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Irreversibility of symbolic time series: A cautionary tale

Lluís Arola-Fernández * and Lucas Lacasa †

Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain

(Received 21 March 2023; accepted 6 June 2023; published 5 July 2023)

Many empirical time series are genuinely symbolic: Examples range from link activation patterns in network
science, to DNA coding or firing patterns in neuroscience, to cryptography or combinatorics on words. In some
other contexts, the underlying time series is actually real valued, and symbolization is applied subsequently, as
in symbolic dynamics of chaotic systems. Among several time series quantifiers, time series irreversibility—the
difference between forward and backward statistics in stationary time series—is of great relevance. However, the
irreversible character of symbolized time series is not always equivalent to the one of the underlying real-valued
signal, leading to some misconceptions and confusion on interpretability. Such confusion is even bigger for
binary time series—a classical way to encode chaotic trajectories via symbolic dynamics. In this paper we
aim to clarify some usual misconceptions and provide theoretical grounding for the practical analysis—and
interpretation—of time irreversibility in symbolic time series. We outline sources of irreversibility in stationary
symbolic sequences coming from frequency asymmetries of nonpalindromic pairs which we enumerate, and
prove that binary time series cannot show any irreversibility based on words of length m < 4, thus discussing
the implications and sources of confusion. We also study irreversibility in the context of symbolic dynamics, and
clarify why these can be reversible even when the underlying dynamical system is not, such as the case of the
fully chaotic logistic map.

DOI: 10.1103/PhysRevE.108.014201

I. INTRODUCTION

Irreversibility as a close synonym for nonequilibrium ther-
modynamics is a concept that dates back to the seminal works
of Prigogine [1]. Fast-forwarding, statistical time irreversibil-
ity, or time irreversibility (TI) in short, is a property of time
series (and the underlying processes generating it) whereby
the statistics of a time series and its time reversal show signif-
icantly different statistical properties (see [2] and references
therein). Whereas TI is trivial to observe in nonstationary
signals1 or in asymmetric periodic ones, to decide whether a
(noisy) stationary signal is reversible (in the statistical sense)
is usually nontrivial (see Fig. 1 for an illustration).

TI is indeed an important metric and a focus of ongoing
research in a variety of fields. In nonequilibrium thermody-
namics, the area of stochastic thermodynamics explores the
irreversible character of single trajectories [4], the onset of
apparent violations of the second law, and their quantification
via fluctuation theorems [5]. In this context, TI is a magnitude
that points to the presence of an (entropic) arrow of time, and
usually emerges in processes away from equilibrium—where
TI can be related to measures of entropy production [6].

Following a similar philosophy, TI has been explored in
the realm of (deterministic) dynamical systems, in connection
to concepts like phase space contraction and dissipation in
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1See however [3] for a discussion on how to extract meaningful

metrics of TI in nonstationary signals.

chaotic systems [7]. Independently, seminal theoretical works
on TI appeared in applied statistics, econometrics, and time
series analysis communities, with classical results on the
reversibility of linear stochastic processes or the motto re-
versibility implies stationarity [8]. Even more independently,
in the field of combinatorics on words [9] the concept of
time reversibility is intimately related to the enumeration of
palindrome “words” (blocks of symbols) in abstract sequences
of symbols [10].

The fact that advances on apparently the same concept but
slightly different definitions have been carried out in different
noncommunicative disciplines has led to some confusion. For
instance, is a Brownian motion reversible? The answer to this
question is not straightforward. One could argue that a Brow-
nian particle in thermal equilibrium is not dissipating and
is thus reversible, however the equation that governs Brow-
nian motion (the diffusion equation) is not invariant under
time reversal. At the same time, while a Brownian particle
trajectory is not on average “producing entropy” and should
be cataloged as a reversible process, Brownian motion itself
is a nonstationary process, and thus irreversible according to
[8] (see, however, [3]). Part of the issue might come from
conflating the reversible character of a single trajectory with
the full (ensemble) process. The latter notwithstanding, while
a unification of the polihedric concept of TI awaits, TI—in
its different incarnations—has been widely applied in areas as
diverse as financial economics, neuroscience, and biological
physics, and we refer the reader to an interesting review article
[2] and references therein.

In practice, the dynamical equations (i.e., the Hamiltonian
dynamics, the chaotic map, and the stochastic differential
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FIG. 1. Short time windows of reversible (left) and irreversible
(right) signals. (a) Periodic reversible trajectory generated from the
logistic map xt+1 = rxt (1 − xt ) at r = 3.2. The signal symmetrically
oscillates between two values. (b) Periodic irreversible trajectory of
the logistic map at r = 3.8284, which corresponds to an island of
stability of the map (surrounded by chaos), where the signal oscil-
lates between three values in an asymmetric manner and allows one
to trivially detect time directionality. (c) Aperiodic reversible trajec-
tory generated from uniform independent and identically distributed
noise. This is an example of a noisy process that is time reversible in
the long series limit. (d) Aperiodic irreversible trajectory, generated
from the logistic map at r = 4. This process is chaotic and dissipa-
tive, and therefore irreversible. Trajectories are displayed in a short
time window for visualization purposes, but much longer time series
are usually required to correctly estimate time irreversibility in noisy
signals.

equation) generating the time series are seldom available,
and one usually explores TI directly from time series mea-
surements. While measuring TI in real-valued time series (in
continuous or discrete time) has been operationalized from
a variety of angles [2], in this paper our aim is to focus on
the case where these measurements come in the form of fully
discrete time series, i.e., sequences of data where not only
time but also the variable itself takes only discrete values.
If there is no natural geometric embedding of these values—
e.g., if these values are categorical—then we are dealing with
symbolic time series, when the pool of values that can appear
in the time series is called an alphabet. Symbolic time series
are indeed ubiquitous across the disciplines, and measuring TI
directly from symbolic time series is routinely used in areas
such as economics [11,12], physiology [13–15], and genetics
[16] to name a few.

