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Emergence of collapsed snaking related dark and bright Kerr dissipative solitons
with quartic-quadratic dispersion

Edem Kossi Akakpo ,1 Marc Haelterman,1 Francois Leo ,1 and Pedro Parra-Rivas 2,1,*

1OPERA-photonics, Université libre de Bruxelles, 50 Avenue F. D. Roosevelt, CP 194/5, B-1050 Bruxelles, Belgium
2Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomunicazioni, Sapienza Universitá di Roma,

via Eudossiana 18, 00184 Rome, Italy

(Received 1 February 2023; accepted 23 May 2023; published 5 July 2023)

We theoretically investigate the dynamics, bifurcation structure, and stability of dark localized states emerging
in Kerr cavities in the presence of positive second- and fourth-order dispersion. In this previously unexplored
regime, dark states form through the locking of uniform wave fronts, or domain walls, connecting two coexisting
stable uniform states, and undergo a generic bifurcation structure known as collapsed homoclinic snaking. We
characterize the robustness of these states by computing their stability and bifurcation structure as a function
of the main control parameter of the system. Furthermore, we show that by increasing the dispersion of fourth
order, bright localized states can be also stabilized.
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I. INTRODUCTION

The generation of dissipative solitons, also referred to as
localized states (LSs), in externally driven dispersive Kerr
optical resonators hinges in a double balance condition be-
tween four different factors which compensate pairwise: Kerr
nonlinearity counteracts chromatic dispersion (similarly to
single pass conservative systems), while energy dissipation
is compensated through external driving [1]. The dynamics
of the cavity can be basically controlled by tuning the ex-
ternal energy source. However, in most of the applications,
the careful management of dispersion is extremely important,
which has become a fundamental engineering problem. In mi-
croresonators, for example, the dispersion can be engineered
through the resonator geometry [2]. Recently, a new accurate
control of dispersion, based on an intracavity pulse shaper,
was proposed by Runge et al. in soliton lasers, opening new
avenues regarding LSs formation and control [3].

Generally, the formation of dissipative solitons in Kerr
resonators is based on the concept of bistability and front
locking: when two different stable states coexist for the same
range of parameters, front waves may form, interact, and lock,
leading to the formation of a plethora of LSs of different
extensions [4,5]. This mechanism has been useful to explain
the formation of LSs based on second-order dispersion (SOD)
[6–10], but also to understand the implications that higher-
order dispersion effect may have on the LS dynamics and
stability [11].

One of the first studies in this topic, showed that fourth-
order dispersion (FOD) was able to stabilize dark localized
patterns in a regime where otherwise such states were ab-
sent [12]. Later, different works have tackled the effect of
third-order dispersion (TOD) on other bistable configurations,
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showing that, in general, new type of bright solitons can be
formed [11,13].

In the last few years, dissipative solitons have also been
studied in Kerr cavities driven at the pure FOD point [14,15],
and their bifurcation structure and stability analyzed in the
anomalous and normal regimes [16]. In the first case, single
and multipeak LSs persist and are stable over a wider parame-
ter region than those in the pure SOD case, while in the second
scenario, stable bright LSs can coexist with dark ones. Thus,
in general, higher-dispersion effects seem to have a positive
impact on soliton formation and stability.

When simultaneously considering SOD and FOD effects,
four different operation regimes arise depending on the dis-
persion coefficients signs, and with them a plethora of new
dynamical scenarios which are, so far, poorly understood.
Moreover, the combination of the previous effects brings an
extra degree of freedom into play by means of a new control
parameter for the cavity dynamics, allowing the connection of
the limit regimes analyzed in previous works [16,17].

In this work, we analyze an externally driven Kerr res-
onator [see sketch in Fig. 1(a)] in a regime of operation where
both SOD and FOD coefficients are positive. In this regime,
previously untouched, we discover that the locking of fronts
connecting two uniform bistable states leads to the formation
of collapsed-snaking-related LSs [18].

Our investigation reveals that for low FOD regimes, this
configuration shares morphological similarities with the nor-
mal SOD scenario studied in previous works [6], despite the
different dynamical instabilities thresholds and the LSs exis-
tence domains. This means that dark LSs are robust even in the
presence of high-order perturbations, which is very valuable
for experimentalists targeting the generation of these types
of 80 states. Increasing the FOD strength, however, different
types of bright LSs, absent in the pure normal SOD regime,
are stabilized and coexist with dark ones [see Fig. 1(b)]. This
result confirms that the stabilization of these states is a general
feature for FOD regimes [16].

