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Multiple pendulum and nonuniform distribution of average kinetic energy
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Multiple pendulums are investigated numerically and analytically to clarify the nonuniformity of average
kinetic energies of particles. The nonuniformity is attributed to the system having holonomic constraints and it
is consistent with the generalized principle of the equipartition of energy. With the use of explicit expression
for Hamiltonian of a multiple pendulum, approximate expressions for temporal and statistical average of kinetic
energies are obtained, where the average energies are expressed in terms of masses of particles. In a typical case,
the average kinetic energy is large for particles near the end of the pendulum and small for those near the root.
Moreover, the exact analytic expressions for the average kinetic energy of the particles are obtained for a double
pendulum.
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I. INTRODUCTION

Pendulums are useful to explore the fundamental behavior
of various physical systems. A simple pendulum is a good
example of a system that can demonstrate periodic motion
[1]. When the amplitude of the oscillation is small, i.e., the
total energy is small, the periodic motion of a simple pen-
dulum is well approximated by that of a harmonic oscillator,
wherein the period of the oscillation does not depend on the
amplitude [2].

The fundamental modes and principle of superposition can
be understood by studying a double pendulum [2–5]. When
the amplitude of oscillation is small, there are two special mo-
tions called the fundamental modes, wherein both the upper
and lower pendulums oscillate in the same period. For a small-
amplitude oscillation, one can understand that every motion
of the double pendulum is expressed by the superposition of
the two fundamental modes. The principle of superposition
is a key concept for understanding various linear phenomena.
Since both fundamental modes of the double pendulum are
periodic motion, the double pendulum exhibits periodic or
quasiperiodic motion when the amplitudes are small.

Meanwhile, a double pendulum is also a good example of
a system that exhibits chaotic motion [6–17]. If a large energy
is assigned and the amplitudes of displacements are not small,
then the motion of a double pendulum is no longer regular,
and chaotic behavior is observed. Multiple pendulums with
three or more degrees of freedom [3–5] also exhibit chaotic
behavior [18–20].

When chaos is strong in a multiple pendulum, one can
expect that it admits a statistical description; the long-time
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average of the physical quantity is considered to be approx-
imately equal to the average over the energy surface. Then,
each particle in the pendulum can be considered as a subsys-
tem connected to a heat bath that comprises the rest of the
pendulum; then the particles behave as if they are in thermal
equilibrium.

One may expect that the system in thermal equilibrium is
almost uniform. However, a careful observation of the mo-
tions of a multiple pendulum indicate that the particle at the
end of the pendulum moves faster than the particle nearest to
the root of the pendulum, even if the masses of all particles
are the same. In fact, one author conducted numerical com-
putations and revealed that the time averages of the kinetic
energies of a multiple pendulum are different [18–20]. In this
paper, we revisit the observation and explain the origin of
differences in the average kinetic energies using the gener-
alized principle of the equipartition of energy [21–24]. The
nonuniformity of the average kinetic energy is consistent with
the generalized principle of equipartition of energy. Thus, the
average kinetic energy can be nonuniform under a thermal
equilibrium.

The remainder of this paper is organized as follows. In
Sec. II, we describe our model, a multiple pendulum. Then we
provide an explicit form of the Lagrangian and Hamiltonian
of a multiple pendulum. In Sec. III, we present the results
of numerical computation where the values of time-average
kinetic energies of particles in the multiple pendulum are
not equal. In Sec. IV, we show that the nonuniformity is
also found for statistical average, and the nonuniformity of
temporal and statistical averages agree quite well. Then we
explain the nonuniform distribution of average kinetic energy
based on statistical mechanics and the generalized principle
of the equipartition of energy; further, an exact expression is
obtained for the double pendulum. Finally, Sec. V presents the
summary and the discussions.
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FIG. 1. Multiple pendulum: Definition of variables and parameters.

II. MODEL

The multiple pendulum examined in this study is composed
of N particles serially connected by N massless links of fixed
length in a uniform gravitational field, as illustrated in Fig. 1.
One end is fixed to a point we define as the origin (0,0). The
particles and links pass through each other if they arrive at the
same position. The particles move in a fixed vertical plane,
which is defined as the xy plane. The x axis is considered to
be in the horizontal direction, and the y axis is in the vertical
direction, with the upward direction representing the positive
y direction. We let mi,

−→ri = (xi, yi ), and �i represents the mass
of the ith particle, position of the ith particle, and length of
ith link, respectively. g represents the constant of gravitational
acceleration. The distance between ith and i + 1th particles
is fixed for all i. In this sense, the system has holonomic
constraints.

In terms of the Cartesian coordinates (xi, yi ), the kinetic en-
ergy of the ith particle Ki, total kinetic energy K , and potential
energy U are

Ki = mi

2

(
ẋ2

i + ẏ2
i

)
, (1)

K =
N∑

i=1

Ki, (2)

U =
N∑

i=1

migyi, (3)

where a dot over each symbol represents derivative with re-
spect to time, e.g., ẋi = dxi

dt .
Using these equations, the system is defined by a La-

grangian L and constraints Gi, which are given as

L = K − U =
N∑

i=1

mi

2

(
ẋ2

i + ẏ2
i

)−
N∑

i=1

migyi, (4)

Gi = |−→ri − −→ri−1|2 − �2
i = 0, i = 1, 2, . . . , N, (5)

where −→r0 = (x0, y0) = (0, 0).
If we denote ϕi as the angle between the ith link and the

−y direction (direction of gravity) as shown in Fig. 1, then we
have

xi = xi−1 + �i sin ϕi =
i∑

j=1

� j sin ϕ j, (6)

yi = yi−1 − �i cos ϕi = −
i∑

j=1

� j cos ϕ j . (7)

The Lagrangian Eq. (4) is then expressed in terms of ϕi,
i = 1, 2, . . . , N as

L = K − U, (8)

K =
N∑

i, j=1

1

2
A(ϕ)i j ϕ̇iϕ̇ j = 1

2
t ϕ̇A(ϕ)ϕ̇, (9)

U = −
N∑

i=1

mig
i∑

j=1

� j cos ϕ j, (10)

where ϕ̇ without subscript is a vector composed of N elements

ϕ̇ = t (ϕ̇1, . . . , ϕ̇N ), (11)

and the symbol “t ” represents transpose, and the elements of
N × N matrix A is defined as

A(ϕ)nk =
⎡
⎣ N∑

i=max(n,k)

mi

⎤
⎦�n�k cos(ϕn − ϕk ). (12)

The derivations of Eqs. (9) and (12) are presented in
Appendix A.

Using Eqs. (6) and (7), Ki [Eq. (1)] can be expressed in the
quadratic form of ϕ̇ as

Ki = mi

2

i∑
j=1

i∑
k=1

ϕ̇ j ϕ̇k� j�k cos(ϕ j − ϕk ) (13)

= 1

2

∑
j,k

A(i)
jk ϕ̇ j ϕ̇k = 1

2
t ϕ̇A(i)ϕ̇, (14)

where A(i) represents a N × N matrix defined as

A(i)
jk =

{
mi� j�k cos(ϕ j − ϕk ) · · · j � i and k � i,

0 · · · otherwise.
(15)

Because
∑N

i=1 Ki = K , the sum of A(i) with respect to i is
equal to the matrix A:

N∑
i=1

A(i)
jk = Ajk . (16)

Note that matrices A and A(i) depend on coordinates ϕ.
The momentum pi canonically conjugate to the coordinate

ϕi is defined as

pi = ∂L

∂ϕ̇i
. (17)

Then, we have

pn =
N∑

k=1

Ankϕ̇k = (Aϕ̇)n, (18)

K = 1

2

∑
j,k

p jA
−1
jk pk = 1

2
t pA−1 p, (19)
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Ki = 1

2

∑
j,k,ξ ,η

A(i)
jk A−1

jξ A−1
kη pξ pη = 1

2
t pA−1A(i)A−1 p. (20)

Here p without subscript is

p = t (p1, . . . , pN ).