The main motivation for writing this paper comes from
our own experience as researchers and practitioners in TI,
where we have encountered several misconceptions and con-
fusions when dealing with TI of such symbolic sequences. For

instance, suppose that there exists a (latent) time irreversible
process that generates TI time series, and such series is sub-
sequently symbolized into a sequence of discrete values or
symbols. Is the latter symbolic sequence always TI? Unfortu-
nately, this is not always the case, so one needs to be careful
(see also the interesting paper [17] for a discussion). Our goal
is to provide a gentle guidance to some misconceptions and
provide theoretical grounding and some results to guide the
researcher and practitioner in the field.

The rest of the paper is organized as follows: In Sec. II
we introduce notation, provide basic definitions, and briefly
discuss some standard approaches to quantify TI. In Sec. III
we establish the two potential sources of irreversibility (that
we label scenario 1 and scenario 2) that emerge in dis-
crete, symbolic sequences, and we state, prove, and discuss
a no-go theorem for three-point statistics that prevents us
from concluding the presence (or lack) of TI in binary time
series by only looking at one-, two-, or three-point statis-
tics. Beyond three-point statistics, in Sec. IV we discuss in
detail when scenarios 1 and 2 can and cannot emerge in
binary time series generated from deterministic time series
via symbolization. This classification shows, for example, that
archetypal irreversible processes—such as the fully chaotic
logistic map—are time reversible when symbolized using
(standard) generating partitions [18], whereas they reveal the
true TI character of their underlying dynamics when symbol-
ized nonconventionally. At this point we also relate scenarios
1 and 2 to classic metrics such as the topological entropy
or the Kolmogorov-Sinai (KS) entropy [18]. Our analysis
connects these with the onset of forbidden words in symbolic
dynamics and their relation to the area of combinatorics on
words [9]. In Sec. V we conclude with some takeaways.

II. PREAMBLE: NOTATION, DEFINITIONS,
AND SURVEY OF METHODS

Throughout this paper, our object of study is a (long) and
ordered symbolic sequence S = (x1, x2, x2, . . . , xn), where xi

are symbols extracted from an alphabet A with |A| symbols
(for the particular case of binary time series, we have A =
{0, 1}, |A| = 2). We also define a word w of length m as the
concatenation of m � 1 symbols; for instance 0111 is a word
of length m = 4.

Since we are interested in time series, we assume without
loss of generality that S is a time sequence, such that we
can say xt is the t th entry of S or the entry at time t in an
interchangeable way. S is said to be stationary if the amount
of words of length 1 is reasonably2 constant over time. We
define S as the sequence “forward in time,” i.e., S ≡ Sfwd,
and its time reversal Sbwd = (xn, xn−1, . . . , x2, x1). In the limit
of large n, the hierarchy of normalized frequencies,

p(x1, x2, . . . , xm)

= No. of occurrences of the word x1x2 . . . xm

n − m + 1
,

2One needs to define a sufficiently large lower bound for the size of
the time window over which this check is made.
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where the denominator takes into account the number of
overlapping words in the series, formally defines a stochastic
process. A stationary symbolic time series S is generally said
to be time irreversible—or simply irreversible—if the statis-
tics of Sfwd and Sbwd differ. We can formalize this further as
follows.

Definition (mth-order irreversibility). S is irreversible of
order m (or simply m irreversible) if

pfwd(wm) �= pbwd(wm), (1)

where wm is the set of all words of length m to be found in the
forward and backward time series, respectively.

We thus say that S is irreversible if there exists a finite
m < n for which S is m irreversible (note that m irreversibility
implies m + 1 irreversibility). The lowest value of m for which
S is m irreversible is called the intrinsic irreversibility order
of S .

To operationalize the above definition, we need a way
to quantify m irreversibility. A conceptually straightforward
way to assess this it to use a similarity metric D be-
tween distributions, such that D(pfwd(wm), pbwd(wm)) can
be computed. Such statistic needs to be unbiased in such
a way that for a m-reversible sequence S , we should have
D(pfwd(wm), pbwd(wm)) → 0 in the limit of large n. To as-
sess the significance of D(pfwd(wm), pbwd(wm)) for finite n,
a standard approach is to extract a p value associated to the
statistic by shuffling3 S a number of times, computing the
same statistic in each realization, and checking the percentage
of realizations where the measured statistic is larger than
or equal to the one found for S . If such p value is below
0.05, one is confident at the 95% level that the S is m ir-
reversible, and the amount of m irreversibility is given by
D(pfwd(wm), pbwd(wm)).

Traditionally, authors have used simple measures for D
such as the L2 distance [19]. Interestingly, if one uses instead
the Kullback-Leibler divergence [20], then it turns out that
D(pfwd(wm), pbwd(wm)) converges, in the limit of large m,
to a measure of entropy production [4,6,21,22]. A different
approach that does not require computing m irreversibility
and directly aims to estimate differences in the full statistics
instead exists. This is based on comparing compression prop-
erties of Sfwd vs Sbwd [6,23]. Other approaches for estimating
TI when time series are not necessarily symbolic include the
use of multiscale asymmetry [24], visibility graphs [25,26],
or ordinal patterns [27] to cite some (see [2] for a detailed
survey).

III. SOURCES OF m IRREVERSIBILITY
IN SYMBOLIC SEQUENCES

We are interested in finding the words that are potential
sources of irreversibility in an arbitrary symbolic time series.
Let us consider a large symbolic sequence S , with alphabet
size |A|, and let wm be the set of words of length m, which
has in principle |A|m elements.

3Shuffling a sequence preserves its marginal distribution and pro-
vides an uncorrelated random sequence which is (asymptotically)
statistically reversible.

For a given m, all words can be classified as palindrome
or nonpalindrome. A palindrome word is just a word that is
invariant under time reversal; e.g., 101 or 01210 are palin-
dromes, whereas 001 or 012 are nonpalindromes. The total
number of nonpalindrome words NPW(m, |A|) can be calcu-
lated by subtracting the number of palindrome words from the
whole set. Since the number of palindromes is just the number
of distinct words that can appear in half the word length (if m
is even) or |A| times the number of distinct words in half the
word length minus 1 (if m is odd), then we get

NPW(m, |A|) =
{

|A|m − |A|(m−1)/2+1 if m odd

|A|m − |A|m/2 if m even
. (2)

As an example, take |A| = 2 and m = 3. The palindrome
words are 000, 111, 010, and 101, and the nonpalindrome
words are 001, 100, 011, and 110. Interestingly, note that
all nonpalindrome words come in pairs: One word and its
time reversal, e.g., (001, 100) and (011, 110) in the preceding
example. Thus, observing a particular nonpalindrome word
in Sfwd is equivalent to observing the other element of the
nonpalindrome pair in Sbwd. Since by definition palindrome
words are invariant under time reversal, any source of irre-
versibility necessarily emerges only in nonpalindrome words,
and in particular comparing the frequencies of both words of
each nonpalindrome pair.