2470-0045/2023/108(1)/014203(11) 014203-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7503-2507
https://orcid.org/0000-0001-7678-9245
https://orcid.org/0000-0003-1338-3963
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.014203&domain=pdf&date_stamp=2023-07-05
https://doi.org/10.1103/PhysRevE.108.014203


AKAKPO, HAELTERMAN, LEO, AND PARRA-RIVAS PHYSICAL REVIEW E 108, 014203 (2023)

(a) (b)

FIG. 1. (a) Sketch of an externally driven Kerr resonator of
length L. θ represents the transmission coefficient of the coupler
between the Ein and the cavity. β2 and β4 are the second- and fourth-
order dispersion coefficients. (b) Coexistence of bright and dark LSs
for large β4.

This new regime of LSs multistability enriches consid-
erably the dynamics of the system and opens new routes
for bright soliton formation in high-Q microresonators where
high-order dispersion can be controlled at will [3]. Moreover,
these results might be relevant for generating temporal soli-
tons in low-Q fiber cavities where intracavity gain can be
used to compensate dissipative effects [19]. Here, we unveil
the bifurcation structure associated with such coexistence,
showing the main dynamical regimes of the system.

At this point, it is worth mentioning that the work presented
here is just the first piece of a more ambitious project whose
main goal is to reveal and characterize the nonlinear dynamics
of the large variety of LSs emerging in dispersive Kerr cavities
affected by all the possible combinations of SOD and FOD
effects.

This paper is organized as follows. In Sec. II we introduce
the model and give some preliminary results. We present the
time-independent problem (Sec. II 1), show the homogenous
steady state solution (Sec. II 2), and compute its linear stability
(Sec. II 3). Section III focuses on the bifurcation structure and
stability of dark LSs, and in Sec. IV we study the spatiotempo-
ral dynamics of some of the LSs. The effect that the variation
of FOD may have on the dynamics and stability of the dark
LSs and the stabilization of bright LSs is analyzed in Sec. V.
Finally, we discuss the results and draw some conclusions in
Sec. VI.

II. THE LUGIATO-LEFEVER MODEL
WITH QUARTIC DISPERSION

In the mean-field approximation, passive Kerr cavities
can be described by the Lugiato-Lefever (LL) equation [20].
Considering chromatic dispersion up to fourth-order, and
neglecting the contribution of TOD, the normalized LL equa-
tion reads

∂t A = −(1 + i�)A − id2∂
2
x A + id4∂

4
x A + i|A|2A + S, (1)

where A is the complex field amplitude, t represents the time
coordinate, and x the fast time in fiber cavities or angular
variable in microresonators. The losses are normalized to one,
� is the phase detuning from the closest cavity resonance,
and S is the driving field amplitude. With this normalization,
d2 = sign(β2) = ±1 and d4 ≡ β4α/(6L|β2|2), where α repre-
sent the losses, L is the cavity length, and β2 and β4 represent
the SOD and FOD coefficients, respectively. In this work we
focus on the regime defined by d2 = 1 and d4 > 0.

A. The time-independent problem: Spatial dynamics

LSs and any other type of time-independent states
(∂t A = 0) satisfy the complex ordinary differential equation

id4∂
4
x A = id2∂

2
x A + (1 + i�)A − i|A|2A − S. (2)

Considering A = U + iV , Eq. (2) can be recast into the 8D
spatial dynamical system:

dY
dx

= F(Y, d2, d4,�, S), (3)

where the new variables read

Y = (Y1,Y2, · · · ,Y8)

= (
U,V, ∂xU, ∂xV, ∂2

x U, ∂2
x V, ∂3

x U, ∂3
x V

)
,

and the vector field F is defined as

Fm = Ym+2, m = 1, · · · , 6,

F7 = 1

d4

[
�Y1 − (

Y 2
1 + Y 2

2

)
Y1 + Y2 + d2Y5

]
,

F8 = 1

d4

[ − Y1 + �Y2 − (
Y 2

1 + Y 2
2

)
Y2 + d2Y6 + S

]
.

