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Over the past decade, dynamic schemes have been proposed for the use of bistable systems in the design of
logic devices. A bistable system in a noisy background can operate as a reliable logic gate in a moderate noise
level, which is called a logical stochastic resonance (LSR). In this paper, we theoretically explore the emergence
of LSR in general bistable systems and identify the dynamical mechanisms of LSR. The timescale relationship
between the measured time and the mean first-pass time of two-state transitions is a key condition in determining
whether the system is reliable. Furthermore, we demonstrate that the stability of the logic operation can be
significantly improved by choosing the appropriate filtering method. Low-pass filtered noise-driven systems
are more stable than Gaussian white noise. However, band-pass and high-pass filtered noise are harmful to the
stability of the system due to the filtering of low-frequency components. Our theoretical and numerical simulation
results offer perspectives for the development of logic devices.
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I. INTRODUCTION

The size of logic devices continues to shrink, making it
increasingly difficult to suppress noise. Noise affects the sta-
bility of logic devices and significantly limits the computing
speed of logical computational devices [1]. In recent years,
more and more researchers have been working to obtain reli-
able logic operations. Inspired by stochastic resonance [2–5],
Murali et al. proposed logical stochastic resonance (LSR) [6],
i.e., the reliability of logic gates that can be achieved in a
suitable noise intensity window. Based on the seminal work
of Murali et al., LSR has been further found in a variety of
nonlinear systems such as electrical [7,8], nanomechanical
[9], optical [10,11], chemical [12], and biological systems
[13–16].

Moreover, LSR has attracted a lot of attention as a po-
tential approach for designing unique logic devices. Besides
Gaussian white noise-induced LSR, a wide variety of noise-
induced LSR has been investigated [17–20]. The enhancement
of the LSR by various effects has also been investigated, such
as coupling strength [21–23], parameters [24], chaotic activity
[25,26], asymmetry of temperature [27], etc. Recently, the
direct implementation of all basic logic operations using a
single bistable system driven by nonlinearly transformed input
signals has been reported [28]. They suggest that flexible logic
gates can be implemented using nonlinear transformations of
the inputs in bistable systems. In this context, a theoretical
description of the LSR mechanism is urgently needed.

Although numerous previous studies have given the emer-
gence of LSR in different systems based on numerical
simulation methods and experimental data, a general the-
oretical description to help us understand the dynamical
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mechanisms of LSR is lacking. Therefore, we would like to
address two questions: First, whether there is a general way
to explain the stochastic process mechanism of LSR. Second,
we wanted to find engineering easy ways to enhance LSR.
For the former, we solved analytically for the transition prob-
abilities and mean first pass time (MPFT) using the master
equation approach of the two-state model. The results provide
an understanding of the dynamical mechanisms of LSR. For
the latter, we propose a filtered noise-driven system obtained
by the fast Fourier transform (FFT) filtering method. The
results show that the system is more stable when driven by
low-pass filtered noise. This is beneficial for designing more
stable logic devices.

The structure of this paper is as follows: in Sec. II, a
generalized model of LSR and its theoretical description are
introduced. Similarly, numerical simulation methods for mea-
suring LSRs are given. The main results are presented in
section 3, while in section 4, we summarize and discuss the
potential implications of our findings.

II. MODEL

For simplicity, consider a one-dimensional dynamical sys-
tem whose state is described by a variable x(t ) that follows
dynamics

dx

dt
= −dU (x)

dx
+ Iinput(t ) + ξ (t ), (1)

where U (x) = −2x2 + 5x4 − bx is a quartic potential. ξ (t )
is a Gaussian white noise with noise intensity D and zero
mean (〈ξ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 = 2Dδ(t − t ′)). The symmetry,
depth, and number of potential wells are determined by bias
parameter b. The asymmetry of the local minima is depicted
in Fig. 1(a). Iinput(t ) as a logical input current consists of
two aperiodic two-level square waves (e.g., I1 and I2), which

2470-0045/2023/108(1)/014205(10) 014205-1 ©2023 American Physical Society

https://orcid.org/0000-0003-3406-972X
https://orcid.org/0000-0002-2818-9074
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.014205&domain=pdf&date_stamp=2023-07-17
https://doi.org/10.1103/PhysRevE.108.014205


YU, ZHAN, YANG, AND JIA PHYSICAL REVIEW E 108, 014205 (2023)