Using Eq. (19), the Hamiltonian of a multiple pendulum is
given as

H = 1

2
t pA−1 p −

N∑
i=1

mig
i∑

j=1

� j cos ϕ j . (21)

III. DYNAMICAL BEHAVIOR AND ANALYSIS

In this section, we study the temporal average of kinetic
energy of each particle by numerically integrating the equa-
tion of motion. Then we reproduce the results by Yanagita
et al. [18–20] about the nonuniformity of average kinetic
energy and interpret the results.

A. Simulation method

First, let us explain the method of numerical simulation
using which we integrate the equation of motion of the mul-
tiple pendulum. The equation of motion derived from the
Lagrangian written in terms of ϕ is complicated because of
the dependence of the kinetic energy on ϕ. Hence, we use the
equation of motion written in terms of the Cartesian coordi-
nates x and y derived from Eqs. (4) and (5). The equation of
motion includes the terms from the holonomic constraints
characterized by the coefficients called “Lagrange multipli-
ers” [2]. We numerically evaluate the Lagrange multipliers
at each step of the integration to ensure that the constraints
in Eq. (5) are satisfied. The idea used in this method is the
same as that in the “RATTLE” algorithm [25–27]. We use the
fourth-order symplectic integrator composed of three second-
order symplectic integrators [25,28] incorporating forces from
the holonomic constraints.

We calculate the kinetic energies of the particles of the
multiple pendulum. Let us denote Ki(t ) as the kinetic energy
of the ith particle [Eq. (1)] at time t . The time average of Ki(t )
is defined as

Ki(t ) = 1

t

∫ t

0
Ki(t

′) dt ′. (22)

B. Simulation results

Let us observe some typical time evolutions of the multiple
pendulum obtained from the numerical simulation. Here we
adopt the initial condition ẋi(0) = ẏi(0) = 0 for all i; ϕi(0) =
ϕ0 for all i. This is a stretched configuration with angle ϕ0.

Let us consider the initial angle as ϕ0 = π/2. The top panel
of Fig. 2 shows the chaotic motion after a short transient;
the bottom panel shows the temporal evolution of the average
kinetic energies Ki(t ). We see that Ki(t ) does not converge to a
single value; on the contrary, they converge to different values,
i.e., the average kinetic energy is not uniform.

In Fig. 3, we show the convergence of Ki(t ). We see that

|Ki(t ) − Ki(tmax)| ≈ 1

t
(23)

for each i.

FIG. 2. (top): Time evolution of a multiple pendulum. The hor-
izontal axis represents time, and the vertical axis represents the x
coordinate of each particle xi(t ). N = 7, mi = 1, and �i = 1 for all i;
g = 1. The time step for the numerical integration is �t = 0.001. The
initial conditions are ϕi = π

2 and ϕ̇i = 0 for all i. (bottom): Average
kinetic energies Ki(t ) vs t calculated from the time evolution shown
in the top panel. The lines represent K1(t ), K2(t ), . . ., and K7(t ), from
the bottom to the top.

Figure 4 shows a plot of the average kinetic energy of each
particle Ki(tmax) [Eq. (22)] against i for N = 7. Note that the
values of Ki(tmax) are not the same. That is, the Ki(tmax) of

10 50 100 500 1000 5000 104
0.001

0.010

0.100

1

10

FIG. 3. Convergence of |Ki(t ) − Ki(tmax)| for the values of Ki(t )
shown in Fig. 2, where tmax = 104. The time averages converge
approximately as 1/t .
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FIG. 4. Long-time average of kinetic energy Ki(tmax) vs i for six
different initial conditions which have the same total energy. N = 7,
mi = 1, and �i = 1 for all i; g = 1. tmax = 1.0 × 104. The initial
condition is ϕi = ϕ0 for all i, and ϕ0 = 0, 0.1π, 0.2π, . . . , 0.5π .
Initial angle velocity is ϕ̇i = ϕ̇0 for all i. ϕ̇0 is determined as follows;
For ϕ0 = 0.5π , ϕ̇0 = 0. For ϕ0 �= 0.5π , ϕ̇0 is determined as the
total energy Etotal (ϕ0, ϕ̇0) is the same as the case ϕ0 = 0.5π , i.e.,
Etotal (ϕ0, ϕ̇0) = Etotal (ϕ0 = 0.5π, 0).

particles near the end are large, whereas those of particles near
the root are small. This is consistent with Yanagita et al.’s first
observation [18–20].

We observed that the time averages of kinetic energies of
particles converged through chaotic motion. Let us examine
the property of chaotic dynamics by measuring Lyapunov
exponents. Figure 5 represents the Lyapunov exponents and
spectra for a multiple pendulum for several initial conditions.
Details of the numerical methods of the calculation are shown
in Appendix B. In Fig. 5(a) we show the Lyapunov spectra for
N = 7. The initial condition is ϕi = ϕ0, ϕ̇i = 0 for all i, which
include the one used for calculating Fig. 2. For Hamiltonian
systems the Lyapunov exponents λi show a symmetry λi +
λ2N+1−i = 0, we see that the system is fully chaotic except
for ϕ0 = π/4. Figure 5(b) shows the initial angle dependence
of the sum of positive Lyapunov exponents. When ϕ0 is small
the system shows regular oscillation, and above a critical value
of ϕ0 the system becomes fully chaotic. The onset of chaotic
behavior depends on the system size. We show in Fig. 5(c)
the maximum Lyapunov exponent λ1 vs the initial angle ϕ0.
As the system size increases, the value of ϕ0 at the onset of
chaotic behavior becomes small.

C. Analysis on temporal average

We see that the long-time average of kinetic energy of
each particle Ki(t ) does not converge to the same value. Since
the nonuniformity is observed in the data obtained from dy-
namics, one may think that the origin of the nonuniformity
lies in nonergodic behavior, e.g., the orbit does not evenly
visit the energy surface because of existence of KAM tori
or their remnants. However, the nonuniformity arises even
when the system is highly chaotic. Hence we interpret the
nonuniformity as a result of almost random behavior of the
dynamics.

Let us introduce quantities K (c)
i defined as

K (c)
i = 1

2
pi

∂H

∂ pi
, i = 1, 2, . . . , N, (24)

(a)

(b)

(c)

FIG. 5. (a) The Lyapunov spectrum of a multiple pendulum: N =
7. Initial condition is ϕi = ϕ0 and ϕ̇i = 0 for all i, and ϕ0 = π/4,
2π/5, π/2, 3π/4. (b) Dependence of the sum of positive Lyapunov
exponents

∑N
i=1 λi on the initial angle ϕ0. (c) The maximum Lya-

punov exponent for various system sizes N = 2, 4, 8, 16.

where pi is the momentum conjugate to ϕi, and the sum over
repeated index i is not taken. We call K (c)

i as “canonical kinetic
energy.”

For a multiple pendulum K (c)
i is expressed as

K (c)
i =

N∑
j=1

1

2

⎡
⎣ N∑

n=max(i, j)

mn

⎤
⎦[�ẋi�ẋ j + �ẏi�ẏ j], (25)
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FIG. 6. Long-time average of canonical kinetic energy K (c)
i (tmax)

Eq. (27) vs i. This plot is obtained using the same time series as that
in Fig. 4.

where

�xi = xi − xi−1, �yi = yi − yi−1. (26)

and �ẋ1 = ẋ1, �ẏ1 = ẏ1 because x0 = y0 = 0. The detail of
calculation is shown in Appendix C.

Figure 6 shows K (c)
i (tmax), the time average of canonical

kinetic energy, Eq. (24), of the multiple pendulum using the
same time series as in Fig. 4, defined as

K (c)
i (tmax) = 1

tmax

∫ tmax

0
K (c)

i (t )dt . (27)

We see that K (c)
i (tmax) take almost the same value for all i.

Let us derive the nonuniform distribution of Ki. For this
purpose let us assume

�ẋi�ẋ j ≈ 0, �ẏi�ẏ j ≈ 0 (i �= j). (28)

This assumption implies that each link in the multiple pen-
dulum rotates statistically independently. Since the nonuni-
formity of the average kinetic energy is observed when the
system behaves in a highly chaotic manner, this assumption is
reasonable.