Furthermore, there are essentially two ways in which these
nonpalindrome words yield a source of irreversibility, i.e., two
scenarios.

Scenario 1 (S1): In a given nonpalindrome pair one word
of the pair is present in S and the other word is absent (a so-
called forbidden word).

Scenario 2 (S2): In a given nonpalindrome pair both words
are present in S but with different frequencies.

S2 actually encompasses S1 as a particular example, but
for convenience we keep both scenarios separated. Further-
more, the onset of S1 or S2 predates the practical estimation
of m irreversibility; i.e., there are different ways of actually
estimating TI but they all predicate on the existence of S1 or
S2. For that reason, the rest of the paper pays special attention
to these scenarios.

A. No-go theorem on TI: m irreversibility is impossible
for m < 4 in binary time series

In real-valued time series, one can find sources of irre-
versibility already from the inspection of 2 irreversibility [2].
However, below we show that when dealing with binary time
series this is not the case, and we need at least to go up
to words of length m � 4. Before stating and proving the
theorem, we need to introduce some definitions and a useful
lemma.

Definition (trivial sequence). A binary sequence S is trivial
if it eventually becomes constant; i.e., there exists a q > 0
for which the sequence S = x1x2 . . . xq0 or S = x1x2 . . . xq1,
where s = sss . . . . Conversely, a sequence that is not trivial is
called a nontrivial sequence.

Definition (trivial nonpalindrome pair). A binary, non-
palindrome pair of words of length m is trivial if one of the
words of the pair is either concatenation of a single symbol
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{0} and (m − 1) symbols {1} or a concatenation of symbol
{1} and (m − 1) symbols {0}. Conversely, a nonpalindrome
pair that is not trivial is called a nontrivial nonpalindrome
pair.

For instance, (01, 10), (001, 100), and (1000, 0001) are
trivial nonpalindromes pairs of length m = 2, 3, and 4, respec-
tively. Accordingly, the nonpalindrome pairs that do not fulfill
the above condition are nontrivial, as, e.g., (0100, 0010) or
(1010, 0101) for m = 4 or (01001,10010) for m = 5, to name
a few.

The following lemma is also useful to prove the no-go
theorem as it discards the words that cannot be sources of ir-
reversibility in binary time series (besides palindrome words,
which are trivial reversible sources by definition).

Lemma (nonpalindrome reversible sources). Let S be a
large, nontrivial binary time series of length n, and let zm be
the set of all trivial nonpalindrome words of length m < n.
Then

pfwd(zm) = pbwd(zm), ∀ m.

Proof. First note that one can always write trivial nonpalin-
drome words either as a1a2 . . . am−1bm or a1b2b3 . . . bm where
ai is {0} and bi is {1} (or vice versa) for any i (note that the
label here is used to indicate the position of the symbol in the
word).

Let us focus on the first one, and assume that
a1a2 . . . am−1bm is present in S . For it to occur again, we need
to switch from symbol b to “symbol” a1a2 . . . am−1. This can
happen straight away, like a1 . . . am−1bmam+1 . . . a2m−1b2m, so
that the reverse bmam+1 . . . a2m−1 = b1a2 . . . am already ap-
pears in the sequence, or after an arbitrary intermission of size
k, like a1 . . . am−1bm

︷ ︸︸ ︷
xm+1 . . . xm+k am+k+1 . . . a2m+k−1b2m+k ,

so that the reverse appears at the last k′ at which xm+k′ = b. In
any case, for a new a1a2 . . . am−1bm to appear, a b1a2a3 . . . am

needs to appear necessarily once, so in the limit of large
sequences, the pair does neither contribute to S1 nor to S2.

A similar phenomenon happens for a1b2b3 . . . bm: Sup-
pose that we find it in S and, after an intermission,
we find it again. The intermission can be (i) void, lead-
ing to a1b2b3 . . . bmam+1bm+2bm+3 . . . b2m, i.e., finding the
reverse in the middle; (ii) formed by a1x2x3 . . . xk , i.e.,
a1b2 . . . bmam+1xm+2 . . . xm+kam+k+1bm+k+2 . . . b2m+k , which
again leads to the appearance of b1b2 . . . bm−1am right after
the first a1b2b3 . . . bm regardless of x2 . . . xk−1; or (iii) formed
by b1x2x3 . . . xk . In this latter case, the reverse b1b2 . . . bm−1am

will necessarily appear as soon4 as any of the xi = a. If none
of them take such value (i.e., xi = b ∀ i) then b1b2 . . . bm−1am

will appear just after (m − 1) appearances of b, all of them
present in the intermission if k � (m − 1) or, coming from a
concatenation of (m − 1 − k) symbols b from the initial word
and k symbols b from the intermission, if k < (m − 1).

4Interestingly, the size distribution of these intermission blocks
could actually have a measurable impact when assessing TI not in
terms of the word frequencies but in their recurrence time [28], in the
event that intermission size follows a complicated non-Markovian
process; note however that this might compromise the stationary
nature of the time series in the first place.

Altogether, in an arbitrary trivial nonpalindrome pair,
both words have the same frequency, and thus pfwd(zm) =
pbwd(zm), hence concluding the proof. �

We are now in the position to state and prove the no-go
theorem for binary time series, which restricts the detection
of m irreversibility to words of length m � 4.

Theorem. Let S be a large, nontrivial binary time series and
let wm be the set of words of length m. Then

pfwd(wm) = pbwd(wm), for m = 1, 2, 3.