FIG. 1. (a) Bistable potential U (x) with the asymmetric basin of attractions depicting the positions of the minima x1 and x2 and the
maximum xm, and the height of the potential barriers that for this bistable case are �U1 and �U2. (b) Effective potential function Ueff(x) under
different logic inputs Iinput, b = −0.5 to obtain AND gate. (c) Dependence of the probability σ1→2 of the system state transition from x1 → x2

on D with different measurement times T0 (transient process), Iinput = 1. This indicates that the probability of the state transition is influenced
by the measurement times T0.

encode two independent logic inputs. The logical input is 1 if
I1 and I2 take the value 0.5, and 0 if I1 and I2 are −0.5 (Table I).
Therefore, four logical input sets of (0, 0), (0, 1), (1, 0), and
(1, 1) are obtained by combining two independent logical
inputs I1 and I2 (Table I). The logical outputs of the system are
determined by x. If x is located in the right potential well (i.e.,
x > xm), the logical output is 1; otherwise, the logical output
is 0. Reliable logic operation occurs when the output of the
system can be continuously mapped to the logical input. Ac-
cording to previous studies [25], the logic switching between
different logic gates can be easily achieved by changing the
bias b. In this paper, b is set to −0.5 for AND logical gates and
0.5 for OR logical gates. Alternately, complementary gates
(NAND and NOR) can be obtained by interpreting the output
as 1 when x < xm, and as 0 when x > xm.

To theoretically solve for the reliability of the logic opera-
tion in a noisy background, we obtain the effective potential
function Ueff(x, t ) = U (x) − Iinput(t )x = −2x2 + 5x4 − (b +
Iinput(t ))x by incorporating Iinput(t ) into U (x). The proper-
ties of Ueff are determined by the logical inputs [as shown
in Fig. 1(b)]. The system is in the monostable state when
Iinput = −1. This allows the system state to always evolve
towards the desired logical output. However, when Iinput = 1
and 0, the system is bistable and their potential functions are
axisymmetric about x = 0. The reliability of the logic oper-
ation is governed by the transitions between the asymmetric
two potential wells in a noisy background. Therefore, we can
solve it analytically using the master equation approach of the
two-state model.

First, at a given time t , the state of the system has prob-
ability σ1(t ) = P(x(t ) < xm) for the left potential well and
probability σ2(t ) = P(x(t ) > xm) for the right potential well,
and σ1 + σ2 = 1∀t . The initial distribution probability of the
system is determined by the initial state of the system: σ1(0) =
P(x(0) < xm) and σ2(0) = P(x(0) > xm). The master equa-
tion for the evolution of the probabilities of these distributions
is [29]

dσ1(t )

dt
= r2σ2(t ) − r1σ1(t )

dσ2(t )

dt
= r1σ1(t ) − r2σ2(t ), (2)

where r1,2 is Kramer’s escape rate probability, which rep-
resents the transition rate out of the x1,2 state. It can be
calculated by taking the inverse of the analytically obtained
MPFT. A rigorous definition of escape time out of x1 is pro-
vided by the MFPT 〈�〉1→2 of the process x(t ) to reach x2 with
initial condition x(0) = x1. This is given by [30–32]

〈�〉1→2 =
∫ x2

x1

dx

DPst (x)

∫ x2

−∞
dyPst (y). (3)

The term Pst (x) is the steady-state distribution function of sys-
tem. In the case in which the intensity of the noise is small in
comparison with the energy barrier, i.e., D � �U (x), 〈�〉1→2

becomes independent of the initial condition x(0) < xm and of
x2 [33]. Using the steepest descent approximation, Eq. (3) can

TABLE I. The relationship between the logical inputs and outputs of the basic logic operation of AND and OR gates.