By using the dynamical system (3), we can apply well
known results of dynamical systems and bifurcation theory
to study our problem. Furthermore, this approach allows us
to apply a correspondence between the time-independent so-
lutions of the system [i.e., solutions of Eq. (2)] and different
solutions of Eq. (3). In this context, a uniform front corre-
sponds to a heteroclinic orbit; a LS is a homoclinic orbit, a
spatially periodic pattern a limit cycle, and the homogeneous
state of the system a fixed point [17].

Equation (3) will be used for computing LSs through
numerical path-continuation algorithms based on a predictor-
corrector method [21,22] using the free software package
AUTO-07p [23], with the parameters indicated in [24]. With
this procedure, we are able to compute not only the stable but
also the unstable state solutions, unveiling their connection.
Then, the linear stability of these states is determined by
solving the eigenvalue problem:

Lψ = σψ, (4)

where L is the linear operator associated with the right hand
side of Eq. (1) evaluated with a given steady state, and ψ

is the eigenmode corresponding to the eigenvalue σ . The
time-independent state is stable if Re[σ ] < 0, and unstable
otherwise. If by varying a control parameter of the system,
let’s say p, this transition occurs at the value p = pc (i.e.,
Re[σ (pc)] = 0), we say that a local bifurcation takes place
at pc [25,26].

B. Homogeneous steady state

The simplest time-independent solution is the uniform or
homogeneous steady state (HSS) solution Ah (i.e., ∂xA = 0),
which satisfies the algebraic equation [20,27]

(1 + i�)Ah − i|Ah|2Ah − S = 0. (5)

014203-2



EMERGENCE OF COLLAPSED SNAKING RELATED DARK … PHYSICAL REVIEW E 108, 014203 (2023)

t
m

b

t

m

b

C

FIG. 2. (a) Homogeneous steady state in the bistable regime for
� = 5. (b) Marginal instability curve corresponding to (a). Panel
(c) shows the (�, S)-parameter space. The vertical line corresponds
to the situation shown in (a). The horizontal line to the nonlinear
cavity resonance shown in (d) for S = 2.8. (e) Shows the formation
of a dark LS for � = 5 and S = 2.8. The blue curve in (e) represents
the initial condition.

This equation can be rewritten in the form

S2 = I3
h − 2�I2

h + (1 + �2)Ih, (6)

with Ih ≡ |Ah|2. For a fixed value of �, this expression defines
a nonlinear dependence between the intracavity intensity Ih

and the pump S. An example of such dependence is depicted
in Fig. 2(a) for � = 5.

For this value of �, the system shows multistability, i.e.,
for the same value of S, three HSSs, namely Ab

h, Am
h , and At

h,
coexist. These states are connected at two folds, or turning
points, located at the positions

I l,r
h ≡ 1

3 (2� ±
√

�2 − 3). (7)

As a function of �, these fold points define the two solid lines
plotted in the (�, S)-parameter diagram shown in Fig. 2(c).
Decreasing �, eventually these folds meet and disappear in a
cusp bifurcation Ch occurring exactly at � = √

3.

The vertical dashed line shown in Fig. 2(c) corresponds to
the diagram plotted in Fig. 2(a). For a fixed value of S, Eq. (6)
is solved by the expression

� = Ih ±
√

(S/Ih)2 − 1. (8)

An example of these solution branches is plotted in Fig. 2(d)
for S = 2.8, and represents the nonlinear resonance of the
cavity.

C. Linear stability analysis of the uniform state

The linear stability of HSSs against perturbations ∼eσ tψk

can be determined analitically. In this case, the eigenmodes
read ψk = eikx + c.c., while the eigenvalues depend on the
wave number k through the dispersion relation

σ (k) = −1 ±
√

−K (k)2 − 2(� − 2Ih)K (k) − C, (9)

with

K (k) = −d2k2 − d4k4, (10a)

and

C = (� − Ih)2 − 2Ih(� − Ih). (10b)

For nonuniform perturbations (k �= 0), the transition
stable/unstable takes place at the Turing or modulational
instability (MI), which satisfies simultaneously the conditions
∂kσ (k) = 0 and σ (k) = 0 for a critical wave number k = kc.
From this condition, MI occurs at Ih = 1, and the growing
perturbation at this point has the wave number [28]

kc = ±

√√√√−d2 ±
√

d2
2 − 4d4(2 − �)

2d4
, (11)

with d2 = 1 for our regime. The condition σ (k) = 0 also leads
to the marginal instability curve