Proof. The proof is a constructive one.
m = 1: Time reversal leaves the marginal distribution of S

invariant, and thus trivially we have pfwd(w1) = pbwd(w1).
m = 2: In this case, there is just one nonpalindrome pair:

(01,10), which is trivial. Using the lemma, we get pfwd(01) =
pfwd(10) = pbwd(01). Then we have pfwd(w2) = pbwd(w2).

m = 3: There are a total of NPW(3) = 4 nonpalin-
drome words, so two nonpalindrome pairs: (001, 100) and
(011, 110), which are both trivial. Using again the lemma,
we have that, for m = 3, words have the same frequency
for each nonpalindrome pair, and thus pfwd(w3) = pbwd(w3),
concluding the proof. �

This theorem indicates that irreversibility (or lack thereof)
in binary time series cannot be concluded on the grounds of 2
and 3 irreversibility for binary time series, and words of length
m � 4 need to be considered. To understand this effect, note
that for m = 4, there are 12 nonpalindrome words but still
only four trivial nonpalindromes: 0001, 1000, 0111, and 1110
(i.e., two pairs). Thus, the nontrivial nonpalindromes can be
a source of irreversibility, and these appear only for m � 4.
As an example, consider the short series 0010110010, and
note the word 0010, nonpalindrome and nontrivial, appears
twice while its reversed 0100 does not show up. Instead, for
the word 001 to appear again, we observe that its reverse 100
has to show up once in the series.

Therefore, to correctly estimate the potential sources of
irreversibility in binary time series (|A| = 2), we shall subtract
the two pairs of trivial nonpalindromes (for m � 2) from the
set of nonpalindrome words. It is then easy to calculate the
fraction of words that are potential sources of irreversibility in
binary time series, q(m, |A| = 2), with q(1, 2) = q(2, 2) = 0
and

q(m, 2) =
{

1 − 2(1−m)/2 − 2(2−m) if m � 3 odd

1 − 2−m/2 − 2(2−m) if m � 2 even
. (3)

Since the number of trivial nonpalindromes is always 4 for
m � 3, this correction becomes negligible for larger m, but
it is the reason behind the impossibility of detecting m irre-
versibility for m = 3.

B. Symbolic time series beyond the binary case

Observe that for symbolic time series with |A| > 2, all
nonpalindrome words can contribute to the irreversibility,
and the no-go theorem does not apply. As an example, al-
ready with |A| = 3 symbols, 2 irreversibility is possible, e.g.,
in 01220120122220120 words of the nonpalindromic pair
(01, 10) appear with different frequencies (actually 10 does
not appear, leading to scenario 1). In this case, we can then
use directly the formula given by Eq. (2), normalized by
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FIG. 2. Fraction of words that can be sources of irreversibility
depending on the word length, for different alphabet sizes. Observe
that the black curve, corresponding to a binary alphabet, shows a
transition from q = 0 to positive values at m = 4, as dictated by the
no-go theorem, while q > 0 for larger alphabets for any m > 1.

|A|, to estimate the fraction of potential irreversible sources,
leading to

q(m, |A| > 2) =
{

1 − |A|(1−m)/2 if m odd

1 − |A|−m/2 if m even
. (4)

In Fig. 2, we plot the fraction of irreversibility sources depend-
ing on word length m for several alphabet sizes, computed
directly from Eqs. (3) and (4). We observe that for |A| = 2,
the fraction is q > 0 for m � 4, while for |A| > 2, we can
detect m irreversibility even for m = 2.

In retrospect, the absence of the no-go theorem might
be (inadvertently) at the core of TI quantification methods
proposed for symbolized time series, such as in [13] where
the authors directly propose a ternary coding (|A| = 3), in
[28] where the authors consider a three-state Markov chain
and look into recurrence times, or in [19], where the authors
state (without further discussion) that “we find it desirable
to use larger alphabet sizes..., in contrast to the usual binary
alphabets....” Incidentally, in Fig. 3(b) of [19], the authors
seem to find 2 irreversibility and 3 irreversibility for |A| = 2.
This is in violation of the theorem proved above, and we
thus conjecture that such figure might have a typo somewhere
[actually, in Fig. 3(a) of [19] the authors correctly find the lack
of 3 irreversibility for |A| = 2, contradicting Fig. 3(b)].

C. Further remarks

Observe that, in practice, the statistics of word frequencies
for large length m will be poor when the series size n is
not large enough. These finite-size effects make the no-go
theorem even more problematic in practice, as the length
of the sequence which is required to accurately estimate m
irreversibility grows exponentially with m, so TI is difficult to
estimate in (short) binary time series, which is typically the

case in experimental observations. If additional information
of the process is eventually available (e.g., if the process runs
in continuous time, and there are metadata on the time spent
between transitions between states), then alternative quantifi-
cations of TI have been proposed [29]. Unfortunately, many
empirical time series are plainly symbolic, and they are not
the outcome of a sort of telegraph process with latent time
statistics. Interestingly, recurrence-time statistics might then
be used instead [28].

For instance, one could assess the number of symbols be-
tween two events of 001, and compare these statistics with
the recurrence time of 100. When imposing complicated non-
Markovian processes for the size of the intermissions, then
one might actually get different recurrence-time statistics;
e.g., for a sequence

S = 001 10101010︸ ︷︷ ︸
τ1

100 000 . . . 00︸ ︷︷ ︸
τ2

001 10101101 . . .︸ ︷︷ ︸
τ3

100 000 . . . 00︸ ︷︷ ︸
τ4

001 11101101 . . .︸ ︷︷ ︸
τ5

100 . . . , (5)

the recurrence time for 001 is (τ1 + τ2 + 3, τ3 + τ4 +
3, τ5 + τ6 + 3, . . . ) = (τi + τi+1 + 3)...i=1 whereas the one for
100 would be (τ2 + τ3 + 3, τ4 + τ5 + 3, τ6 + τ7 + 3, . . . ) =
(τi + τi+1 + 3)...i=2, so statistically we have the same recur-
rence times for stationary intermissions—where the index
i can be dropped—and different ones for time-dependent
(i.e., nonstationary) intermissions: Finding nontrivial patterns
might therefore compromise the stationarity of the signal in
the first place.

In any case, the no-go theorem clarifies why quantifying ir-
reversibility is harder in binary time series than in real-valued
ones. When symbolizing time series, practitioners usually
have a bias towards binary time series as these are simpler and
require smaller time series size to get accurate word statistics,
hence potentially falling into the domain of the no-go theo-
rem inadvertently. Moving from binary to symbolic sequences
with a larger alphabet indeed allows us to circumvent the
no-go theorem.