Input signal Values of I1 and I2 Logical Iinput sets AND OR

−1 (−0.5, −0.5) (0,0) 0 (x < xm ) 0 (x < xm )
0 (−0.5, 0.5)/(0.5,−0.5) (0, 1)/(1, 0) 0 (x < xm ) 1 (x > xm )
1 (0.5,0.5) (1,1) 1 (x > xm ) 1 (x > xm )
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be approximated as [34,35]

〈�〉1→2 = 2π [|U ′′(x1)U ′′(xm)|]− 1
2 exp

[
�U1

D

]

〈�〉2→1 = 2π [|U ′′(x2)U ′′(xm)|]− 1
2 exp

[
�U2

D

]
. (4)

The terms �U1 and �U2 are the heights of the potential
barriers in the bistable case [as shown in Fig. 1(a)]. Then, one
can obtain Kramer’s escape rate probability:

r1,2 = 1

2π
[|U ′′(x1)U ′′(xm)|] 1

2 exp

[−�U1,2

D

]
. (5)

The analytical solution of Eq. (2) can be easily solved:

σ1(t ) = σ1(t → ∞)[1 − exp(−νt )] + σ1(t = 0)exp(−νt ),

(6)

σ2(t ) = σ2(t → ∞)[1 − exp(−νt )] + σ2(t = 0)exp(−νt ),

(7)

where σ1(t → ∞) = r2/ν and σ2(t → ∞) = r1/ν are
steady-state probability distributions, ν = r1 + r2. The state
distribution of the system can be solved using distribution
probabilities σ1,2. The reliability of the logic gates depends on
whether the states of the system can be continuously mapped
to the logic input when the logic input changes dynamically.
Therefore, we believe that the logic gate is reliable as the
state of the system reaches the desired position within the
measurement time T0.

To numerically quantify the reliability of desired logic out-
put, the success probability P of achieving the desired logic
output is calculated for different input sets by the following
formula:

P = Nsuc

Ntot
, (8)

where Ntot represents the total number of runs and Nsuc rep-
resents the number of successful runs. Here, a successful run
means that the outputs of all input sets in this run match the
desired logical result. The total number of runs is set to 1000.
For each run, the measurement time T0 is considered to be
a transient process, and the calculation time interval Tinter =
1000 time units are taken into account in the calculation of P.

The fast response to logical signals is conducive to the
speed of computer operation. The system’s response speed
is characterized by the switching time S. The switching time
S is the time that the system takes to switch from low to high
states or vice versa after the switching of the input Iinput oc-
curs. In our simulations, switching times S are calculated dur-
ing 20 000 consecutive and random Iinput pulse trains. Smaller
switching times indicate faster operation of the logical
devices.

For numerical simulations, the improved Euler method
with a fixed time step of 0.01 is used to integrate Eq. (1).
The Gaussian white noise has been generated using the
Box-Muller algorithm [36].

III. RESULTS

A. Theoretical description of LSR

In the above model, one can easily understand the shape
and characteristics of the LSR curves previously reported
in the literature. As can be seen in Fig. 1(c), the transition
probability σ1→2 of the desired state transition is determined
by the measurement time T0. Furthermore, our analytical re-
sults are in agreement with numerical simulation results. In
practice, the logic operation should be completely successful.
Therefore, a logical system is reliable when the probability
of success for logical operations is approximately equal to
1. For this purpose, we set the data in Fig. 1(c) to 0 for
values less than 99.999% and consider the adjusted data as the
success probability of the logical operation [analytical results
represented by the grey line in Fig. 2(a)].

The results of the analytical solution and numerical simu-
lations lead to quantitatively consistent conclusions: Bistable
systems in a noisy background obtain reliable logic operation
in the optimum noise intensity window. In addition, the mea-
surement time T0 (or transient process) increases size L of the
optimal noise intensity window and therefore improves the
stability of the logic system [as shown in Fig. 3(a)]. Moreover,
the numerical simulation results converge with the analytical
solution as T0 increases [the blue dotted line in Fig. 3(a)]. A
quantitative comparison between MFPT 〈�〉1→2 and switch-
ing times S in Fig. 2(b) also confirms the above conclusions.

Thus, we can understand the dynamical mechanisms of
LSR in terms of a two-state evolutionary model. First, in a
weak-noise background, the system needs to undergo a long
time of evolution to complete the desired transition due to the
large first-pass time scale [Fig. 4(a)]. The system is unable
to complete the desired transition quickly enough to obtain
reliable logic operation within the measurement time T0. This
is why the lower resonance threshold of the LSR is modulated
by T0 in Fig. 3(b). Second, due to the asymmetry of the depth
�U of the two potential wells, the MFPT of the transitions
between the two potential wells in Eq. (4) have different
timescales. When D is increased to the window where the
MFPT of the desired transition is much less than T0 and the
MFPT of the undesired transition is much greater than T0,
we can obtain reliable logic operations [Figs. 4(b) and 4(c)].
For example, when D = 0.02, 〈�〉1→2 = 23.6 and 〈�〉2→1 =
1.82 × 1010. Finally, further increasing D causes the MFPT of
the undesired transition to be less than T0, so we can observe
repeated transitions of the system state [Fig. 4(d)].