Ih = 1
3 [2(� + K ) ±

√
K2 + 2K� + �2 − 3] (12)

which separates stable from unstable regions.
Figure 2(b) shows the marginal instability curve corre-

sponding to the the HSS shown in Fig. 2(a). The minimum
of this curve corresponds to the MI, and the area inside it
to the unstable HSSs. In correspondence, stable (unstable)
HSSs are marked using solid (dashed) lines in Fig. 2(a). At
k = 0, two homogeneous instabilities [i.e., saddle-node (SN)
bifurcations] occur at the fold positions [see Eq. (7)]. In what
follows we label these points SNl,r

h . A detailed study of the
MI in the d2 = −1 regime can be found in Ref. [28].

III. BIFURCATION ANALYSIS FOR DARK
LOCALIZED STATES

A. Bistability and plane-front locking

In the bistability region shown in Fig. 2, fronts connecting
At

h and Ab
h forward and backward can form. These fronts

drift at a constant speed which depends on the parameters
of the system. The speed increases (decreases) as the system
parameters approach (separate) from the Maxwell point of the
system, where it cancels out. Around this zero-speed point,
fronts can lock if oscillatory tails exist in the front profiles,
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leading to the formation of LSs of different widths [5,29].
Asymptotically, these tails can be described through the ex-
pression A(x) − Ah ∼ eλx, where λ is the spatial eigenvalue
of the system evaluated at Ah. The spatial eigenvalues can
be computed through the Jacobian associated with Eq. (3), or
equivalently, by solving the equation σ (−iλ) = 0, namely

d2
4 λ8 − 2d2d4λ

6 + (
4Ihd4 − 2�d4 + d2

2

)
λ4

− (
4Ihd2 + 2�d2

)
λ2 + (

�2 − 4Ih� + 3I2
h + 1

) = 0.

In our regime (d2 = 1 and d4 = 1), the previous equation has
eight solutions that read

λ = ± 1√
2

√
−1 ±

√
4� − 8Ih + 1 ± 4

√
Ih

2 − 1. (13)

The dynamically relevant eigenvalues are those related with
the slow dynamics of the system (i.e., those with the smallest
|Re[λ]|). Oscillatory tails appear if the dominant eigenvalues
are complexconjugate. When these eigenvalues are all real
numbers, the tails are monotonic. The transition between these
two configurations depends on the parameters of the system
(here, � and S). The modification of the spatial eigenvalues
associated with At

h, and Ab
h as a function of S are depicted in

Figs. 3(a) and 3(b), respectively, for � = 5.
Let’s take a look at the eigenvalues associated with Ab,t

h
around SM (see blue planes in Fig. 3). For Ab

h, the dominant
eigenvalues around SM [see oval gray shape in Fig. 3(b)] have
a large imaginary part and a very small real part, which means
that the oscillatory tails will have small wavelength and weak
decay. This leads to well defined oscillatory tails around Ab

h.
For At

h [see Fig. 3(a)], although the dominant eigenvalues
are also complex conjugate, the imaginary and real parts are
respectively smaller and larger than in Fig. 3(b), which leads
to oscillatory tails with very strong decay and very large wave-
length: effectively a quasimonotonic tail. Therefore, front
locking will be favored around Ab

h, in contrast with At
h. An

example of front locking is shown in Fig. 2(e). This tempo-
ral evolution has been computed through a direct numerical
simulation of Eq. (1) starting from a super-Gaussian profile
subtracted to At

h close to SM [shown in blue in Fig. 2(e)].
Initially, two fronts with opposite polarity form and approach
one-another as time passes. Eventually, they lock at a fixed
separation D, yielding a dark LS with two central dips. For
simulations of this type, we utilize a pseudospectral split-
step method with a discretization N = 1024 and domain size
L = 200.

As shown in Refs. [5,29], the time evolution of the fronts
separation D can be phenomenologically described by the
equation

∂t D = 
eRe[λ]Dcos(Im[λ]D) + η, (14)

where 
 depends on the parameters and η ∼ S − SM . The
fixed points De of this system (∂t De = 0) correspond to the
locking of fronts, and hence, to the formation of LSs of
width De. Thus, for the same value of η, LSs of different
widths may coexist. As we will see in the coming section,
LSs formed through front locking organize in a particular
bifurcation structure which depends directly on the interaction
law (14).

