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Heat distribution in quantum Brownian motion
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We investigate the heat statistics in a relaxation process of quantum Brownian motion described by the
Caldeira-Leggett model. By employing the normal mode transformation and the phase-space formulation
approach, we can analyze the quantum heat distribution within an exactly dynamical framework beyond the
traditional paradigm of Born-Markovian and weak-coupling approximations. It is revealed that the exchange
fluctuation theorem for quantum heat generally breaks down in the strongly non-Markovian regime. Our results
may improve the understanding about the nonequilibrium thermodynamics of open quantum systems when the
usual Markovian treatment is no longer appropriate.
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I. INTRODUCTION

In recent years, much attention has been paid to investi-
gate the thermodynamical character of a small system out of
equilibrium [1–7]. In sharp contrast to the equilibrium ther-
modynamics in classical physics, thermodynamic quantities,
such as work, heat, and entropy, in the nonequilibrium ther-
modynamics commonly exhibit statistical stochasticity and
satisfy certain fluctuation theorems [8–17]. Some of them,
for example, the celebrated Jarzynski equality for work [8]
and the exchange fluctuation theorem (EFT) for heat [12],
have been verified in several recent experiments [18–24].
These fluctuation theorems are of fundamental significance
in quantum thermodynamics because they can provide insight
for us to reexamine the laws of thermodynamics, which were
originally established in classical equilibrium thermodynam-
ics at the microscopic level [25–29]. On the other hand, due
to the fact that fluctuations are commonly nonnegligible in
microscopic engines [30–33], the investigation of these fluc-
tuation theorems may aid in the development of quantum heat
machines beyond classical bounds [34].

The EFT for heat between two quantum systems in ther-
mal equilibrium at different temperatures was proposed by
Jarzynski and Wójcik in 2004 [12]. In their original paper,
they assumed a negligible energy of interaction between the
two quantum systems. Such a weak-coupling assumption was
also employed in many subsequent studies of heat statistics
between a quantum harmonic oscillator and its surrounding
heat bath within the dynamical framework of an open quan-
tum system [35–37]. As revealed in Refs. [35,36], the EFT
for quantum heat can be still verified in a Born-Markovian
relaxation process. In those works, the system-bath interac-
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tion is weak instead of completely ignorable. In this sense,
the primal EFT proposed by Jarzynski and Wójcik has been
greatly generalized.

However, the usual Born-Markovian approximation is no
longer available if the system-bath coupling becomes strong.
Relatively few studies focus on the statistics of quantum
heat in the strong-coupling regime where the non-Markovian
memory effect inevitably appears. A very interesting question
naturally arises here: Does the EFT for quantum heat still hold
in the strongly non-Markovian regime?

To address the above question, one needs to go beyond the
limitations of the usual weak-coupling and rotating-wave ap-
proximations. In previous works, the polaron transformation
method [38], the path integral approach [39,40], and some
other numerical tools [41–43] have been employed to inves-
tigate the characteristics of quantum heat in strongly coupled
open systems. In this paper, we present an alternative way to
explore the EFT for heat in the quantum Brownian motion.
By using the normal mode transformation and the phase-space
formulation approach, we can derive an analytical result and
build a clear physical picture on heat statistics. It is demon-
strated that the EFT for quantum heat can be well satisfied if
the temperature of the heat bath is so high that the quantum
system experiences a canonical thermalization, which is in
agreement with previous studies [35,36,44]. However, in the
low-temperature regime, we find the EFT generally breaks
down due to the non-Markovian effect.

II. HEAT STATISTICS IN AN OPEN QUANTUM SYSTEM

In this section, we first briefly outline the definition of
quantum heat based on the two-point measurement scheme
[35,36,44,45] (Sec. II A). Related to the symmetry relation
of the characteristic function, we recall two important EFTs
for the quantum heat [12] (Sec. II B). Then, to analytically
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derive the expression of the characteristic function in an open
quantum system, we need to present some necessary details
of the phase-space formalism approach [46,47] (Sec. II C).
Throughout this paper, we set h̄ = kB = 1 for the sake of
simplicity.

A. Two-point measurement scheme

There are many arguments on the definition of heat in
an open quantum system, especially in the strong-coupling
regime [25,48–53]. In this paper, we regard the quantum heat
as the energy change of the heat bath plus the system-bath
interaction [54]. Such an energy exchange can be detected by
measuring the system itself. If the coupling strength is weak,
which means the energy of the interaction Hamiltonian be-
comes ignorable, our result reduces to the situation considered
in previous Refs. [35,36,44].