This can be further verified in Fig. 5. As shown in Fig. 5(a),
Iinput and b determine the stable points x1,2 and the unstable
point xm, which also affect the height of the potential barrier
(this can be presumed from the difference between x1,2 and
xm). Therefore, the MPFT of the steady-state transitions in
Eq. (4) is modulated by Iinput and b. In Fig. 1(b), the transition
from x1 to x2 is the state transition that matches the desired
logic output (the correct transition) and, conversely, the tran-
sitions from x2 to x1 are the error transitions. Stable and
reliable logic operation means that the system completes the
correct transitions before measurement time T0 and does not
complete the error transitions for the entire calculation time
interval Tinter. Therefore, in Fig. 5(b), for the fixed T0 = 100
and Tinter = 1000, the increase in the success probability is
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FIG. 2. (a) LSR curves and (b) switching time S obtained in numerical simulations (open circles) compared with transition probability
σ1→2 and MFPT 〈�〉 obtained in analytical results (grey line) with different measurement times T0 (transient process).

determined by the timescale relationship between 〈�〉correct

and T0. The decrease in the success probability is governed
by the timescale relationship between 〈�〉error and Tinter. Only
if 〈�〉correct is much smaller than T0 and 〈�〉error is much larger
than Tinter, the system obtains reliable logical operation. The
timescale relationship between the measurement, calculation
time, and MFPT of two-state transitions is a key condition in
determining whether the system is reliable.

The role of b and Iinput is to influence the properties
of the effective potential well and thus the MFPT. The
timescale relationship between the MFPT and the measure-
ment time governs the reliability of the logic operation. So far,
we have identified the dynamical mechanisms of b, Iinput, and
noise on the regulation of success probability P. We further
explore the method to enhance LSR next. For simplicity,
without loss of generality, we fix b = −|I1,2| = −0.5 for the
AND gate.

B. Enhancement of LSR by filtered noise

In this section, we report a way to drive LSR, where
the output of a filtered noise-driven bistable system can
be consecutively mapped to a specific logic gate operation.
The detailed procedure is as follows:

First, Gaussian white noise is considered as the noise
source, to which we apply the FFT filter method to obtain the
filtered noise ξ f (t ). The frequency band fband of the ξ f (t ) is
determined by the upper fmax and lower fmin cutoff frequen-
cies. The spectral information of the Gaussian white noise
(noise sources) and the filtered noise can be verified in Fig. 6.
The corresponding time samples of the time domain filtered
noise ξ f (t ) are also given in the inserted subplot for reference.

Second, note that the amplitude (i.e., variance) of the ξ f (t )
is both determined by the frequency bandwidth � f = fmax −
fmin and noise intensity D. It is important to independently

FIG. 3. (a) Dependence of the size L of the optimal window (where P = 1) of the noise intensity D on the measurement times T0.
(b) Dependence of the upper and lower resonance threshold θ LSR on T0. The open circles are the numerical results and the solid lines
are the analytical results. The blue dotted line in (a) shows the deviation �A−N between numerical and analytical results. The figure shows that
the agreement between the reported theoretical expressions and numerical simulations increases as T0 increases.
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FIG. 4. The sampled time series of the output in numerical (black
lines) and analytical (green lines) terms and Iinput (red lines) for AND
logic operations. (a) D = 0.005, (b) D = 0.01, (c) D = 0.02, (d) D =
1. The analytical result is estimated by the average state of the system
at each time t : 〈x〉t = x1σ1(t ) + x2σ2(t ).

analyze the modulation of the frequency domain properties
and the fluctuations intensity (i.e., variance) of noise on the
LSR. For this reason, it is desirable to coordinate the variance
of the ξ f (t ) to be independent of � f and consistent with the
noise source. Therefore, we calculate the variance s2 and s2

FN
of the source and filtered noise first.