FIG. 3. (a) Modification of the spatial eigenvalues associated
with At

h as a function of S for � = 5. The gray plane corresponds
to SNl

h, and the blue one to SM . In this plane, the most relevant
eigenvalues are surrounded by a gray oval. (b) Same as in (a) but
for Ab

h.

Equation (14) captures the essential features of fronts in-
teraction and locking, and has been introduced here following
a didactic scope. The same equation has been explicitly de-
rived in other pattern formation models [30,31]. However,
more complete, but also complex, versions of this interac-
tion law have been derived in the context of bright soliton
bound state formation [32,33]. Following the same proce-
dure, one may be able to derive similar models for front
interaction in our context, although this is something left for
the future.

B. Bifurcation structure: Collapsed homoclinic snaking

To fully understand the formation of these states we per-
form a bifurcation analysis based on the path-continuation
techniques described in Sec. II 1. The output of these compu-
tations leads to the bifurcation diagram shown in Fig. 4 where
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H1
H1

FIG. 4. Collapsed homoclinic snaking for � = 5. Solid thick
(thin) lines correspond to stable (unstable) states. Some examples of
dark LSs are shown on the right panels (i)–(v). Bi label the solution
branches in between SNl,r

i , and SM is the uniform Maxwell point of
the system.

the energy of A, i.e., the L2-norm,

||A||2 ≡ L−1
∫ L/2

−L/2
|A(x)|2dx

is plotted as a function of S for � = 5. This diagram is
known as collapsed homoclinic snaking and is generic of
systems where LSs emerge through uniform-front locking.
Indeed, the damped oscillatory shape of the bifurcation curve
around SM is a direct consequence of the front interaction and
locking described by Eq. (14) (see Ref. [17] for a general de-
scription). The collapsed snaking curve emanates from SNl

h.
Close to this bifurcation, LSs have small amplitude and are

unstable. These small amplitude states can be computed
through multiscale perturbation theory, as done in the standard
LL equation [6,17].

Following the diagram downward, the dark LSs undergo
a sequence of saddle-node bifurcations appearing in pairs
SNr,l

i , where the subindex i represents the number of dips
appearing in each state. In these bifurcations, LSs gain and
lose stability, and at each SNl

i an extra dip is nucleated in the
structure at x = 0. In this way, the width of the LSs increases
while decreasing ||A||2. In what follows, we mark the solution
branches connecting SNl,r

i as Bi (see Fig. 4).

C. Persistence in the (�, S)-parameter space

Figure 5 shows the modification of the SNl,r
i bifurcations

(see blue lines), the homogeneous saddle-nodes SNl,r
h , and

MI in the (�, S)-parameter space. With decreasing �, the
pairs SNl,r

i approach each other and eventually they meet in
a sequence of cusp bifurcations Ci (here we only show C1).
Those with larger i, corresponding to SNs shown down in
Fig. 4, are the ones disappearing first when decreasing �.
This phase diagram is common in systems sharing similar
HSS linear stability, such as in passive Kerr cavities with
second-order chromatic dispersion [6] and in dispersive cavity
enhanced second-harmonic generation [34].

The modification of the collapsed snaking diagram along
the (�, S)-parameter space is illustrated in Figs. 5(b)–5(d)
for � = 3, 5, and 8, respectively [see vertical dashed lines
in Fig. 5(a)]. For � = 3, all the Bi branches are stable, and
most of them correspond to narrow states. Increasing �, cusp
Ci bifurcations with larger i appear and wider states emerge.
Moreover, Bi become wider due to the separation of their
corresponding SNl,r

i . The linear stability analysis along these
diagrams shows that, eventually, B1 undergoes a pair of Hopf
bifurcaitons Hl,r

1 , where the single-dip LS becomes unstable
in favor of localized oscillations (i.e., breathers). This is the
situation depicted in Fig. 5(c) for � = 5. We will explore the
spatiotemporal dynamics of these states in Sec. IV.