Let us consider a general time-independent open quantum
system, whose total Hamiltonian reads Ĥtot = Ĥs + Ĥb + Ĥint.
Here, Ĥs and Ĥb are, respectively, the Hamiltonian of the
quantum system and the heat bath, and Ĥint denotes the inter-
action Hamiltonian. In Ref. [40], the quantum heat in an open
quantum system is defined by two-point energy measurements
over the heat bath. However, such a definition is hardly re-
alized due to the huge number of degrees of freedom in the
heat bath. Notice that no external driving is applied to the
whole system, which means no work is performed during the
relaxation process. Thus, the energy of the whole system shall
be conservative. If one views the heat as the energy change
of the heat bath plus the system-bath interaction, it can be
quantified by measuring only the quantum system [44]. Using
this particular property, we can define the quantum heat as

Qmn = Em
s − En

s , (1)

where En
s and Em

s are the eigenenergies of the quantum system
at the initial time t = 0 and the final time t = τ , respectively.
The probability of obtaining the energy En

s at the initial time
is

P0
n = Tr

[
ρtot(0)

∣∣En
s

〉〈
En

s

∣∣], (2)

where |En
s 〉 denotes the eigenstate with respect to the eigenen-

ergy En
s . In our paper, we assume the whole system is initially

prepared in a product state, i.e.,

ρtot(0) =ρs(0) ⊗ ρb(0) = ρ th
s ⊗ ρ th

b

= e−βsĤs

Zs(βs)
⊗ e−βbĤb

Zb(βb)
, (3)

where βs = 1/Ts and βb = 1/Tb are the inverse temperatures
of the quantum system and the heat bath, respectively. Here,
Zα (βα ) ≡ Tr(e−βαĤα ) with α = {s, b} are the partition func-
tions. Then, the conditional transition probability of obtaining
the energy Em

s at the final time t = τ is given by

Pτ
mn = Tr

{∣∣Em
s

〉〈
Em

s

∣∣Û (τ )
[∣∣En

s

〉〈
En

s

∣∣⊗ ρ th
b

]
Û †(τ )

}
, (4)

where Û (τ ) = e−iτ Ĥtot denotes the time-evolution operator of
the whole composite system. Thus, the probability distribution
function of the quantum heat during the above decoherence

process is then computed as

Pτ (Q) ≡
∑
m,n

Pτ
mnP0

n δ(Q − Qmn). (5)

The characteristic function (or the so-called generating
function) with respect to Pτ (Q) reads [44]

χτ (ν) ≡
∫ +∞

−∞
dQeiνQPτ (Q)

=Tr
[
eiνĤsÛ (τ )e−iνĤsρtot(0)Û †(τ )

]
. (6)

With the above expression at hand, the kth moment of quan-
tum heat can be calculated by

〈Qk(τ )〉 = (−i)k ∂k

∂νk
χτ (ν)

∣∣∣∣
ν=0

. (7)

Equations (6) and (7) fully characterize the statistical charac-
ter of the quantum heat in an open system.

B. EFTs for quantum heat

EFTs for the quantum heat are closely related to the
symmetry relation of the characteristic function. If the char-
acteristic function has the following symmetry relation:

χτ (ν) = χτ [−i(βb − βs) − ν], (8)

one can prove the probability distribution function satisfies

Pτ (Q)

Pτ (−Q)
= e−(βb−βs )Q, (9)

which is called the EFT in the differential form [12]. Espe-
cially, by setting ν = 0, one can find

χτ (0) = χτ [−i(βb − βs)] = 1, (10)

from which the EFT in the integral form [12]

〈e(βb−βs )Q〉 = 1 (11)

can be established. These EFTs provide insight for us to
understand the second law of thermodynamics from statistical
perspectives [35,36,44].