In our paper, the noise source is discrete Gaussian white
noise, whose bilateral power spectral density is assumed to
be a constant n0/2. The bandwidth of the noise source in the
frequency domain is W = fs = 1/h, where fs is the sampling
frequency and h is the integration step. Therefore, the average
power of the noise source is 〈ϒ〉 = fsn0/2. The autocorrela-
tion function R(τ ) and the autocovariance function C(τ ) for
Gaussian white noise is

R(τ ) = 〈ξ (t )ξ (t + τ )〉
C(τ ) = 〈[ξ (t ) − mξ (t )][ξ (t + τ ) − mξ (t + τ )]〉

= 〈ξ (t )ξ (t + τ )〉 − mξ (t + τ )mξ (t ),

(9)

where mξ (t ) denotes the mean value function of the stochastic
variable ξ (t ). When the correlation time τ is 0, the autocorre-
lation and autocovariance function equal to the average power:

R(0) = 〈ξ (t )2〉 = 〈ϒ〉C(0) = 〈ξ (t )2〉 − mξ (t )2 = s2. (10)

Since the mean value function of Gaussian white noise is
0, the variance of the noise source s2 = 〈ϒ〉 = fsn0/2. For
filtered noise, we set the transfer function:

H ( f ) =
{

1, fmin < | f | < fmax

0, other.
(11)

Thus, the power spectral density function of the filtered
noise is

S( f ) =
⎧⎨
⎩

n0

2
, fmin < | f | < fmax

0, other,
(12)

where fmin and fmax are the upper and lower cutoff frequen-
cies of the filtered noise. Thus, the central frequency fc =
( fmin + fmax)/2 and the bandwidth � f = fmax − fmin can be
obtained. According to the Wiener-Khinchin theorem, the au-
tocorrelation function of the filtered noise can be obtained as
follows:

R(τ ) = n0� f
sin(2π fcτ )

2π fcτ
cos(2π fcτ ), (13)

when τ → 0,

R(τ → 0) = n0� f lim
τ→0

sin(2π fcτ )

2π fcτ
cos(2π fcτ ) = n0� f .

(14)

Similar to Eqs. (9) and (10), we can obtain the variance of the
filtered noise s2

FN = n0� f . Thus, the change in variance after
filtering is

s2
FN = 2� f

fs
s2. (15)

The variance of the filtered noise is 2� f / fs times that of the
noise source; we can coordinate the intensity of the filtered
noise so it is consistent with the variance of the noise source:

D = fs

2� f
Deff. (16)

Equation (16) implies that the filtered noise obtained by the
FFT filtering method using a noise source with noise intensity
D yields the same variance as that of a noise source with noise
intensity Deff. The effective noise intensity Deff is independent
of the frequency bandwidth, which offers the possibility to an-
alyze the variance and frequency domain properties of filtered
noise individually.

Finally, we use the filtered noise after coordinating the vari-
ance to replace the noise term in Eq. (1) as the driving force
for the logic operation. Subsequently, numerical simulations
are used to investigate the effect of filtered noise on LSR.

The responses of the filtered noise-driven system to the
logical input are shown in Fig. 7. By scrutinizing the times
series of inputs and outputs, it is clear that the logic device
obtains the correct logical output in a particular frequency
band fband when the noise intensity Deff is fixed. Therefore,
the reliability of the logic operation is strongly modulated by
the fband. This indicates that the reliability of logic operations
depends on the cooperative effect of the intensity Deff and
frequency band fband of filtered noise.

Furthermore, we calculate and show successful probability
P in Fig. 8(a) for increasing Deff. The successful probability
P shows an abrupt transition from P = 0 to the maximum
value P = 1 with the increase of Deff, and then P decreases
to 0 if an increasing Deff exceeds a certain threshold. The
successful probability P shows a bell-shaped dependence on
the intensity Deff of the filtered noise. The conventional LSR
is observed, and its occurrence is due to the filtered noise. The
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FIG. 5. (a) Bifurcation diagram of x and b + Iinput obtained by dx/dy = −dUeff(x)/dx. The solid lines represent stable points and the
dashed lines represent unstable ones. (b) Moderation of MFPT 〈�〉 on the success probability P. The correct transitions are defined as the state
transitions that match the desired logic output; the error transitions are the opposite. The former timescale reduction improves the reliability of
logical operations, while the latter impairs the reliability.

switching time S is used as a measure of the speed of the logic
operation. In Fig. 8(b), S as a function of Deff is decreasing
overall while ensuring correct logic operation. Therefore, the
response speed of the logic devices can be improved by appro-
priate intensity Deff of the filtered noise without destroying its
reliability.