Then, we have by straightforward calculation that

K (c)
i ≈ 1

2

(
N∑

n=i

mn

)[(
ẋ2

i + ẏ2
i

)− (
ẋ2

i−1 + ẏ2
i−1

)]
(29)

=
(

N∑
n=i

mn

)(
1

mi
Ki − 1

mi−1
Ki−1

)
. (30)

In Fig. 6, K (c)
i is almost uniform over the system. In fact,

we see in the later section that the thermal average of K (c)
i is

equal to 1
2 kBT by the generalized principle of equipartition of

energy. See Appendix D for details. Hence let us assume that

K (c)
i does not depend on i and write the value as

K (c)
i = K (c) (31)

for all i.
Then the long-time average of kinetic energy of the ith

particle Ki is recursively expressed as

Ki ≈ mi

mi−1
Ki−1 + mi∑N

n=i mn

· K (c). (32)

Since (x0, y0) = (0, 0) and K0 = 0, we have

Ki ≈ mi

⎛
⎝ i∑

j=1

1∑N
n=i mn

⎞
⎠ · K (c). (33)

Hence, the temporal average of the kinetic energy is nonuni-
form.

If all masses have the same value m1 = m2 = · · · = mN ,
then Kn’s are explicitly expressed as

Ki ≈
⎛
⎝ i∑

j=1

1

N − j + 1

⎞
⎠K (c), (34)

so that the average linear kinetic energies Ki can monotoni-
cally increase from the root to the end of the pendulum as

K1 < K2 < · · · < KN . (35)

This is consistent with the numerical results shown in Fig. 4.

IV. STATISTICAL BEHAVIOR AND ANALYSIS

In the previous section, we see that Ki, the long-time aver-
age of kinetic energy of each particle in a multiple pendulum
in chaotic motion, does not take the same value. When all
the masses are the same and length of all the links are the
same, average kinetic energy of a particle is small if the
particle is near the root and is large if it is near the end of
the pendulum. The behavior is observed when the motion of
the pendulum is fully chaotic. Contrary to a naive expectation
that the average kinetic energy is uniform over the system,
nonuniformity appeared.

Let us examine the origin of the nonuniformity. Since the
nonuniformity appears in the temporal average of kinetic en-
ergy Ki, one may guess that a possible cause lies in dynamical
effect and nonergodic behavior, e.g., existence of KAM tori
or their remnants, and nonergodic behavior may make the
chaotic time series different from the behavior in thermal
equilibrium. Hence let us compare the time average Ki and
statistical average 〈Ki〉. As the statistical average, here we
adopt canonical average instead of microcanonical average,
since it is much easier to calculate. If the difference between
Ki and 〈Ki〉 is large or small, then we can think of the origin
of nonuniformity as dynamical or statistical.

Figure 7 shows the temporal and statistical average kinetic
energies of a multiple pendulum of N = 16. Here we show
time average Ki defined as Eq. (22) and statistical average 〈Ki〉
defined as

〈Ki〉 = 1

Z

∫
Ki(q, p)e−βH d�, (36)

where Z is the partition function Z = ∫
e−βH d�, β = 1/kBT ,

T is the temperature, kB is Boltzmann’s constant, and d� =
dNp dNϕ. Ki is the same as shown in Fig. 4. 〈Ki〉 is obtained
from Markov-chain Monte Carlo (MCMC) simulation. β in
Eq. (36) is defined as follows. Given a total kinetic energy∑N

i=1 Ki, the value of β used in Fig. 7 for 〈Ki〉 is implicitly
determined from the following equation:

N∑
i=1

〈Ki〉 =
N∑

i=1

Ki. (37)

Details of MCMC simulation are described in Appendix E.
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FIG. 7. Comparison between the temporal average of kinetic
energy Ki obtained from time series, and canonical average 〈Ki〉
obtained from MCMC simulation.

We see that in Fig. 7 the time average Ki and the statistical
average 〈Ki〉 agree quite well. The striking similarity between
the time average Ki and the statistical average 〈Ki〉 presents
a possible interpretation about the origin of nonuniformity.
That is, there is a nonuniformity in the statistical average 〈Ki〉
shown in Fig 7, and it is reflected to the nonuniformity in
the time average Ki because the long-time series resembles
the statistical ensemble. In other words, the true origin of
nonuniformity may be in statistical mechanics of systems with
holonomic constraints, not in dynamics.

In the following, we show how to understand the nonuni-
formity of average energy in thermal equilibrium.

A. Nonuniformity of average dinetic dnergy and the generalized
principle of the equipartition of energy

Let us investigate the relationship between the nonunifor-
mity of 〈Ki〉 we observed in the previous subsection and the
generalized principle of the equipartition of energy [21–24].
Equation (9) shows that the kinetic energy of the system
has off-diagonal elements that depend on the coordinate ϕ.
Thus, we cannot apply the ordinary form of the principle of
the equipartition of energy. Instead, we use the generalized
principle of the equipartition of energy, which states〈

K (c)
i

〉 = 1
2 kBT . (38)

Here T represents the temperature, kB denotes Boltzmann’s
constant, the bracket 〈· · · 〉 represents the thermal average, and
K (c)

i is defined as Eq. (24). The generalized principle of the
equipartition of energy is summarized in Appendix D. We call
Ki and K (c)

i the “linear kinetic energy” and “canonical kinetic
energy,” respectively.

For the multiple pendulum, K (c)
i is

K (c)
i =

N∑
k=1

1

2
piA

−1
ik pk = piϕ̇i. (39)

This is different from the kinetic energy of the ith particle Ki

defined in Eq. (20), i.e., Ki �= K (c)
i , hence

〈Ki〉 �= 〈
K (c)

i

〉 = 1
2 kBT . (40)

As an example, K (c)
i for the case of double pendulum is

shown in Appendix C 1. Using Eqs. (38) and (40), 〈Ki〉, the
average of Ki, does not take the same value at the thermal
equilibrium in general.

Remember that in Fig. 6, K (c)
i takes almost the same value

and the generalized principle of the equipartition of energy is
realized. Since 〈K (c)

i 〉 does not depend on i, 〈Ki〉 may depend
on i, i.e., nonuniform. That is, due to the fact that the thermal
equilibrium is established and the generalized principle of
equipartition of energy holds, the average of Ki takes different
values and the nonuniformity of the average kinetic energy is
realized in the thermal equilibrium.

B. Analysis on statistical average

Let us explain the nonuniformity of the statistical average
of kinetic energy 〈Ki〉. Suppose the system is under thermal
equilibrium at temperature T . The statistical average of the
linear kinetic energy Ki is then defined as Eq. (36).

Using the expression for Ki, we have

〈Ki〉 = mi

2

i∑
j=1

i∑
k=1

� j�k〈ϕ̇ j ϕ̇k cos ϕ jk〉, (41)

where ϕ jk = ϕ j − ϕk .
Using Eq. (20), we can express Eq. (41) in terms of the

canonical momenta pi as

〈Ki〉 = 1

2

∑
j,k,ξ ,η

〈
A(i)

jk A−1
jξ A−1

kη pξ pη

〉 = 〈
1

2
t pA−1A(i)A−1 p

〉
.

(42)

Integrating by parts with respect to p yields

〈Ki〉 = 1

2β
〈tr(A(i)A−1)〉 (43)

= 1

2β

1

Z

∫
tr(A(i)A−1)e−β[ 1

2 pA−1 p+U (ϕ)]d�. (44)

Here matrices A−1 and A(i) depend on ϕ. Derivation of
Eq. (43) is described in Appendix F.

In Eq. (44), we first perform integration with respect to p,
which is a multidimensional Gaussian integral. The result is

∫
e−β( 1

2 pA−1 p)dN p =
(

2π

β

)N/2√
det A. (45)

Hence, we have

Z =
(

2π

β

)N/2 ∫ √
det A e−βU (ϕ)dNϕ, (46)

〈Ki〉 = 1

2β

∫
tr(A(i)A−1)

√
det A e−βU (ϕ)dNϕ∫ √

det A e−βU (ϕ)dNϕ
. (47)

These are exact expressions. In the following, we use these
equations to express 〈Ki〉 for multiple and double pendulums.
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FIG. 8. Comparison of thermal average of kinetic energy 〈Ki〉,
obtained by evaluating Eq. (36) by MCMC simulation (filled circles
with solid lines) and obtained by numerically evaluating the approx-
imation Eq. (50) (filled squares with broken lines).