C. Phase-space formulation approach

To analytically derive the expression of the characteristic
function in the quantum Brownian motion, we employe the
phase-space formulation approach reported in Refs. [46,47].
We first rewrite Eq. (6) into

χτ (ν) = Tr
[
eiνĤs (τ )
ν (0)

]
, (12)

where Ĥs(τ ) ≡ Û †(τ )ĤsÛ (τ ) denotes the Hamiltonian of
the quantum system in the Heisenberg picture, and 
ν (0) ≡
e−iνĤsρtot(0) is introduced as a shifted density operator. Then,
using the Weyl symbol, one can express Eq. (12) in the lan-
guage of the phase-space formulation of quantum mechanics
as

χτ (ν) = 1

(2π )ε

∫
dz[eiνĤs (τ )]w(z) × [
ν (0)]w(z), (13)

where z = (q, p)T = (q1, q2, . . . , qε, p1, p2, . . . , pε )T with
ε = Dim(Ĥtot ) represent the points in the classical phase
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space. Here, the notation [Ô]w(z) denotes the Weyl symbol
of a given operator Ô, which is defined by [55]

[Ô]w(z) = [Ô]w(q, p)

≡
∫

dξ

〈
q − 1

2
ξ

∣∣∣∣Ô
∣∣∣∣q + 1

2
ξ

〉
eip·ξ. (14)

Thus, as long as the Weyl symbols of eiνĤs (τ ) and 
ν (0) are
obtained, the expression of the characteristic function χτ (ν)
can be accordingly derived by simply performing the integrals
over the variable z.

III. CALDEIRA-LEGGETT MODEL

In this section, we first introduce the famous Caldeira-
Leggett model [56,57] (Sec. III A), which describes the
dissipative dynamics of a quantum harmonic oscillator cou-
pled to a heat bath consisting of a collection of bosonic
modes. The reduced dynamics of the Caldeira-Leggett model
can be exactly treated by using various methods, for exam-
ple, the Heisenberg-Langevin equation of motion [58,59],
the path-integral approach [60,61], and the stochastic quan-
tum dynamical scheme [62,63] as well as the normal mode
transformation technique [64–67]. In this paper, we employe
the tool of the normal mode transformation and display the
corresponding details in Sec. III B.

A. The Hamiltonian

The quantum Brownian motion is generally described by
the Caldeira-Leggett model, whose Hamiltonian is given by

ĤCL = 1

2

{
p̂2

0 + ω2
0q̂2

0 +
n∑

j=1

[
p̂2

j + ω2
j

(
q̂ j − c j

ω2
j

q̂0

)2]}
,

(15)
where q̂0 (q̂ j) and p̂0 ( p̂ j) are the position and momentum
operators of the quantum system (the heat bath) with the
corresponding frequency ω0 (ω j), respectively. Parameters c j

quantify the system-bath coupling strengths. In this paper,
all the masses of these quantum harmonic oscillators are
weighted as M0 = Mj = 1.

Commonly, it is very convenient to encode the frequency
dependence of the interaction strengths into the so-called
spectral density, which is defined by

J (ω) = π

2

n∑
j=1

c2
j

ω j
[δ(ω j − ω) − δ(ω j + ω)]. (16)

The associated friction function γ (t ) of the Caldeira-Leggett
model is introduced as

γ (t ) =
n∑

j=1

c2
j

ω2
j

cos(ω jt ). (17)

The spectral density considered in this paper is an Ohmic
spectral density [58,68]

J (ω) = ηω, (18)

where η denotes the coupling strength. Usually, a damping
function f (ω,ωc) is included in the expression of J (ω), such
as J (ω) = ηω f (ω,ωc) with an exponential cutoff f (ω,ωc) =

e−ω/ωc , a Lorentzian cutoff f (ω,ωc) = ω2
c/(ω2 + ω2

c ) or a
sudden (Heaviside step) cutoff f (ω,ωc) = θ (ωc − ω). The
introduction of f (ω,ωc) ensures that J (ω) vanishes when
ω → ∞. Due to the normal mode transformation adopted
in our paper, the final results are not directly connected to
J (ω) but to the spectral density of normal modes I (�) [see
Eqs. (27) and (28) and Appendix A]. In the main text, we
consider the case f (ω,ωc) = 1, which can be regarded as
the special situation ωc � ω0. In Appendix B, we present the
results when f (ω,ωc) = ω2

c/(ω2 + ω2
c ). The specific form of

f (ω,ωc) does not influence our physical conclusions.
The corresponding friction function reads [68]

γ (t ) = 2ηδ(t ), (19)

which is a Dirac-δ function. Although only the Ohmic spectral
density is displayed in this paper, it is necessary to point
out that our result can be generalized to other cases without
difficulty.