To get a global view of how filtered noise affects the re-
liability of the logic operation, Figs. 9(a)–9(c) show contour
plots of the success probability P in the fc − Deff plane for
band-pass filtered noise, fmax − Deff plane for low-pass fil-
tered noise and fmin − Deff plane for band-pass filtered noise,
respectively. The output of the system can be continuously
mapped to the logic gate operation when the filtered noise
is in the parameter range of the black island. This further
confirms that the reliability of the logic operation is modulated
by the cooperative effect of the intensity and frequency band
of filtered noise. However, in a practical system, the variance

FIG. 6. (a) Schematic representation of the filtering method.
(b1) Spectrum of noise sources ξ (t ) after FFT. The spectrum of
the filtered noise ξ f (t ) after the FFT with the frequency bands:
(b2) fband = 0 ∼ 1 (i.e., fmin = 0, fmax = 1); (b3) fband = 1 ∼ 2 (i.e.,
fmin = 1, fmax = 2); (b4) fband = 2 ∼ 3 (i.e., fmin = 1, fmax = 2).
The inserted subplot shows the time evolution of ξ (t ) and ξ f (t ).

of the noise (intensity of filtered noise) is not a fixed value
and fluctuates within a certain range. Therefore, the range
of noise windows over which logic operates reliably is also
an important indicator of the stability of logic devices. The
stability factor ρ for logical operations is defined as

ρ = θu

θl
. (17)

The upper θu and lower θl thresholds are the maximum and
minimum values of the optimal noise window for LSR, re-
spectively. The dependence of ρ on frequency for the three
types of filtered noise is shown in Fig. 9(d). The stability
characteristic curve of the band-pass filtered noise [blue line
in Fig. 9(d)] shows that the system has lower stability driven
by high-frequency filtered noise than by low-frequency fil-
tered noise. Furthermore, the stability is lower than the noise
source in all cases except for the first point ( fband = 0 − 1).
Therefore, the band-pass filtering method is not an optimal
choice. By the same token, the high-pass filtering method is
not superior [green line in Fig. 9(d)]. Further analysis of these
two characteristic curves reveals that the disappearance of the
low-frequency band damages the stability of the logic oper-
ation. In contrast, for the case of low-pass filtered noise [red
line in Fig. 9(d)], the system obtains higher stability when the
higher frequency bands are filtered. The more high-frequency
bands are filtered, the stronger the stability of the system’s
logic operation.

In addition, there is a limit to the behavior that enhances
the stability of logic operations by filtering higher frequency
bands noise. As shown in Fig. 10, when the upper cutoff
frequency is very small ( fmax < 0.03), the system is unable
to perform reliable logic operations under any noise window.
The stability characteristic curve of the system [Fig. 10(b)]
shows a bell-shaped dependence on fmax. Therefore, there is
an optimal low-pass filtering method that makes the system
most stable. As can be observed in Fig. 10(a), the resonance
threshold is minimal at this point. This further demonstrates
that the low-pass filtering method is a superior way to improve
the stability of the system’s logic operation while reducing the
intensity of the required drive.
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FIG. 7. The sampled time series of x (black lines) and Iinput (red lines) for AND logic operations. E and C represent error and correct
operations, respectively. From top panel to bottom panel, Deff = 0.001 (top), 0.003 (middle), and 0.008 (bottom). From left panel to right
panel: fband = 0 − 1 (left), fband = 1 − 2 (middle), fband = 2 − 3 (right).

C. Modulation mechanisms of state transitions by
high- and low-frequency components

Finally, we would like to explain the reasons for the su-
periority of low-pass filtered noise. As we have discussed in
the model section, the effective potential well of the system is
dynamically changed by the logical inputs. The two bistable
states are axisymmetric with x = 0 in Fig. 1(b), so we can use
the case of Iinput = 1 as an example. To obtain reliable logic
operations, the system needs to transition from the left (error)
potential well to the right (correct) potential well before the
measurement time T0 ends. Figure 11(b) shows an example
of a failed logic operation at fmax = 0.01. It can be seen that
even if the driving force in the opposite direction (negative)
is larger, it has a minimal effect on the system. This is due to
the role of the highly nonlinear nature of the quadratic term in
the potential function. What contributes to the transition is the

FIG. 8. The (a) success probability P and (b) switching time
S versus effective noise intensity Deff with different frequency bands
fband.

positive part of the driving force. Furthermore, for the system
to complete a transition, the strength of the driving force must
exceed a certain threshold and sustain for a certain duration.