1. Approximate expression for multiple pendulum
with an arbitrary number of particles

Let us adopt “diagonal approximation”

〈ϕ̇ j ϕ̇k cos ϕ jk〉 ≈ 0 for j �= k , (48)

and 〈
A−1

j j

〉 ≈ 〈
1

Aj j

〉
= 1(∑N

i= j mi
)
�2

j

. (49)

These approximations assume that each link rotates statisti-
cally independently, and we omit all off-diagonal elements
of matrix A, where phase factors such as cos(ϕi − ϕ j ) are
included.

Then, we obtain

〈Ki〉 ≈ mi

⎛
⎝ i∑

j=1

1∑N
n= j mn

⎞
⎠ · 1

2
kBT . (50)

This expression is equivalent to that in Eq. (33) if the thermal
average on the left-hand side 〈· · · 〉 is replaced by the time
average · · · and the generalized principle of equipartition of
energy, i.e., Eq. (38) is used. The details of the calculation are
summarized in Appendix G.

This result indicates that when all masses are the same, the
average linear kinetic energies are monotonically increasing
from the root to the end of the pendulum, as shown in Fig. 4.

〈K1〉 < 〈K2〉 < · · · < 〈KN 〉. (51)

2. Validity of approximation

Let us examine the validity of the approximate expression
Eq. (50) for the average kinetic energy 〈Ki〉. For that purpose
let us compare the approximate expression and 〈Ki〉 obtained
by MCMC simulation. If the approximation Eq. (50) is close
to the one by MCMC simulation, then we consider the ap-
proximation is valid.

In Fig. 8 we show 〈Ki〉 obtained by the approximation
Eq. (50) and by evaluating the definition Eq. (36) by MCMC
simulation. We see that the approximate expression agrees
with the result of MCMC simulation in nonuniformity and

FIG. 9. (a) Values of F [Eq. (52)] as a function of β obtained by
MCMC simulation. N = 16. (b) Values of G [Eq. (53)] as a function
of β obtained by MCMC simulation. N = 16.

monotonically increasing behavior, but it fails to express the
flat profile in the middle of the pendulum shown by MCMC
simulation.

Let us examine whether the assumptions Eqs. (48) and (49)
are valid. By using MCMC simulation we calculate the quan-
tities which are assumed to be zero in the approximations.

We define two quantities F and G as

F =
√√√√ 1

N (N − 1)

∑
j �=k

〈ϕ̇ j ϕ̇k cos ϕ jk〉2 (52)

and

G = 1

Tr(A−1)/N

√√√√ 1

N (N − 1)

∑
j �=k

〈(A−1) jk〉2, (53)

where F and G represent the magnitude of quantities assumed
to be zero in the approximation Eq. (48) and Eq. (49), respec-
tively.

Figure 9(a) shows the value of F defined by Eq. (52).
Each value is obtained by MCMC simulation. This quantity
check the validity of the assumption that 〈ϕ̇ j ϕ̇k cos ϕ jk〉 is
small. We see that the values remain finite for a wide range
of temperature. In particular, the value does not converge to
zero even for high temperature.
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Figure 9(b) shows the value of G defined by Eq. (53). Each
value is obtained by MCMC simulation. This quantity checks
the validity of the assumption that off-diagonal elements of
the matrix A−1 is small. In the figure, we see that the quantities
approximated as zero in Eq. (49) remain positive, in particular
for large values of β.

In summary, the approximations Eqs. (48) and (49) used
to obtain Eq. (50) are useful to describe some of qualitative
features, e.g., nonuniform distribution of 〈Ki〉 and monotoni-
cally increasing behavior of 〈Ki〉 vs i, but the assumptions on
which the approximation is based are not completely satisfied
as seen in Fig. 9. This incompleteness leads to the discrepancy
between the true value and approximated value of of 〈Ki〉
found in Fig. 8.

3. Exact expression for double pendulum

We have obtained approximate expressions for average
kinetic energy 〈Ki〉. The expressions, however, differ from true
values; hence it would be appropriate if we could obtain more
accurate expressions for 〈Ki〉.

For the case of the double pendulum, i.e., for the N = 2
case, we can obtain the exact expression for 〈Ki〉. That is,
Eq. (47) is exactly evaluated.

For N = 2, matrices A, A(i), defined by Eqs. (12) and (15),
respectively, and det A reads

A = M

(
�2

1 μ2�1�2C12

μ2�1�2C12 μ2�
2
2

)
, (54)

A(1) = Mμ1�
2
1

(
1 0
0 0

)
, (55)

A(2) = Mμ2

(
�2

1 �1�2C12

�1�2C12 �2
2

)
, (56)

det A = M2μ2�
2
1�

2
2

(
1 − μ2C

2
12

)
, (57)

where

C12 = cos(ϕ2 − ϕ1), (58)

M = m1 + m2, (59)

μi = mi/M. (60)

From these, we obtain

tr(A(1)A−1) = μ1

1 − μ2C2
12

, (61)

tr(A(2)A−1) = (1 + μ2) − 2μ2C2
12

1 − μ2C2
12

= 2 − tr(A(1)A−1). (62)

Here we used μ1 + μ2 = 1.
We obtain the exact expressions of 〈Ki〉 for a double pen-

dulum by substituting these into Eq. (47) and expanding det A
as a series of μ2C2

12.

〈K1〉 = 1

2β

μ1
∑∞

n=0
(2n−1)!!

n!2n μn
2Rn(α1, α2)

I0(α1)I0(α2) −∑∞
n=1

(2n−3)!!
n!2n μn

2Rn(α1, α2)
, (63)

〈K2〉 = 1

β
− 〈K1〉, (64)

0.1 0.5 1 5 10 50 100

0.35

0.40

0.45

0.50

0.55

0.60

0.65

FIG. 10. β dependence of the exact expression of 〈Ki〉 for dou-
ble pendulum Eqs. (63) and (64). β · 〈Ki〉 are plotted. The upper
and lower curves represent 〈K2〉 and 〈K1〉, respectively, obtained
from Eqs. (64) and (63), respectively. The symbols represent the
numerically obtained values of Eq. (36) using the MCMC method.
mi = 1/2, �i = 1 for i = 1, 2; g = 1.

where we define (−1)!! = 1 and

Rn(α1, α2) =
n∑

j=0

(
2n
2 j

)
{[2(n − j) − 1]!!}2

·
{

∂2 j

∂α
2 j
1

[
In− j (α1)

α
n− j
1

]}{
∂2 j

∂α
2 j
2

[
In− j (α2)

α
n− j
2

]}
,

(65)

α1 = β(m1 + m2)g�1, (66)

α2 = βm2g�2, (67)(
2n
2 j

)
= (2n)!

(2 j)!(2n − 2 j)!
, (68)

and In(z) is the modified Bessel function of the nth order [29].
Figure 10 shows the values of 〈Ki〉, i = 1, 2, calculated

from Eqs. (63) and (64). In addition we show the result of
Eq. (36) obtained from MCMC method by symbols to check
the validity of Eqs. (63) and (64). We see that both calculations
agree quite well.

In this figure, we see that β · 〈Ki〉 appear to converge to
certain finite values as β → 0. In fact, they are calculated as

lim
β→0

β · 〈K1〉 = μ1

2

K (
√

μ2)

E (
√

μ2)
, (69)

and limβ→0 β · 〈K2〉 is calculated from Eq. (64). Here K (k)
and E (k) represent the complete elliptic integrals of the
first and second kinds [29], respectively. The derivation of
Eq. (69) is presented in Appendix H. From this, we see that
the average kinetic energies do not depend on �i or g at the
high-temperature limit.

When m1 = m2, i.e., μ1 = μ2 = 1/2, we see that

lim
β→0

β · 〈K1〉 = 0.3431 . . . , (70)

lim
β→0

β · 〈K2〉 = 0.6568 . . . . (71)
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FIG. 11. �2 dependence of the ratio 〈K1〉/〈K2〉 obtained from the exact expression for double pendulum Eqs. (63) and (64). Values of μ1

are (left) μ1 = 0.05, (middle) μ1 = 0.5, and (right) μ1 = 0.95. Colors represent β = 1, 2, 5, and 10 from blue to red. �1 = 1.