Further increasing �, B2 also destabilizes through the Hopf
bifurcations Hl,r

2 [see Fig. 5(d) for � = 8] leading to the
appearance of new breather states. A formal comparison with

(a)

(b) (c) (d) (b) (c) (d)

MI

h

h

H2
,H1

,

C

FIG. 5. (a) (�, S)-parameter space for β4 = 1. This diagram shows the main bifurcations of the system: the MI, saddle-node bifurcations
of the homogeneous state SNl,r

h , and saddle-node bifurcations associated with the collapsed homoclinic snaking SNl,r
i . Panels (b)–(d) show the

collapsed snaking for � = 3, 5, and 8, respectively, corresponding to the vertical dashed lines plotted in (a). Solid thick and thin lines represent
stable and unstable LS solutions. The labels Hl,r

i mark the position of the Hopf bifurcations leading to breathing behavior.
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b

FIG. 6. Top part of the collapsed snaking diagram for � = 8 where we show all the local maxima and minima of the breathers. We
use orange dots for the breathers emerging from B1 at Hl,r

1 (i.e., F1), and red dots for those bifurcating from Hl,r
2 along B2 (i.e., F2). PD

corresponds to a period-doubling bifurcation, and b marks the emergence of beating behavior. Panels (i) and (ii) show two examples of
breathers corresponding to F1 and F2, respectively.

the standard LL equation in the normal chromatic dispersion
regime (see Ref. [6]) shows that the destabilization of the Bi

branches occurs for larger values of �.

IV. SPATIOTEMPORAL DYNAMICS

Figure 6 shows a portion of the bifurcaiton diagram de-
picted in Fig. 5(d) for � = 8, where the maxima and minima
of the oscillatory variation of the breathers’ norm emerging
from Hl,r

1 are plotted using orange circles, whereas those ema-
nating from Hl,r

2 are shown using red circles. In what follows,
we refer to this set of breather branches as Feigenbaum-like
diagrams (F) [35]: F1 (orange dots) is connected to B1, while
F2 forms along B2 (red dots). These diagrams, and therefore
the breathers, bifurcate supercritically from every Hl,r

i . Let us
first focus on F1. An example of the breather belonging to this
set is depicted in Fig. 6(i) for S = 3.52. This state emerges
with a small amplitude form Hl

1 and with a single oscillatory
period. The breather undergoes a sequence of period-doubling
(PD) bifurcations yielding more complex dynamics that we
do not show here. The PD cascade is observable from the F1

diagram, although we only mark the first one at each side.
Near � ≈ 3.6, the system evolves to temporal chaos, and this
PD sequence is inverted. Eventually the chaotic state dies,
possibly in a boundary crisis of the attractor (BC) [35], and the
system ends up in the closest basin of attraction: the HSS At

h.
This situation shares similarities with the one reported in Kerr
cavities when only second-order dispersion is considered [6].

The F2 diagram in Fig. 6 shows more complexity than F1,
and furthermore, does not encounter any crisis or instability
destroying the oscillatory states. An example of a single-
period breather bifurcating from Hl

2 is depicted in Fig. 6(b)
for S = 3.82. Here, F2 shows the transition between different
dynamical regimes including beating phenomena (b) between
different frequencies and PD cascades [35].

Figure 7(a) shows a close-up view of F2 where these tran-
sitions are illustrated in more detail. The vertical dashed lines
in Fig. 7(a) correspond to the time series and frequency spec-
tra shown below [see Figs. 7(i)–7(viii)], which represent the
evolution of the breather intensity norm ||A||2 and its Fourier
transform ||A||2f , respectively. From the modification of the
spectra, one can clearly understand the transition between the
different temporal dynamical regimes. Such modification is
depicted in the color-map shown in Fig. 7(b) all along F2.

At (i) the breather is characterized by a single frequency
and their harmonics. At b, a new frequency arises [see
Fig. 7(b)], and the breather undergoes a beating phenomenon
between the former and latter frequency. In Fig. 7(ii), the new
frequency is marked using a red arrow and its difference with
the former one with δ. Because of this beating, the temporal
series (see top panel) shows modulation in the amplitude,
characterized by the beat period 2π/δ. At (iii), the δ is larger,
resulting in a smaller modulation on the temporal series. In-
creasing S further, the beating becomes more chaotic leading
to the dynamical behavior shown in Fig. 7(iii). Eventually
these states die out, leading to a single frequency breather
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FIG. 7. (a) Close-up view of the Fiegenbaum-like diagram F2 between Hl,r
2 (see Fig. 6). (b) Modification of the frequency spectrum of the

oscillatory states along the diagram shown in (a). To plot this spectrum we have filtered out the frequencies below the red dashed line depicted
in panels (i)–(vi). These panels show the time series and frequency spectra of the different oscillatory states [see vertical dashed lines in (a) and
(b)].

associated with the time series shown in Fig. 7(v). Increasing
more S, a sequence of PD bifurcation occurs leading to the
breather dynamics depicted in Figs. 7(vi)–7(viii).

