is a closed
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FIG. 2. The trajectories [with red (dark gray)color denoting for-
ward in time] in the configuration space that have initial conditions
on the dividing surface associated with the upper-right index-1 sad-
dle. In this case, the trajectories move in the direction of the reaction.
The trajectories (with black colordenoting backward in time) in the
configuration space that have initial conditions on the dividing sur-
face associated with the upper-right index-1 saddle. In this case, the
trajectories do not move in the direction of the reaction (they belong
to nonreactive part). The zero-velocity surface is depicted in cyan
(light gray).

curve in the subspace (y, p,). Then according to the algorithm
(see more details in Ref. [31]) we construct a torus that is the
result of the product of the projection (y, py) of the periodic
orbit with a circle (with a radius r) in the (x,y) subspace
of the phase space and with another circle (with a radius
r) in the (y, z) subspace of the phase space. This torus will
be three-dimensional in the 4D space (x,y, z, py). Then we
add a segment (taking a range p, between its maximum and
minimum value) and the torus increases its dimensionality
by one (see Refs. [27,31]). Finally, we compute the value p,
using the Hamiltonian of the system.

Using the method of periodic-orbit dividing surfaces, for
r = 0.1 and r = 0.4, we can compute the reactive and nonre-
active parts of the trajectories that start from the region of the
upper index-1 saddles. The reactive part corresponds to the
trajectories that move forward in time to the central area of
the Caldera (they have a probability to cross the region of one
of the lower index-1 saddles). On the contrary, the nonreactive
part corresponds to the trajectories that forward in time go to
infinity. For the results that are presented in Figures 2-5 we
used the value r = 0.1 (the figures are similar for the case of
r = 0.4). The reactive and nonreactive parts are composed of
two categories of trajectories. These categories are determined
from the behavior of the trajectories backward in time. The
first category of the reactive part is represented by trajectories
that backward in time go to infinity (see Fig. 2). The second
category of the reactive part is represented by trajectories that
backward in time go to the central area of the Caldera (see
Fig. 3). Similarly, the first and second categories of the non-
reactive part of the trajectories are represented by trajectories
that backward in time move to the central area of the Caldera
(see Fig. 4) and to infinity (see Fig. 5), respectively. The first
category of reactive and nonreactive parts was expected and is
found also in 2D cases of the Caldera potential-energy surface
(see Refs. [16,17]). The second category of the reactive and

FIG. 3. (a) The trajectories [with red (dark gray) color denot-
ing forward in time] in the configuration space that have initial
conditions on the dividing surface associated with the upper-right
index-1 saddle. In this case, the trajectories move in the direction
of the reaction. The zero-velocity surface is depicted in cyan (light
gray). (b) The trajectories (with black color denoting backward in
time) in the configuration space that have initial conditions on the
dividing surface associated with the upper-right index-1 saddle. In
this case, the trajectories move in the direction of the reaction. The
zero-velocity surface is depicted in cyan (light gray).
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FIG. 4. The trajectories with red (dark gray) color (forward in
time) in the configuration space that have initial conditions on the
dividing surface associated with the upper-right index-1 saddle. In
this case, the trajectories do not move in the direction of the reaction
(they belong to the nonreactive part). The trajectories with black
color (backward in time) in the configuration space that have initial
conditions on the dividing surface associated with the upper right
index-1 saddle. In this case, the trajectories move in the direction
of the reaction. The zero-velocity surface is depicted in cyan (light

gray).
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FIG. 5. (a) The trajectories [with red (dark gray) color denote
forward in time] in the configuration space that have initial condi-
tions on the dividing surface associated with the upper-right index-1
saddle. In this case, the trajectories do not move in the direction
of the reaction (they belong to nonreactive part). The zero-velocity
surface is depicted in cyan (light gray). (b) The trajectories (with
black color denoting backward in time) in the configuration space
that have initial conditions on the dividing surface associated with
the upper-right index-1 saddle. In this case, the trajectories do not
move in the direction of the reaction (they belong to the nonreactive
part). The zero-velocity surface is depicted in cyan (light gray).

nonreactive parts was found only in 3D cases of the Caldera
potential-energy surfaces and it is because of homoclinic in-
tersections of invariant manifolds of NHIMs (see Ref. [31] for
details).

We observe that all trajectories of the reactive part go
straight across the Caldera and they exit through the region
of the opposite lower index-1 saddle. This means that we
have for our case the phenomenon of dynamical matching
(as you can see also in Ref. [31]). Furthermore, we computed
(for fixed values of radius » = 0.1 and r = 0.4) the reactive
and nonreactive ratios (the ratios of reactant and nonreactant
parts). These ratios are defined as the number of the tra-
jectories of the reactive part (or the nonreactive part) over
the number of the trajectories with initial conditions on the
periodic-orbit dividing surfaces. These ratios will give us an
approximation of the reaction rate. These ratios are 0.4820
and 0.5180 for » = 0.1 and 0.4985 and 0.5015 for r = 0.4.

At this point, a natural question arises about the depen-
dence of reactive and nonreactive ratios on the radius r of
the periodic-orbit dividing surfaces that we used. In order to
answer this question, we computed these ratios varying the
radius from values close to zero until a value where we start

1 T T T T T T T
reactant part se—e—
nonreactant part e
0.8 - o
0.6 - E
=4
= —_—
[
0.4 - 1
0.2 - 1
0 L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

r

FIG. 6. The ratio of the trajectories that belong to the reactant
part (purple curve) and the ratio of the trajectories that belong
to the nonreactant part (green curve) versus the radius r of the
periodic-orbit dividing surface. The purple curve (corresponding to
the reactant part) can be fitted by the line 0.4912 and the green
curve (corresponding to the nonreactant part) can be fitted by the
line 0.5088.

to find a convergence of these ratios. In Fig. 6, we depict the
reactive and nonreactive ratios versus the radius. We see that
starting from a value of the radius close to zero, there are
small fluctuations for small values of the radius and we see
a convergence of these ratios for larger values of the radius.
This means that the ratios of the reactant and nonreactant parts
converge after a value of this radius (in our example more than
0.3), giving us a way to apply the method of periodic-orbit
dividing surfaces in other nonintegrable Hamiltonian models.
The curves for reactive and nonreactive ratios can be fitted
by the lines ratio = 0.4912 and ratio = 0.5088, respectively.
This means that the reactive and nonreactive ratios converge
to values of 0.4912 and 0.5088, respectively. Furthermore, we
observed that the initial fluctuations before the convergence of
the ratios are very small, giving us a good approximation of
the final value of the ratios (which corresponds to the values
of the radius after the convergence).

IV. CONCLUSIONS

In a previous paper, we detected the phenomenon of dy-
namical matching in a 3D Caldera potential-energy surface.
This was done in Ref. [31] using a method of the general-
ization of the periodic-orbit dividing surfaces in Hamiltonian
systems with 3 degrees of freedom (see Refs. [27,28]) for
a fixed value r = 0.25 of the radius of the periodic-orbit
dividing surfaces. In this paper, we generalized these results
by computing the reactive and nonreactive ratios for different
values of r. We found a convergence of these ratios versus the
radius of the periodic-orbit dividing surfaces and we presented
the independence of the ratios from the radius of the periodic-
orbit dividing surfaces.
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