These values agree well with the values obtained from the
MCMC method, as shown in Fig. 10.

Now that we have obtained the exact expression for 〈Ki〉,
we can analyze their dependence on the parameters.

In Fig. 11, we show the �2 dependence of the ratio
〈K1〉/〈K2〉 for μ1 = 0.05, 0.5, and 0.95. In every case, as �2

increases, that is, the length of the lower pendulum increases,
the ratio 〈K1〉/〈K2〉 increases.

In Fig. 12, we plot the β dependence of the ratio 〈K1〉/〈K2〉.
We see that for β → 0, the ratio converges to a positive value,
and around β ∼ 1, the ratio increases gradually.

In these figures, we note two remarkable features:
(i) At every temperature we have 〈K1〉 < 〈K2〉. That is, the

particle at the end of the pendulum has a larger average kinetic
energy than the other particle near the root.

(ii) The difference between the average kinetic energies is
large for high temperatures and small for low temperatures,
and a crossover temperature is observed near β = 1.

The first feature is proved as follows. From Eq. (61) and
μ1 + μ2 = 1, we have

0 � tr(A(1)A−1) � 1 � tr(A(2)A−1) � 2. (72)

From Eqs. (72) and (43) we obtain

0 � 〈K1〉 � 1

2β
� 〈K2〉 � 1

β
(73)

0.1 0.5 1 5 10 50 100
0.5

0.6

0.7

0.8

0.9

1.0

FIG. 12. β dependence of the ratio 〈K1〉/〈K2〉 of a double pen-
dulum. The solid line represents the values obtained from the exact
expressions Eqs. (63) and (64), and the symbols represent values
obtained by the MCMC method.

for any values of parameters mi, �i, and for any temper-
ature. Hence, the particle at the end always has a larger
average kinetic energy than the other particle for a double
pendulum.

Let us examine the latter feature. In Fig. 13, we show
〈cos ϕi〉 calculated by the MCMC method. We observe that
for high temperatures β ∼ 0, 〈cos ϕi〉 ∼ 0 for both i = 1
and i = 2. Hence, angles take various values, and the pen-
dulum shows the rotational motion. For low temperature
β � 1, 〈cos ϕi〉 ∼ 1 that is, ϕi ∼ 0 for both i = 1 and i =
2; the pendulum exhibits a small-angle liberation. Hence,
the crossover temperature observed in Fig. 10 is related to
crossover between the librational and rotational motions of the
pendulum.

The change in the motion was observed by examining
the Poincaré surface of the section of the double pendulum.
Figure 14 shows the Poincaré surface of section (ϕ2, p2)
taken at ϕ1 = 0 and p1 − p2 cos ϕ2 > 0 for several values of
the total energy. The definition of the section is explained
in Appendix I. As the total energy E approaches E ∼ 1, the
chaotic region in the phase space rapidly expands and fills
most of the energy surface. Moreover, the energy surface
itself expands rapidly around E ∼ 1. Hence, we interpret the
crossover near β ∼ 1 found in Figs. 11 and 12 as the change
in the energy surface.

FIG. 13. β dependence of 〈cos(ϕi )〉 obtained by the MCMC
method. Open circles represent i = 1, and open triangles represent
i = 2. The parameters were the same as those in Fig. 10.
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FIG. 14. Poincaré surface of section (ϕ2, p2) at ϕ1 = 0, p1 − p2 cos ϕ2 > 0. The definition of this section is explained in the Appendix I.
m1 = m2 = 1, and �1 = �2 = 1. The values of the total energy are (left) E = 0.1, (middle) E = 0.2, and (right) E = 1.0. Here we take the
origin of the potential energy at y1 = −�1 and y2 = −(�1 + �2), i.e., when the pendulum is at the lowermost place.

V. SUMMARY AND DISCUSSIONS

We showed that the averages of the kinetic energies of par-
ticles in multiple pendulum take different values via numerical
computation and analytical calculations. Since the multiple
pendulum has holonomic constraints, uniformity of average
kinetic energy of each particle at thermal equilibrium is no
longer guaranteed. On the contrary, another quantity what we
call canonical kinetic energy is uniform, and the uniformity
is guaranteed by the generalized principle of equipartition of
energy. Moreover, the uniformity of the average canonical
kinetic energy yields nonuniformity of the average kinetic
energy of each particle.

Systems with holonomic constraints do not obey the (con-
ventional) principle of the equipartition of energy, but a
generalized one. Our discovery added a new example in which
we can see how the system systematically deviates from (not
generalized) equipartition [24,30].

Each particle’s average kinetic energy does not take the
same value because it is not the quantity whose uniformity
is guaranteed by the generalized principle of equipartition of
energy. The difference comes from the fact that the kinetic
energy depends on coordinates; this dependence is attributed
to the existence of holonomic constraints. In short, the holo-
nomic constraints give rise to the nonuniform distribution of
the average linear kinetic energies. This scenario is similar to
a chain system without a fixed root, i.e., a freely jointed chain.
Freely jointed chain is a simplified model of polymers and
is composed of particles connected by massless rigid links
[31–40]. For a freely jointed chain composed of identical
masses, the average kinetic energy of each particle is large
near both ends of the chain and small near the middle of the
chain [24,30].

For a double pendulum, we successfully obtained the exact
expressions for the thermal average of kinetic energy of each
particle 〈Ki〉. They include temperature, mass of two particles,
lengths of two links, and constant of gravitational accelera-
tion. Hence, the exact expression is useful to design a system
that has predefined values of average kinetic energy. Exact
expressions for average kinetic energies are also obtained
for a three-particle two-dimensional freely jointed chain [30],

where nonuniformity of the average kinetic energies is also
shown.

Further, we showed that the dependence of β · 〈Ki〉 on
the mass and length of links vanish in the high-temperature
limit. The reason why β · 〈Ki〉 does not depend on �i or g is
interpreted as follows: 〈Ki〉 depends on �i or g only through
coupling with β, as in Eq. (66) and (67). Hence, in the limit
β → 0, the dependence on �i or g vanishes. Incidentally, this
independence is also seen in the approximate expression in
Eq. (50), although the approximation is not derived from high-
temperature limit.

In this paper we studied the effect of holonomic constraint
on the equipartition property. There are other systems which
have nonholonomic constraints. For example, constraints
represented by coordinates and momenta, and constraints rep-
resented by inequalities. The former one is realized by the
existence of conserved quantities [41,42]. The latter is also
an interesting subject of future research.

We considered a multiple pendulum which have holonomic
constraints, and the holonomic constraints are essential for
nonuniformity of average kinetic energies for the system.
In real systems there are no exact holonomic constraints;
constraints appearing in models are often approximations of
stiff springs and hard potentials. Suppose we have a mul-
tiple spring-pendulum where the rigid links in the multiple
pendulum are replaced by springs. If the potentials are suffi-
ciently hard, then there will be a large gap between timescales
of swinging motion of pendulum and vibrational motion of
springs. Then, according to Boltzmann-Jeans theory [43–51],
the energy exchange between swinging motion of pendulum
and vibrational motion of springs take quite long time, typi-
cally exponentially long with respect to the spring constant.
Then we have a good chance to observe the system well
approximated by rigid multiple pendulum, and average kinetic
energies are nonuniform for quite long time.
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APPENDIX A: DERIVATION OF THE LAGRANGIAN
AND HAMILTONIAN OF A MULTIPLE PENDULUM

Here we show a detailed derivation of the Lagrangian of a
multiple pendulum [Eq. (4)]. To obtain a canonical momen-
tum conjugate to the angle ϕi,

pi = ∂L

∂ϕ̇i
, (A1)

we need to express L (i.e., the kinetic energy T ) in terms of ϕi

and ϕ̇i.
First, we consider that the angles ϕ and Cartesian coordi-

nates x, y are related as

xi = xi−1 + �i sin ϕi =
i∑

j=1

� j sin ϕ j, (A2)

yi = yi−1 − �i cos ϕi = −
i∑

j=1

� j cos ϕ j . (A3)