V. IMPLICATIONS OF FOURTH-ORDER DISPERSION
ON THE BIFURCATION STRUCTURE AND STABILITY

Previously, we have performed bifurcation analysis for a
fixed value of d4, namely d4 = 1. Here we explore the effects
of modifying d4 on the stability of LSs, and on the their
bifurcation structure. We will see that large values of d4 may
also lead to the emergence of bright LSs, similarly to the
scenario described in Ref. [11] for TOD.

Figure 8 shows the modification of the collapse snaking
diagram for � = 5 with increasing d4: d4 = 0 in Fig. 8(a),
d4 = 2 in Fig. 8(b), and d4 = 10 in Fig. 8(c). Regarding the
top panels, we can see how by increasing d4, the branches Bi

widen, enlarging in this way the existence region for the dif-
ferent dark LSs. Furthermore, d4 has a stabilizing effect on the
breather states emerging from B1 and B2. This phenomenon
can be easily observed comparing Figs. 8(a) and 8(b). For
d4 = 2, B2 has stabilized completely while B1 partially. Both
stabilizations occur due to the movement of the Hopf bi-
furcations along the branches. Performing a two parameter
continuation of the different saddle-node bifurcations SNl,r

i in
Figs. 8(a)–8(c)[top], we are able to compute their modification
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FIG. 8. Modification of the collapsed snaking for � = 5 when varying d4: in (a) d4 = 0, in (b) d4 = 2, and d4 = 10 in (c). Examples of
bright LSs of different widths, corresponding to the diagram shown in (c), are depicted in panels (i)–(iv). Panel (d) shows the (�, d4)-parameter
phase diagram for dark LSs. Panel (e) shows the phase diagram associated with bright LSs. The vertical dashed lines correspond to the diagrams
shown in panels (a)–(c).

in parameters S and d4. The outcome of these calculations is
illustrated in the (d4, S)-phase diagram shown in Fig. 8(d).
The vertical dashed lines correspond to the diagrams plotted
in Figs. 8(a)–8(c)[top]. Decreasing, d4, the pair SNl,r

i (for i
fixed) comes closer, reducing the extension of Bi until reach-
ing d4 = 0. For d4 < 0.5, the shrinking process intensifies. In
contrast, the pairs SNl,r

i separate softly with increasing d4, and
the separation seems to saturate for large values of d4. The
different blue tonalities between the SNl,r

i lines correspond
to regions where dark LSs with different dips exist. A similar
tendency has also been observed for bright LSs in the presence
of TOD [13], where in contrast, the saturation occurs when
SNl,r

i approach each other with increasing d3.
Figures 8(a)–8(c) also show the modification, with increas-

ing d4, of the bottom part of the collapsed snaking around
SM . For d4 = 0, this curve follows a straight line on top of
SM , which for ||A||2 ≈ 0.9 turns to the right and eventually
connects with MI at Ab

h [6]. Increasing d4 [see Fig. 8(b) for
d4 = 2], the diagram reaches lower values of ||A||2, and under-
goes a pair of saddle-node bifurcations snl,r

1 before reaching
MI. Between these folds, a new branch of stable bright LS
solutions (B∗

1) appears. Increasing β4 further [see Fig. 8(c)
for d4 = 10], the extension of B∗

1 increases. Two examples of
bright LSs on this branch are shown in Figs. 8(i) and 8(ii).
Following up this diagram, new stable branches appear in
between snl,r

2 and snl,r
3 . We label these branches B∗

2 and B∗
3 ,

respectively. With increasing ||A||2, the bright LSs broaden as
depicted in Figs. 8(iii) and 8(iv).

The region of existence of these bright states is illustrated
in the (S, d4)-phase diagram shown in Fig. 8(e). The saddle-
node bifurcations snl,r

i converge rapidly to SM for i > 1. These
states emerge due to the modification of the spatial eigenval-
ues, which now allow the front locking around Ab

h and At
h.