Furthermore, we reckon that researchers also tend to
overuse binary time series due in part to the well-known
nature of information theory or symbolic dynamics theory
(see below). For instance, symbolic dynamics elegantly shows
that many chaotic properties can be retrieved from suitably
binarized time series of chaotic trajectories. Unfortunately,
time irreversibility is not consistently one of these properties,
because the motion on this symbolized phase space can appear
to be strictly random [30]—and thus, time reversible—as we
discuss in the following lines.

IV. IRREVERSIBILITY IN AND FROM
SYMBOLIC DYNAMICS

Binary time series are classically found in the mathemat-
ical field of symbolic dynamics [18], where an interval map
xt+1 = f (xt ; r), x ∈ [a, b] is symbolized by defining a parti-
tion of the interval [a, b] = ⋃k

i=1[ai, bi ). The case of k = 2
symbols has received a lot of attention, mainly due to the
fact that unimodal maps—canonical low-dimensional exam-
ples of chaotic motion—typically have so-called generating
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FIG. 3. Illustration of the resulting m irreversibility (as computed using the L2 norm) for binary time series of 106 data points, generated
from the logistic map xt+1 = rxt (1 − xt ) for three different values of r where the map is chaotic: r = 3.8 (Pomeau-Maneville scenario), 3.9, and
4.0 (fully chaotic and topologically conjugate to the Bernoulli shift). In every case the time series are symbolized via a two-symbol partition
[0, 1] = [0, 1/2) ∪ (1/2, 0]. Such partition is generating only for r = 4.0—and in that case the induced symbolic dynamics is a conventional
Markov chain, i.e., time reversible—and for other values r �= 4 is expected to induce a complicated non-Markovian process, with the onset of
different frequencies for some nonpalindrome pairs (inducing m irreversibility via scenario 2), and the onset of forbidden words (grammar),
leading also to m irreversibility via scenario 1. The last column shows both the results of m irreversibility as computed from the symbolized
time series (in blue) and the same value applied to a null model (in orange, with 95% confidence interval error bars) where the symbolized
time series has been shuffled 100 times (such null model by construction is time reversible for all m, and thus any finite value is just a finite
size effect). In every case, we find lack of irreversibility for m < 4, as expected by virtue of the no-go theorem. For r = 4.0 (bottom panel of
the last column), results for m � 4 are not different from the null model, thus reversibility cannot be rejected, as expected. For r = 3.8 and 3.9,
we find signals of m irreversibility starting from m = 4 for r = 3.9 and from m = 6 for r = 3.8, highlighting that each case possesses different
grammars.

partitions [18] with two symbols: Such is the case for, e.g.,
the chaotic logistic map xt+1 = rxt (1 − xt ), x ∈ [0, 1], whose
binary partition [0, 1] = [0, 1/2) ∪ [1/2, 1] induces a sym-
bolic dynamics—binary time series—from which important
properties can be retrieved [31]; for instance, the time series
generated from an initial condition x which is iterated via f
and later symbolized uniquely defines x.

Chaotic time series are of relevance in the study of irre-
versibility, as it is often the case that chaotic dissipative maps
yield irreversible dynamics, a property that is easily retrieved
from the statistics of the real-valued time series [2]. But is
irreversibility conserved in the coarse-grained description of-
fered by the symbolic dynamics? To discuss such question, let
us consider two important and classic measures. The so-called
topological entropy K (0) counts the number of possible words
of length m that are actually present in S , such that

K (0) = lim
m→∞

1

m
ln(|wm|) (6)

[rigorously, K (0) indeed converges to the topological entropy
only when the phase space partition is generating [18,32]]. It
is straightforward to show that, for |A| = 2 symbols, onset of
S1 directly implies K (0) < ln(2).

Another important result from the theory of symbolic dy-
namics is that when f is a chaotic map, its (positive) Lyapunov
exponent λ can be estimated from the so-called block entropy
rate

hm = −1

m

∑
wm

p(wm) log p(wm), (7)

via the so-called Pesin identity [18], that identifies λ with the
Kolmogorov-Sinai entropy hKS of the system, where

hKS = lim
m→∞ hm (8)

if the partition used to symbolize the trajectory is again a
so-called generating partition (in general, a suitable optimiza-
tion over all possible partitions needs to be made). Observe
that Eq. (7) goes above and beyond the topological entropy
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as it is indeed looking into the frequencies (the measure) of
words in S , not only their existence. In that sense, for |A| = 2
symbols, it is easy to see that onset of scenario 2 would imply
hKS < ln(2). Note at this point that hKS is not a standard
entropy as it is not an extensive variable; it is actually an
entropy rate. As a matter of fact, Eq. (8) can also be applied for
symbolic sequences that are not necessarily symbolizations
of deterministic trajectories (e.g., stochastic processes, and in
general any kind of empirical symbolic sequence), and in that
event, Eq. (8) converges to the entropy rate of the sequence
S , or equivalently to the entropy rate of the stochastic process
that generated S [20] (not to be mistaken with the Shannon
entropy of a discrete random variable with support A, which
essentially is h1).

It is well known that, depending on the specific partition
employed and the map’s parameter r, the resulting symbolic
sequence of a chaotic map can have (i) no forbidden words
(whose frequencies could in principle be equal—leading
to lack of irreversibility, and a constant hm = ln |A|—or
different, leading to scenario 2) or (ii) a hierarchy of for-
bidden words (a so-called grammar [18,30]), leading to
scenario 1.

A. Sequences that lack forbidden words

By topological conjugacy, any map which is conjugate to
the Bernoulli shift lacks forbidden symbols in its symbolic
dynamics [18]. This is the case for the tent map or the Ulam
map xt+1 = 1 − 2x2

t , equivalent to the fully chaotic logistic
map [xt+1 = rxt (1 − xt ) for r = 4]. In all these cases, with a
binary partition |A| = 2 which is generating, the number of
possible (admissible) words of length m is indeed |wm| = 2m.
The topological entropy is then K (0) = ln(2): Scenario 1 does
not take place. Interestingly, the KS entropy also equals ln 2
(the Lyapunov exponent of the map). This in turn suggests
that p(wm) → 1/2m, i.e., symbolic (binary) series might be
reversible for such chaotic maps (even if the real-value tra-
jectories of these maps are easily seen to be irreversible; see
for instance [25]). As a matter of fact, for xt+1 = 4xt (1 − xt )
the usual partition is not only generating; it is also a Markov
partition (that yields S as a topological Markov chain). Not
only that, such partition makes S a conventional Markov
chain, which is trivially reversible. This result is in stark
contrast with the fact that the real-valued map at r = 4 ac-
tually generates irreversible trajectories. For other values of
r, the partition does not generate a conventional Markov
chain.