Then, we have

ẋ2
i + ẏ2

i =
⎛
⎝ i∑

j=1

� j ϕ̇ j cos ϕ j

⎞
⎠

2

+
⎛
⎝ i∑

j=1

� j ϕ̇ j sin ϕ j

⎞
⎠

2

=
i∑

j=1

i∑
k=1

� j�kϕ̇ j ϕ̇k (cos ϕ j cos ϕk + sin ϕ j sin ϕk )

=
i∑

j=1

i∑
k=1

� j�kϕ̇ j ϕ̇k cos(ϕ j − ϕk ) (A4)

and the kinetic energy K reads

K =
N∑

i=1

mi

2

i∑
j=1

i∑
k=1

� j�kϕ̇ j ϕ̇k cos(ϕ j − ϕk ). (A5)

Using an identity

N∑
i=1

i∑
j=1

i∑
k=1

=
N∑

j=1

N∑
k=1

⎡
⎣ N∑

i=max( j,k)

⎤
⎦, (A6)

we obtain

K = 1

2

N∑
j=1

N∑
k=1

⎡
⎣ N∑

i=max( j,k)

mi

⎤
⎦� j�kϕ̇ j ϕ̇k cos(ϕ j − ϕk ), (A7)

= 1

2

N∑
j=1

N∑
k=1

Ajk (ϕ)ϕ̇ j ϕ̇k = 1

2
t ϕ̇Aϕ̇, (A8)

where the elements of N × N matrix A(ϕ) is defined as

Ajk (ϕ) =
⎡
⎣ N∑

i=max( j,k)

mi

⎤
⎦� j�k cos(ϕ j − ϕk ), (A9)

and ϕ̇ without subscript is

ϕ̇ = t (ϕ̇1, . . . , ϕ̇N ). (A10)

Using Eq. (A8), the Lagrangian of the multiple pendulum
is expressed in terms of the angles ϕ and ϕ̇ as

L = 1

2

N∑
j=1

N∑
k=1

Ajk (ϕ)ϕ̇ j ϕ̇k +
N∑

i=1

mig
i∑

j=1

� j cos ϕ j

= 1

2
t ϕ̇Aϕ̇ +

N∑
i=1

mig
i∑

j=1

� j cos ϕ j, (A11)

The canonical momentum pn conjugate to the angle ϕn

(n = 1, 2, . . . , N) can be obtained using the expression of the
Lagrangian [Eq. (A11)] as

pn = ∂L

∂ϕ̇n
=

N∑
k=1

A(ϕ)nkϕ̇k = [A(ϕ)p]n, (A12)

K =
N∑

i, j=1

1

2
A(ϕ)i j ϕ̇iϕ̇ j = 1

2
t ϕ̇A(ϕ) ϕ̇ (A13)

=
N∑

i, j=1

1

2
[A−1(ϕ)]i j pi p j (A14)

= 1

2
t pA−1(ϕ)p. (A15)

Here p without subscript is

p = t (p1, . . . , pN ). (A16)

Then the Hamiltonian of the multiple pendulum is obtained
by the standard procedure as

H =
n∑

i=1

piϕ̇i − L

=
N∑

i, j=1

1

2
[A−1(ϕ)]i j pi p j + U (ϕ), (A17)

= 1

2
t pA−1(ϕ)p + U (ϕ). (A18)

APPENDIX B: NUMERICAL METHOD OF THE
LYAPUNOV EXPONENTS FOR MULTIPLE PENDULUMS

The Hamiltonian of a multiple pendulum is given in
Eq. (21). The difficulty of the numerical integration comes
from the computational cost of the inverse matrix A−1. In
principle we can obtain analytic expression for A−1 but it
consists of huge number of terms. To simulate the multiple
pendulums, we estimate the inverse matrix A−1 numerically
from the analytic expression of A for given ϕi [Eq. (12)]. The
Hamilton equations,

∂ϕi

∂t
= ∂H

∂ pi
=
∑

k

A−1
i,k pk, (B1)

∂ pi

∂t
= −∂H

∂ϕi
= 1

2
pt

(
A−1 ∂A

∂ϕi
A−1

)
p − ∂V

∂ϕi
, (B2)
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are integrated using the inverse matrix A−1 by an implicit
Runge-Kutta method called “Gauss method,” which is known
to be symplectic [52]. To calculate the Lyapunov exponents
[53], the Jacobian of the Hamilton equations is calculated
using the numerically obtained A−1 as follows:

J =
(

J1 J2

J3 J4

)
, (B3)

where J1, J2, J3, and J4 are (N × N ) matrices, and the ele-
ments of those are given by

(J1)i j = ∂ϕ̇i

∂ϕ j
(B4)

= ∂

∂ϕ j

N∑
k

A−1
ik pk (B5)

= −
N∑
k

(
A−1 ∂A

∂ϕ j
A−1

)
ik

· pk, (B6)

(J2)i j = ∂ϕ̇i

∂ p j
(B7)

= ∂

∂ p j

N∑
k

A−1
ik pk (B8)

= A−1
i j , (B9)

(J3)i j = ∂ ṗi

∂ϕ j
(B10)

= 1

2
pt

[
−A−1

{
∂A

∂ϕ j
A−1 ∂A

∂ϕi
− ∂2A

∂ϕ j∂ϕi

+ ∂A

∂ϕi
A−1 ∂A

∂ϕ j

}
A−1

]
p − ∂2V

∂ϕi∂ϕ j
, (B11)

(J4)i j = ∂ ṗi

∂ p j
(B12)

=
N∑
k

(
A−1 ∂A

∂ϕi
A−1

)
jk

pk, (B13)

respectively. Along an orbit (q(t�), p(t�)) where t� = δt ·
� (� = 0, 1, . . . , L) obtained by solving the Hamilton equa-
tions every δt , the Jacobian J (q(t�), p(t�)) can be calculated.
The time evolution of tangent vector ξ is governed by

dξ

dt
= J (q(t ), p(t ))ξ, (B14)

and we solve 2N number of tangent vectors ξ i (i =
1, 2, . . . , 2N ) simultaneously by the Euler method as
follows:

ξ i(t�+1) = {I2N + δtJ (q(t�), p(t�))}ξ i(t�) (B15)

(i = 1, 2, . . . , 2N ), (B16)

where I2N is the (2N × 2N ) identity matrix. To estimate the
local expansion rates of nearby trajectories, we use the Gram-
Schmidt orthogonalization method every m steps [54], and the

expansion rates are given by

ηi(tm�) = ||ξ̃ i(tm�)||
||ξ i(tm�)|| , (i = 1, 2, . . . , N ), (� = 1, 2, . . . L),

(B17)

where ξ̃ i(tm�) is the tangent vectors after the orthogonaliza-
tion. Finally, the Lyapunov exponents are estimated by

λi =
∑L

�=1 log(ηi(tm�))

m L δt
. (B18)

In Fig. 5, the initial time series t < 100 were discarded.
We use the following parameters: δt = 0.001, m = 100, and
m L δt = 1000.

APPENDIX C: “CANONICAL KINETIC ENERGY”

Our Hamiltonian has the form

H =
∑

i j

1

2
(A−1)i j (q)pi p j + V (q), (C1)

where q and p are generalized coordinates and their conjugate
momenta, respectively.

The generalized principle of the equipartition of energy is
expressed as 〈

1

2
pi

∂H

∂ pi

〉
= 1

2
kBT (no sum for i). (C2)

Here kB denotes Boltzmann’s constant and T represents the
temperature, respectively.

K (c)
i is defined as

K (c)
i = 1

2
pi

∂H

∂ pi
(no sum for i). (C3)

K (c)
i is not always the same as the traditional kinetic energy

of the ith degrees of freedom,

Ki = 1
2 miq̇

2
i (no sum for i), (C4)

because of the off-diagonal terms in the quadratic form. To
clarify this distinction, we call K (c)

i the “canonical kinetic
energy” and Ki the “linear kinetic energy” in this paper [55].

Below, we compute the “canonical kinetic energy” of the
general multiple pendulum.