Finally, to complete our study, we analyze the effect of d4

on the spatiotemporal dynamics of the system. To do so we
fix (�, S) = (8, 3.97), and scan the variation of the extrema
of the dark LSs norm with d4, as illustrated in Fig. 9. For
d4 = 0, dark LSs are static, and the diagram just shows a
single branch. Increasing d4 a bit further, the LSs encounter
a Hopf bifurcation H, where they destabilize in favor of a
single-period oscillation, which in a very narrow d4-interval
leads to more complex temporal dynamics characterized by
the time series shown in Figs. 9(i) and 9(ii). Eventually,
around d4 ≈ 8.3, the complex dynamics disappear, yielding a
single period breather again [see temporal series in Fig. 9(iii)].

VI. DISCUSSIONS AND CONCLUSIONS

In this paper we have studied the formation, bifurcation
structure, and dynamical instabilities of dissipative Kerr LSs
in the presence of FOD. Here we focus on the case where
d2 = 1 and d4 > 0, a configuration which has not been studied
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FIG. 9. Modification of the temporal dynamics associated with a single peak dark LSs when varying d4. The plot shows the variation of the
local maxima and minima of ||A||2 while passing from different dynamical regimes (red dots) and the unstable branch associated with the LS
(dashed blue). The time series shown in panels (i)–(iii) corresponds to the sections depicted through vertical dashed lines in the panel above.
Here, (�, S) = (8, 3.97).

in previous works. The linear stability analysis of the HSSs in
this configuration shows the presence of bistability between
two coexisting HSS states, namely At

h and Ab
h (see Sec. II).

We show that uniform wave fronts connecting the previous
HSS states can lock, yielding the formation of LSs. For that, a
necessary condition is the presence of oscillatory tails around
either At

h or Ab
h, which is determined by the spatial eigenvalues

of the system. For d4 = 1, our findings show that this locking
is possible only around Ab

h, leading to the formation of dark
LSs (see Sec. III 1).

In bifurcation terms, these states undergo collapse homo-
clinic snaking whose extension and stability change with �

(see Secs. III 2, III 3, and IV). Collapsed homoclinic snaking
is generic for systems exhibiting uniform-front locking, and
has been reported in a variety of pattern forming systems
including nonlinear quadratic optical resonators [8–10,34],
mode-locked vertical external-cavity surface-emitting lasers
(VCSEL) [36,37], semiconductor microresonators with strong
time-delayed feedback [38], and reaction-diffusion systems
[39–43], to only cite a few.

For d4 = 1, the scenario presented here is morphologically
very similar to the one found when studying Kerr cavities with
only normal SOD (i.e., d2 = 1) [6,44], despite the extension
of the LS existence regions and the onset of temporal insta-
bilities. This result shows that dark states are robust against
high-order dispersive effects, which may be quite relevant for
the experimental community interested in the generation of
this type of states.

This situation changes when increasing d4 (Sec. V). Re-
garding dark LSs, their region of existence initially increases,
although their extension soon saturates for values of d4 ≈ 3.
The most interesting phenomenon is that increasing d4, bright
LS solutions emerge, due to the stabilizing effect of this high-
order dispersion term, and their existence region broadens

(see Sec. V, Fig. 8). We find that d4 is also able to tune
the emergence and type of oscillatory states appearing in the
system, becoming a very relevant parameter to control the
temporal dynamics.

The capacity of d4 for stabilizing LSs was discussed in
Ref. [12] for a different regime of operation, where dark
localized patterns, and their associated homoclinic snaking,
were stabilized. The interaction of LSs, and formation of
soliton molecules, in the presence of FOD effects have also
been analyzed in Kerr cavities [33,45]. In this context, FOD
considerably increases the number of allowed locking dis-
tances between LSs, and therefore the variety of molecules.
The stabilization of bright Kerr LSs in the context of uniform
bistable regimes with collapsed snaking has also been inves-
tigated in the presence of TOD [11] and stimulated Raman
scattering [46].

In summary, dark LSs formation is robust in the presence of
FOD, which furthermore is able to stabilize, bright states. The
presence of both SOD and FOD introduces an extra degree
of freedom for controlling the dynamics of the cavity which
is absent in previous studies [6,16,17]. This fact, in con-
nection with the advances in dispersion engineering, makes
possible the management of different dispersion terms at will,
and therefore, the access to dispersion regimes previously
unattainable [3].

Thus, works of this type are relevant not only from a
theoretical point of view, but also from an experimental per-
spective, opening the possibility to observe these type of states
and dynamics in real Kerr cavities.
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