B. Sequences with forbidden words

If the partition is not generating, or if the map is not
conjugate to Bernoulli, the results above do not hold. Indeed,
in the logistic map outside r = 4 and using the usual parti-
tion [0, 1/2) ∪ (1/2, 1] (which is again generating) leads to
a stochastic process associated to the statistics of S which in
general is non-Markovian [18]. Interestingly, it turns out that
for r �= 4 a whole set of forbidden words emerges. Such set
is different for each value of r and is the so-called grammar
[18,30]. The existence of forbidden words of size m inside
such grammar that affect single words of each nonpalindrome

pair (i.e., for instance, having 0101 as a forbidden word but not
1010) is a first guarantee of finding m irreversibility, according
to scenario 1.

To gain some intuition and further support the claims
above, we now run some numerical simulations where we
track m irreversibility in a number of situations (note that
along this paper we provide a PYTHON code to test m ir-
reversibility). For the sake of exposition, here we choose a
simple way to compute m irreversibility IR(m) in terms of the
L2 distance between respective distributions [19]

IR(m) =
√ ∑

w∈wm

[pfwd(w) − pbwd(w)]2, (9)

but one can expect the same qualitative results if another
metric to measure the distinguishability between the distribu-
tions is used (as, e.g., the Kullback-Leibler divergence or the
Jensen-Shannon distance [6,33]).

In Fig. 3 we depict IR(m) for symbolized time series (with
|A| = 2 symbols using a generating partition) from the lo-
gistic map xt+1 = rxt (1 − xt ), for several values of r where
we know that the map is chaotic, dissipative, and time ir-
reversible. We find that for r = 4 the resulting binary time
series is indeed m reversible at all m, as expected, even if the
nonsymbolized one is clearly irreversible [25], due to the fact
that the precise partition of the phase space used to symbolize
the time series is inducing a conventional Markov chain in
the symbolized sequence. For other values of r, a grammar
emerges, and there are clear signs of m irreversibility (starting
at m > 3 as per the no-go theorem). Note that the grammar of
forbidden words and the specific frequencies of words in each
nonpalindrome pair nontrivially depend on the specific value
of r, leading to very different net values of m irreversibility
(albeit all positive and significant as they deviate from the
results of a null model): For instance, for r = 3.9, IR(m) is
nonzero starting from m = 4, and peaks at m = 5 with a value
around 0.14, whereas for r = 3.8, IR(m) is nonzero starting
from a larger m = 6, the peak is located at m = 8, and the
value of irreversibility is substantially smaller.

These findings are further illustrated in Fig. 4, where we
scan a wide range of r values from 3.5 to 4. This range spans
the region where chaotic behavior occurs in the logistic map.
In fact, only the chaotic region is our matter of interest here,
because we aim at detecting irreversibility in noisy stationary
signals. For this reason, in Fig. 4 we neglect the contributions
to m irreversibility produced by the purely periodic, asymmet-
ric motion that occurs on islands of stability, such as the one
arising around 1 + √

8 ≈ 3.83 [2]. On this island, irreversibil-
ity is much larger than the one measured at any other value of
r, but this large magnitude comes from a pure periodic motion,
where the dynamics shows asymmetric oscillations among a
few values of x. Periodic irreversibility is trivial to detect (see
also Fig. 1 for more details), and thus here we focus only
on irreversibility sources coming from noisy (here chaotic)
stationary signals.

We can now proceed to discuss in more detail Fig. 4.
In Figs. 4(a) and 4(b), we observe that, whereas we find
that IR(m) is typically nonmonotonic where the location of
maximum irreversibility m∗ depends nontrivially on r, those
values of r for which the symbolic time series has consistently
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FIG. 4. (a) Curves of m irreversibility IR(m) (computed via L2 norm) for binary time series of 3×106 data points, extracted from the
logistic map xt+1 = rxt (1 − xt ) at different values of r. (b) Scatter plot of the maximum value of m irreversibility IR(m∗) as a function of the
value of the word length m∗ where such value is found. We can see that irreversibility curves are systematically nonmonotonic, albeit with a
peak location m∗ which varies nontrivially for different values of the map’s parameter r, and large irreversibility values are typically related
to m irreversibility curves that peak at m∗ ∈ [5, 10]. (c) Heatmap of the m irreversibility value depending on r and m in the logistic map.
(d) Heatmap of the m irreversibility computed only for the words satisfying scenario 1 (S1). (e) Heatmap of the m irreversibility computed
only for the words satisfying scenario 2 (S2), neglecting in the sum of Eq. (9) the words that contribute to S1.

larger irreversibility coincide with irreversibility peaking at
word lengths m∗ ∈ [5, 10]. In Fig. 4(c), we use a heatmap to
visualize how our irreversibility measure depends on both r

and m in the logistic map using the binary partition [0, 1] =
[0, 1/2) ∪ [1/2, 1]. One can observe that irreversibility in-
creases from zero to some positive value around the onset

FIG. 5. (a) m irreversibility, computed using Eq. (9), depending on the partition threshold of the binarization process in the logistic map
with r = 4 and for several values of the word length m, in time series of 3×106 points. The dashed lines correspond to the irreversibility
of the null model, where the symbols have been randomly shuffled, and no irreversibility is detected. (b), (c) Results for r = 3.8 and 3.9,
respectively.
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of chaos in the map, at r ≈ 3.57, and its presence is sus-
tained across most of the r values in the range. Besides
the aforementioned island of stability around r ≈ 3.83, we
observe other chaotic regions where irreversibility is negligi-
ble, as, e.g., at the well-studied r = 4 due to the Markovian
nature of the symbolised dynamics under the symmetric
partition.