Our Hamiltonian is of the form

H (q, p) = K (q, p) + V (q) (C5)

and we have for “canonical kinetic energy,”

K (c)
i = 1

2
pi

∂H

∂ pi
= 1

2
pi

∂K

∂ pi
(no sum for i) (C6)

= 1

2
pi

∂

∂ pi

N∑
j,k=1

1

2
(A−1) jk p j pk [from (A15)] (C7)

=
N∑

k=1

1

2
pi(A

−1)ik pk = 1

2
piϕ̇i (no sum for i). (C8)
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The sum of the “canonical kinetic energy” of the ith angle
K (c)

i is equal to the (total) kinetic energy K , which is given as

K =
N∑

i=1

[
1

2
pi

N∑
k=1

(A−1)ik pk

]
=

N∑
i=1

K (c)
i . (C9)

Now, we express K (c)
i in terms of ϕ and ϕ̇, and then in terms

of the Cartesian coordinate x, y. Since K = 1
2

t pA−1 p, we have
∂K
∂ pi

= (A−1 p)i = ϕ̇i. Hence, K (c)
i is expressed as

K (c)
i = 1

2
pi

∂H

∂ pi
(no sum for i) (C10)

= 1

2
piϕ̇i (C11)

=
N∑

j=1

1

2
Ai j ϕ̇ j ϕ̇i (C12)

=
N∑

j=1

1

2

⎡
⎣ N∑

n=max(i, j)

mn

⎤
⎦�i� j cos(ϕi − ϕ j )ϕ̇ j ϕ̇i. (C13)

This is the formula which represents “canonical kinetic
energy” of the ith degree of freedom in terms of ϕ and ϕ̇.

Let us express K (c)
i in terms of Cartesian coordinates x j and

y j . The result is

K (c)
i = 1

2
(ẋi − ẋi−1)

⎛
⎝ N∑

j=i

m j ẋ j

⎞
⎠

+ 1

2
(ẏi − ẏi−1)

⎛
⎝ N∑

j=i

m j ẏ j

⎞
⎠. (C14)

As expected, this expression for “canonical kinetic en-
ergy” K (c)

i is different from the “linear” kinetic energy Ki =
1
2 mi(ẋ2

i + ẏ2
i ) . Although K (c)

i is defined from the momentum
pi, which is canonically conjugate to the (local) angle ϕi, K (c)

i
depends on the coordinates of all the particles j = 1, 2, . . . , N
and extended over the entire system, whereas Ki is localized
to a particular particle i.

1. Example: Double pendulum

Setting N = 2 in Eq. (C14), we have the following expres-
sions for the “canonical kinetic energy” of a double pendulum:

K (c)
1 = 1

2

{
m1
(
ẋ2

1 + ẏ2
1

)+ m2(ẋ1ẋ2 + ẏ1ẏ2)
}
, (C15)

K (c)
2 = 1

2 m2
{(

ẋ2
2 + ẏ2

2

)− (ẋ1ẋ2 + ẏ1ẏ2)
}
. (C16)

We see that

K (c)
1 �= K1 = 1

2 m1
(
ẋ2

1 + ẏ2
1

)
, (C17)

K (c)
2 �= K2 = 1

2 m2
(
ẋ2

2 + ẏ2
2

)
, (C18)

K (c)
1 + K (c)

2 = K1 + K2. (C19)

Therefore, at thermal equilibrium, we have the average
kinetic energy of each particle of a double pendulum, which
is not equal to 1

2 kBT ;

〈Ki〉 �= 1
2 kBT, i = 1, 2, (C20)

〈K1〉 �= 〈K2〉. (C21)

APPENDIX D: GENERALIZED PRINCIPLE
OF THE EQUIPARTITION OF ENERGY

Assume that we have a Hamiltonian of the form:

H = K (q, p) + U (q), (D1)

where K (q, p) and U (q) are the kinetic and potential ener-
gies, respectively. Here K (q, p) depends on coordinate q. The
“generalized principle of equipartition of energy” states that,
if a system whose Hamiltonian is in the form of Eq. (D1) is in
thermal equilibrium at temperature T , then〈

1

2
pi

∂H

∂ pi

〉
= 1

2
kBT (D2)

holds for each degree of freedom i. Here pi represents the
canonical momenta, and summation is not taken for repeated
index i.

Proof of this principle is similar to that of the conventional
case. The thermal average of an arbitrary quantity f (q, p) is
defined as

〈 f (q, p)〉 = 1

Z

∫
f (q, p)e−βH dN p dN q, (D3)

where Z is the partition function

Z =
∫

e−βH dN p dN q. (D4)

Since

∂

∂ pi
e−βH = e−βH (−β )

∂H

∂ pi
, (D5)

we have

∂H

∂ pi
e−βH = − 1

β

∂

∂ pi
e−βH . (D6)

Hence∫
pi

∂H

∂ pi
e−βH dN p = − 1

β

∫
pi

∂

∂ pi
e−βH dN p. (D7)

In the N-fold integration let us perform first the integral with
respect to pi:∫

pi
∂

∂ pi
e−βH dN p =

∫
· · ·
∫ (∫

pi
∂

∂ pi
e−βH d pi

)
dN−1 p.

(D8)

Using integration by parts we have∫
pi

∂

∂ pi
e−βH d pi = [pie

−βH ]pi=+∞
pi=−∞ −

∫
e−βH d pi. (D9)

Let us assume that

lim
pi→±∞ pie

−βH = 0. (D10)
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This assumption is satisfied when H = K (q, p) + U (q) and
K (q, p) = 1

2
t pA−1(q)p, where A−1 is an N × N positive defi-

nite matrix.
Then∫

pi
∂

∂ pi
e−βH dN p =

∫
· · ·
∫ (

−
∫

e−βH d pi

)
dN−1 p

= −
∫

e−βH dN p. (D11)

Hence we have∫
pi

∂H

∂ pi
dN p = 1

β

∫
e−βH dN p, (D12)

and Eq. (D2), that is, the generalized principle of equipartition
of energy holds.

The generalized principle of equipartition includes conven-
tional principle of equipartition. If the Hamiltonian is of the
form

H (q, p) = K (p) + U (q), (D13)

K (p) =
∑

i

1

2mi
p2

i , (D14)

then
1

2
pi

∂H

∂ pi
= 1

2mi
p2

i (D15)

and Eq. (D2) implies 〈
1

2mi
p2

i

〉
= 1

2
kBT, (D16)

that is, conventional equipartition holds.

APPENDIX E: METHOD OF MCMC SIMULATION

For MCMC simulations, we use the Metropolis algorithm
[56,57]. The variables in the Hamiltonian are general coor-
dinates and their conjugate momenta, as shown in Eq. (21).
To estimate A−1 in the Hamiltonian, we compute the inverse
matrix A−1 numerically from the analytic expression of A
for given ϕi [Eq. (12)]. Then, the state of MCMC for the
Hamiltonian is �s = (ϕ1, ϕ2, . . . , ϕN , p1, p2, . . . pN ), and the
initial value of �s is set to �s (0), where all elements of �s (0) are
drawn from the normal distribution, i.e., f (x) ∼ exp{− 1

2 [(x −
μ)/σ ]2}, where μ is the mean and σ is the standard deviation,
respectively. The iteration of the algorithm is described as
follows:

(i) Choose a perturbation to current states �δs as all elements
are drawn from the normal distribution f (x), When the current
value of �s is �s (n), the candidate of next state is defined by
�s ′ = �s (n) + �δs

(ii) Draw a uniform random number R ∈ [0, 1). If and
only if

R <
exp[−βH (�s′)]

exp[−βH (�s (n) )]
,

the candidate is accepted: �s (n+1) = �s ′; otherwise, nothing is
changed: �s (n+1) = �s (n)

(iii) Return to step (i).

After initial m0 transient steps, we calculate the kinetic
energy of i-th particle Ki(�s (m) ) for every k steps, where
m = m0 + k( j − 1), ( j = 1, 2, . . . , M ). Then, the estimated
value of the kinetic energy is obtained by average over these
M samples. The statistical error is calculated by K different
runs. The parameters used in Fig. 7 are m0 = 10 000, k =
10, M = 1000, K = 100, and σ = 0.25/

√
Nβ, respectively.