FIG. 9. The success probability P as a function of the parameter
space (a) ( fc × Deff) for band-pass filtered noise; (b) ( fmax × Deff) for
low-pass filtered noise; (c) ( fmin × Deff) for high-pass filtered noise;
(d) dependence of the stability factor ρ on the cutoff frequency.
ρ of Gaussian white noise is represented by the gray dash line for
comparison.
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FIG. 10. Response of bistable systems to filtered noise on large timescales. (a) The success probability P as a function of the parameter
space ( fmax × Deff ) for low-pass filtered noise. Dependence of the (b) stability factor ρ and (c) mean switching time 〈S〉 on fmax for low-pass
filtered noise.

This can easily be verified in Fig. 11(c). Comparing the left
and middle panels of Fig. 11(c), the duration can induce a
state transition even if the strength of the driving force is
the same. Furthermore, an increase in strength can also induce
a state transition even if the duration of the driving force is the
same [middle and right panels of Fig. 11(c)]. This suggests
that state transitions require the cooperative effect of the two.

So far, we can understand why the stability of the logic
operation varies nonmonotonically with fmax, driven by low-
pass filter noise. When the timescale of the filtered noise is
close to the measurement time (or transient process) T0, the

probability of fluctuations with suitable intensity and duration
is low. The duration of the driving force is also affected when
high-frequency band noise is introduced excessively. There-
fore, the most stable logic operation can be obtained for the
system only if the timescale of the filtered noise is slightly
larger than T0. In addition, for the band-pass and high-pass
cases, the part of the lower frequency band that is beneficial
for the duration increase is filtered out. This is why the sta-
bility of the logic operation in the band-pass and low-pass
cases is significantly lower than that of the noise source in
Fig. 9(d).

FIG. 11. Dynamical mechanisms for the effect of fast- and slow-scale driving forces on LSR. (a) Schematic representation of the desired
state transition at Iinput = 1. (b) Slow-scale filtering noise ( fmin = 0, fmax = 0.01, Deff = 0.0005) drives the system state to complete the desired
transition. (c) Effect of half-cycle sinusoidal signals IF = Asin( 2π

T t ) on state transitions.
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IV. CONCLUSIONS

In this paper, we presented a simple and general theoretical
background to explain the emergence of LSR in generalized
bistable systems. We introduced dynamic logic inputs into the
potential function to obtain a dynamic effective potential func-
tion. Based on the master equation approach of the two-state
model, we solved analytically for the transition probability
as a function of noise intensity and measurement time. The
results were also compared with numerical simulations and
quantitatively consistent conclusions were obtained. Further-
more, the mechanism of LSR can be understood by solving for
the MPFT of the two-state transitions. The system can only
obtain reliable logic operations if the MFPT of the desired
transition is much smaller than the measurement time T0 while
the MFPT of the undesired transition is much larger than
the calculation time interval Tinter. Therefore, the system can
be continuously mapped to logic inputs only at moderate noise
levels.

Furthermore, we proposed a way to drive LSR. Here, the
filtered noise obtained by the FFT filtering method is con-
sidered as the driving force of the system. This is clearly
different from previous studies in which the system was driven
by noise [6–16], periodic signals [37], and chaotic signals
[25,26]. Our results show that the occurrence of LSR depends
on the cooperative effect of the intensity and the frequency

characteristics of the filtered noise. In addition, the response
speed of a logic device can be improved by appropriately
increasing the level of filtering noise. We compared three
types of filtering methods. It can be found that the stability
of the filtered noise obtained by the band-pass and high-pass
methods was much lower than that of the noise source due
to the absence of the low-frequency part. Low-pass filtered
noise is generally higher than the noise source. The underlying
mechanisms are also discussed.

Bistable properties are widely found in natural systems
such as nanomachines [9], gene regulation networks [13–15],
nervous systems [38], etc. A recent study [16] using the bista-
bility of neurons to achieve reliable logic devices expresses
the advantages of high stability and low energy consump-
tion. Our results can help us to understand the dynamical
mechanism even though it is a four-dimensional dynamical
model. Therefore, the obtained findings may provide a unique
perspective for the design of more logic devices.
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