In Figs. 4(c) and 4(d), we plot the contribution of the
terms corresponding to the S1 and S2 sources, respectively, of
irreversibility in Eq. (9) to illustrate the effect of the grammar
(the presence of forbidden words) in the binarized logistic
map. We observe a strong correlation between the presence
of both sources of irreversibility, showing that a dynamics
with forbidden words (S1) will usually have strong asymmetry
between the frequencies of appearance in the forward and
backward series even for the set of nonforbidden words (S2).
This effect is well observed, for instance, around r ≈ 3.9,
where m irreversibility is larger at a very low value of word
length (m∗ = 4). In this region, S1 indeed occurs, but the
largest part of the m irreversibility comes from S2. Overall,
the heterogeneity in the heatmaps highlights the nontrivial
dependence of the grammar of the map on the chosen values
of r and m, even when we are using the symmetric partition
[0, 1] = [0, 1/2) ∪ [1/2, 1] that is known to be a generating
partition for any value of r.

In Fig. 5, we explore the behavior of m irreversibility in the
logistic map for nongenerating partitions. We vary the parti-
tion threshold z such that [0, 1] = [0, z) ∪ [z, 1] (only z = 0.5
leads to a generating partition). In Fig. 5(a), we observe the
nonmonotonous behavior of m irreversibility depending on
z, when the parameter is set to r = 4, for several values of
m. A valley with IR(m) = 0 at z = 0.5 is surrounded by two
peaks of large irreversibility. In particular, the maximum of
irreversibility occurs at z = 0.6, surprisingly indicating that a
binary dynamics generated from a nongenerating partition of
the unit interval is the one that maximizes the m irreversibility
in this map. However, as observed in Figs. 5(b) and 5(c),
if the parameter of the map changes, the whole curve and
the location of the maxima also change, indicating that the
irreversibility of the process is highly dependent, not only on
the value of r and the word length m, but also on the partition
that is selected.

V. DISCUSSION

When dealing with (binary or symbolic) time series, results
on TI should be taken with caution. In particular, false nega-
tives can occur as we have explained. We summarize here a
number of takeaways.

(i) The statistics of words of length m < 4 are equivalent
for binary time series and its time reversal as shown by the
no-go theorem proved in Sec. III. As a result, TI cannot be
concluded on such a basis, as statistics for longer words need
to be considered. This limitation is removed when using an al-
phabet of more than two symbols, so in practice, moving away
from binary to ternary (or above) time series is preferred, even
if this increase in the alphabet size requires longer time series
for a correct estimation of word statistics. This no-go theorem

explains why current algorithmic proposals to assess TI in
symbolic time series heuristically move away from alphabets
with only two symbols, despite the fact that researchers have
a positive bias towards binary time series, usually related to
the well-known nature of information theory and symbolic
dynamics.

(ii) Some time irreversible processes, such as chaotic
dissipative processes, can be misleadingly seen as time re-
versible when symbolized; this is for instance the case of the
fully chaotic logistic map xt+1 = 4xt (1 − xt ) symbolized via
the generating partition [0, 1] = [0, 1/2) ∪ (1/2, 1] (binary
symbolization), which induces a conventional Markov chain
in the symbolic dynamics. Nonconventional partitions (e.g.,
nongenerating binary partitions) induce complicated non-
Markovian stochastic processes in the symbolic dynamics
from which time irreversibility is reestablished and can then
be correctly estimated (still, from words of length m � 4). In
the absence of a clear criterion for an adequate partition, to
assess TI directly from the real-valued time series is preferred,
and otherwise a partition with more than two symbols is a
cautious choice.

(iii) The onset (or lack of) time irreversibility from sym-
bolic dynamics [i.e., for (real-valued) deterministic maps
whose time series are symbolized using a suitable partition
of the phase space] is related to the emergence of forbidden
words (the grammar) and/or the emergence of asymmetries
in the frequencies of words for each nonpalindromic pair. The
number of such nonpalindromic pairs grows exponentially
with the length of the word. The grammar is very depen-
dent on the partition and the parameters of the underlying
dynamical system, and a case-by-case analysis needs to be
applied.

(iv) Besides the statistics of words, irreversibility can
also show up in the statistics of word recurrence times. For
continuous-time discrete state statistics, one simply quantifies
the two sources of irreversibility: Statistics of occurrence of
different nonpalindrome words, and waiting time statistics
[29]. For fully discrete time series with no latent information
on the time between state transitions, such information is
directly encoded in the time of the intermissions, and thus
one can retrieve recurrence times between words accordingly
[28]. However, finding the source of irreversibility in those
recurrence times might require the symbolic time series to be
nonstationary, which poses a conceptual problem in the first
place.

PYTHON codes of m irreversibility are available at [34].

ACKNOWLEDGMENTS

The authors would like to thank E. Roldán and M.
Zanin for useful discussions. We acknowledge funding
from project DYNDEEP (Grant No. EUR2021-122007)
from the Agencia Estatal de Investigación. L.L. addi-
tionally acknowledges funding from project MISLAND
(Grant No. PID2020-114324GB-C22) and María de
Maeztu Project No. CEX2021-001164-M, all funded by
MCIN/AEI/10.13039/501100011033.

014201-9



LLUÍS AROLA-FERNÁNDEZ AND LUCAS LACASA PHYSICAL REVIEW E 108, 014201 (2023)

[1] I. Prigogine, Time, structure, and fluctuations, Science 201, 777
(1978).

[2] M. Zanin and D. Papo, Algorithmic approaches for assessing
irreversibility in time series: Review and comparison, Entropy
23, 1474 (2021).

[3] L. Lacasa and R. Flanagan, Time reversibility from visibility
graphs of nonstationary processes, Phys. Rev. E 92, 022817
(2015).

[4] É. Roldán and J. M. R. Parrondo, Estimating Dissipation from
Single Stationary Trajectories, Phys. Rev. Lett. 105, 150607
(2010).

[5] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).

[6] E. Roldán and J. M. R. Parrondo, Entropy production and
Kullback-Leibler divergence between stationary trajectories of
discrete systems, Phys. Rev. E 85, 031129 (2012).

[7] P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cam-
bridge Nonlinear Science Series (Cambridge University Press,
Cambridge, 1998).