β in Eq. (36) is defined as follows. Given a total kinetic energy∑N
i=1 Ki, the value of β used in Fig. 7 for 〈Ki〉 is implicitly

determined from the following equation:

N∑
i=1

〈Ki〉 =
N∑

i=1

Ki. (E1)

APPENDIX F: DERIVATION OF EQ. (43)
〈Ki〉 = 1

2β
〈tr(A(i)A−1)〉

Here we derive the expression for average kinetic energy,
Eq. (43), that is,

〈Ki〉 = 1

2β
〈tr(A(i)A−1)〉. (F1)

From Eq. (20) the average 〈Ki〉 reads

〈Ki〉 = 1

Z

∫
1

2

∑
j,k,ξ ,η

A(i)
jk A−1

jξ A−1
kη pξ pηe−βH d�. (F2)

Using

∂

∂ pk
e−βH = −β

N∑
η=1

A−1
kη pηe−βH , (F3)

we have
N∑

η=1

A−1
kη pηe−βH = −1

β

∂

∂ pk
e−βH . (F4)

By integrating by parts, we obtain∫ N∑
η=1

A−1
kη pξ pηe−βH dN p

=
∫ −1

β
pξ

∂

∂ pk
e−βH dN p

=
∫ −1

β
pξ [e−βH ]pk=∞

pk=−∞dN−1 p

+ 1

β

∫ (
∂

∂ pk
pξ

)
e−βH dN p

= 1

β

∫
δk,ξ e−βH dN p. (F5)

Therefore ∫
1

2

∑
j,k,ξ ,η

A(i)
jk A−1

jξ A−1
kη pξ pηe−βH dN p

= 1

2

1

β

∫ ∑
j,k,ξ

A(i)
jk A−1

jξ δk,ξ e−βH dN p
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= 1

2β

∫ ∑
j,k

A(i)
jk A−1

jk e−βH dN p

= 1

2β

∫
tr(A(i)A−1)e−βH dN p (F6)

hence Eq. (43) holds.

APPENDIX G: DERIVATION OF APPROXIMATE
EXPRESSION OF 〈Ki〉 FOR MULTIPLE PENDULUM

Let us start with Eq. (41). By applying the approximation
Eq. (48), we have

〈Ki〉 ≈ mi

2

i∑
j=1

�2
j

〈
ϕ̇2

j

〉
. (G1)

Now, let us evaluate 〈ϕ̇2
j 〉. Note that

ϕ̇ j =
N∑

n=1

A−1
jn pn = ∂

∂ p j

1

2

∑
i,n

piA
−1
in pn = ∂

∂ p j
H. (G2)

On the other hand,
∂

∂ p j
e−βH = −β

∂H

∂ p j
e−βH . (G3)

Therefore,

ϕ̇2
j =

(
N∑

n=1

A−1
jn pn

)2

=
(

N∑
n=1

A−1
jn pn

)(
N∑

n=1

A−1
jn pn

)
(G4)

=
(

N∑
n=1

A−1
jn pn

)
∂H

∂ p j
, (G5)

and

ϕ̇2
j e

−βH =
(

N∑
n=1

A−1
jn pn

)
∂H

∂ p j
e−βH (G6)

=
(

N∑
n=1

A−1
jn pn

)(−1

β

)
∂

∂ p j
e−βH , (G7)

∫
ϕ̇2

j e
−βH d� =

(−1

β

)∫ (
N∑

n=1

A−1
jn pn

)
∂

∂ p j
e−βH d�.

(G8)

Performing integration by parts with respect to pj , we
obtain ∫ (

N∑
n=1

A−1
jn pn

)
∂

∂ p j
e−βH d pj (G9)

= −
∫

A−1
j j (ϕ) · e−βH d pj, (G10)

where the summation over j is not taken.
Thus, we have∫

ϕ̇2
j e

−βH d� =
(

1

β

)∫
A−1

j j (ϕ)e−βH d�, (G11)

〈
ϕ̇2

j

〉 = 1

β

〈
A−1

j j (ϕ)
〉
. (G12)

Let us evaluate 〈A−1
j j (ϕ)〉. From Eq. (A9), we have

Aj j (ϕ) =
⎛
⎝ N∑

i= j

mi

⎞
⎠�2

j . (G13)

Let us adopt the approximation Eq. (49)

A−1
j j ≈ 1

Aj j
(G14)

= 1(∑N
i= j mi

)
�2

j

. (G15)

This approximation implies that we omit all off-diagonal
elements of matrix A, which include phase factors such as
cos(ϕ jk ).

Then, we have

〈
ϕ̇2

j

〉 = 1

β

〈
A−1

j j (ϕ)
〉 ≈ 1

β

〈
1(∑N

i= j mi
)
�2

j

〉
(G16)

= 1

β
(∑N

i= j mi
)
�2

j

. (G17)

Therefore, we obtain

〈Ki〉 = mi

2

〈
ẋ2

i + ẏ2
i

〉 ≈ mi

2

i∑
j=1

〈
ϕ̇2

j

〉
�2

j (G18)

= kBT · mi

2

i∑
j=1

1∑N
k= j mk

. (G19)

APPENDIX H: DERIVATION OF limβ→0 β · 〈K1〉
Here we present the calculation of Eq. (69), which

represent the high-temperature limit limβ→0 β · 〈K1〉. From
Eqs. (47), (57), and (61), we have

β〈K1〉 = μ1

2

∫
1√

1−μ2C2
12

e−βU (ϕ)d2ϕ

∫ √
1 − μ2C2

12 e−βU (ϕ)d2ϕ

(H1)

for the double pendulum. Here C12 = cos(ϕ2 − ϕ1), and the
region of integration is 0 � ϕi < 2π , i = 1, 2.

Considering the limit β → 0 on both sides, we have

lim
β→0

β · 〈K1〉 = μ1

2

∫
1√

1−μ2C2
12

d2ϕ

∫ √
1 − μ2C2

12 d2ϕ

= μ1

2

K (
√

μ2)

E (
√

μ2)
, (H2)

where K (k) and E (k) are the complete elliptic integrals of the
first and second kind, respectively.

APPENDIX I: POINCARÉ SURFACE OF SECTION

Here, we explain the definition of the Poincaré surface of
section used in Fig. 14. A unique correspondence from a point
(ϕ2, p2) on the surface to a single point (ϕ1, ϕ2, p1, p2), in the
phase space is necessary. We set two conditions H (ϕ, p) = E
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and ϕ1 = 0, which reduces the four-dimensional phase space
to a two-dimensional space (ϕ2, p2). Let us specify a point
(ϕ2, p2) on the Poincaré surface.

For systems including a double pendulum, the energy is of
the form

1
2

t pA−1 p + U (ϕ1, ϕ2) = E . (I1)

Let us express matrix A as

A =
(

A1 A2

A2 A3

)
. (I2)

By substituting this into Eq. (I1) and the straightforward cal-
culation, we get

(A3 p1 − A2 p2)2 = det A
{
2A3[E − U (ϕ1, ϕ2)] − p2

2

}
. (I3)

Hence, point (ϕ2, p2) corresponds to a unique point
(ϕ1, ϕ2, p1, p2) under E = const, and we must specify the
sign of A3 p1 − A2 p2. Let us take a positive sign; then, the
Poincaré surface of the section is defined as

ϕ1 = 0,

A3 p1 − A2 p2 > 0. (I4)

In the case of a double pendulum, the last condition is
equivalent to

μ2�
2
2 p1 − μ2�1�2 p2 cos ϕ2 > 0 (I5)

by substituting ϕ1 = 0. For �1 = �2, this condition yields

p1 − p2 cos ϕ2 > 0, (I6)

as shown in the caption of Fig. 14.
Using

ϕ̇ = A−1 p, (I7)

we can convert the condition in Eq. (I4) in terms of ϕ̇. Since

A3 p1 − A2 p2 = ϕ̇1 · det A, (I8)

and the kinetic energy and matrix A are positive definite, we
can consider

ϕ1 = 0, ϕ̇1 > 0 (I9)

as the surface of the section.
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