[8] G. Weiss, Time-reversibility of linear stochastic processes,
J. Appl. Probab. 12, 831 (1975).

[9] M. Lothaire, Applied Combinatorics on Words, Encyclopedia of
Mathematics and its Applications (Cambridge University Press,
Cambridge, 2005).

[10] J.-P. Allouche, M. Baake, J. Cassaigne, and D. Damanik, Palin-
drome complexity, Theor. Comput. Sci. 292, 9 (2003).

[11] J. Green, Jr., C. S. Daw, J. S. Armfield, C. Finney, R. M.
Wagner, J. Drallmeier, M. Kennel, and P. Durbetaki, Time
irreversibility and comparison of cyclic-variability models,
SAE Trans. 108, 355 (1999).

[12] J. G. Brida and L. Punzo, Symbolic time series analysis and
dynamic regimes, Struct. Chang. Econ. Dyn. 14, 159 (2003).

[13] C. Cammarota and E. Rogora, Time reversal, symbolic se-
ries and irreversibility of human heartbeat, Chaos, Solitons &
Fractals 32, 1649 (2007).

[14] W. Yao, W. Yao, J. Wang, and J. Dai, Quantifying time irre-
versibility using probabilistic differences between symmetric
permutations, Phys. Lett. A 383, 738 (2019).

[15] W. Yao, J. Dai, M. Perc, J. Wang, D. Yao, and D. Guo,
Permutation-based time irreversibility in epileptic electroen-
cephalograms, Nonlin. Dyn. 100, 907 (2020).

[16] R. Salgado-García, Time-irreversibility test for random-length
time series: The matching-time approach applied to dna, Chaos
31, 123126 (2021).

[17] G. Nicolis, Transformation properties of entropy production,
Phys. Rev. E 83, 011112 (2011).

[18] C. Beck and F. Schögl, Thermodynamics of Chaotic Systems
(Cambridge University Press, Cambridge, UK, 1993).

[19] C. S. Daw, C. E. A. Finney, and M. B. Kennel, Symbolic
approach for measuring temporal “irreversibility,” Phys. Rev.
E 62, 1912 (2000).

[20] T. M. Cover, Elements of Information Theory (Wiley, New York,
1999).

[21] R. Kawai, J. M. R. Parrondo, and C. Van den Broeck, Dissipa-
tion: The Phase-Space Perspective, Phys. Rev. Lett. 98, 080602
(2007).

[22] J. M. Parrondo, C. Van den Broeck, and R. Kawai, Entropy
production and the arrow of time, New J. Phys. 11, 073008
(2009).

[23] M. B. Kennel, Testing time symmetry in time series using data
compression dictionaries, Phys. Rev. E 69, 056208 (2004).

[24] M. Costa, A. L. Goldberger, and C.-K. Peng, Broken Asym-
metry of the Human Heartbeat: Loss of Time Irreversibility in
Aging and Disease, Phys. Rev. Lett. 95, 198102 (2005).

[25] L. Lacasa, A. Nuñez, E. Roldán, J. M. Parrondo, and B.
Luque, Time series irreversibility: A visibility graph approach,
Eur. Phys. J. B 85 217 (2012).

[26] J. F. Donges, R. V. Donner, and J. Kurths, Testing time series
irreversibility using complex network methods, Europhys. Lett.
102, 10004 (2013).

[27] J. H. Martínez, J. L. Herrera-Diestra, and M. Chavez, Detection
of time reversibility in time series by ordinal patterns analysis,
Chaos 28, 123111 (2018).

[28] R. Salgado-García and C. Maldonado, Estimating entropy
rate from censored symbolic time series: A test for time-
irreversibility, Chaos 31, 013131 (2021).

[29] P. E. Harunari, A. Dutta, M. Polettini, and É. Roldán, What to
Learn from a Few Visible Transitions’ Statistics? Phys. Rev. X
12, 041026 (2022).

[30] P. Grassberger, On symbolic dynamics of one-humped maps of
the interval, Z. Naturforsch. A 43, 671 (1988).

[31] R. G. James, K. Burke, and J. P. Crutchfield, Chaos forgets and
remembers: Measuring information creation, destruction, and
storage, Phys. Lett. A 378, 2124 (2014).

[32] L. Lacasa, B. Luque, I. Gómez, and O. Miramontes, On a
dynamical approach to some prime number sequences, Entropy
20, 131 (2018).

[33] L. Zunino, F. Olivares, H. V. Ribeiro, and O. A. Rosso, Permu-
tation Jensen-Shannon distance: A versatile and fast symbolic
tool for complex time-series analysis, Phys. Rev. E 105, 045310
(2022).

[34] github.com/mystic-blue/symbolic-irreversibility.

014201-10

https://doi.org/10.1126/science.201.4358.777
https://doi.org/10.3390/e23111474
https://doi.org/10.1103/PhysRevE.92.022817
https://doi.org/10.1103/PhysRevLett.105.150607
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevE.85.031129
https://doi.org/10.2307/3212735
https://doi.org/10.1016/S0304-3975(01)00212-2
https://doi.org/10.1016/S0954-349X(02)00050-4
https://doi.org/10.1016/j.chaos.2006.03.126
https://doi.org/10.1016/j.physleta.2018.11.043
https://doi.org/10.1007/s11071-020-05506-9
https://doi.org/10.1063/5.0062805
https://doi.org/10.1103/PhysRevE.83.011112
https://doi.org/10.1103/PhysRevE.62.1912
https://doi.org/10.1103/PhysRevLett.98.080602
https://doi.org/10.1088/1367-2630/11/7/073008
https://doi.org/10.1103/PhysRevE.69.056208
https://doi.org/10.1103/PhysRevLett.95.198102
https://doi.org/10.1140/epjb/e2012-20809-8
https://doi.org/10.1209/0295-5075/102/10004
https://doi.org/10.1063/1.5055855
https://doi.org/10.1063/5.0032515
https://doi.org/10.1103/PhysRevX.12.041026
https://doi.org/10.1515/zna-1988-0710
https://doi.org/10.1016/j.physleta.2014.05.014
https://doi.org/10.3390/e20020131
https://doi.org/10.1103/PhysRevE.105.045310
http://github.com/mystic-blue/symbolic-irreversibility