B. The normal mode transformation

Since the Caldeira-Leggett Hamiltonian has a quadratic
form, it can be diagonalized by an orthogonal rotation and
reexpressed as

ĤCL = 1

2

N∑
j=1

(
P̂2

j + �2
j Q̂

2
j

)
, (20)

where the new coordinates Q̂ j are related to the original coor-
dinates via the following normal mode transformation:⎛

⎜⎜⎝
q̂0

q̂1
...

q̂n

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u00 u01 · · · u0n

u10 u11 · · · u1n
...

...
. . .

...

un0 un1 · · · unn

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎝

Q̂0

Q̂1
...

Q̂n

⎞
⎟⎟⎟⎠. (21)

The elements of the transformation matrix given by Eq. (21)
are [64–67]

u2
j0 =

[
1 +

n∑
l=1

c2
l(

�2
j − ω2

l

)2

]−1

, u jl = cl

�2
j − ω2

l

u j0, (22)

with l = 1, 2, 3, ..., n. The normal mode frequencies � j are
determined by the following normal mode eigenvalue equa-
tion [64–67]:

�2
j = ω2

0

[
1 +

n∑
l=1

c2
l

ω2
l

(
ω2

l − �2
j

)
]−1

. (23)

Now Eq. (20) is a sum of separable quantum harmonic
oscillators and it is easy to write the equations of motion for
each of the normal modes as

Q̂ j (t ) = Q̂ j (0) cos(� jt ) + P̂j (0)

� j
sin(� jt ) (24)

and P̂j (t ) = dQ̂ j (t )/dt . These equations of motion are com-
pletely identical to those of classical harmonic oscillators.
Going back to the original modes, one finds that the time evo-
lutions of the coordinate and the momentum of the quantum
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system are determined by

q̂0(t ) =
n∑

�=0

�̇�(t )q̂�(0) +
n∑

�=0

��(t ) p̂�(0) (25)

and p̂0(t ) = dq̂0(t )/dt . Here, the expressions of ��(t ) are

��(t ) =
n∑

j=0

uj0uj�

sin(�j t )

�j

. (26)

To recast the normal mode representation in the continuum
limit, one can define a spectral density of normal modes as

I (�) = π

2

n∑
j=0

u2
j0

� j
[δ(� j − �) − δ(� j + �)], (27)

which is related to J (ω) by [64–67]

I (�) = J (�)

[ω2
0 − �2 − �Imγ́ (i�)]2 + J2(�)

, (28)

with γ́ (z) being the Laplace transformation of the friction
function γ (t ). The introduction of the spectral density I (�)
is very useful when computing the continuum limit of various
functions that appear in the analytical expressions of χτ (ν)
and 〈Q(τ )〉 (see Ref. [67] and Appendix A for details).

IV. RESULTS AND DISCUSSIONS

In this section, we first present our main results, namely,
the exact expressions of the characteristic function χτ (ν)
and the average heat 〈Q(τ )〉 (Sec. IV A). They are com-
plicated in their general forms. To gain a clear physical
picture on the quantum heat statistics, we also provide
the asymptotic expressions of χτ (ν) and 〈Q(τ )〉 in the
high-temperature limit (Sec. IV B). Using these approxi-
mate expressions as benchmarks, we reexamine the EFT for
heat distribution in the quantum Brownian motion without
invoking the Born-Markovian and the weak-coupling approx-
imations (Sec. IV C).

A. Analytical expressions of χτ (ν) and 〈Q(τ )〉
To compute the characteristic function, one needs to de-

rive the Weyl symbol of the exponential Hamiltonian of the
dissipative quantum harmonic oscillator. This key Weyl sym-
bol was already known from several early works [69,70].
Following the detailed expositions in Refs. [69,70], for a
quantum harmonic oscillator ĤHO(q̂, p̂) = 1

2 (p̂2 + � 2q̂2), the

Weyl symbol of eζ ĤHO(q̂,p̂) is given by

[eζ ĤHO(q̂,p̂)]w(q, p) = sech

(
1

2
ζ�

)
exp

[
2

�
tanh

(
1

2
ζ�

)
HHO(q, p)

]
. (29)

Using the above expression and the equation of motion given by Eq. (25), we find

[eiνĤs (τ )]w(z) ={e i
2 ν[p̂2

0(τ )+ω2
0 q̂2

0 (τ )]
}

w
(z)

= 1

cos
(

1
2ω0ν

) exp

[
iω0 tan

(
1

2
ω0ν

)
q2

0(τ ) + i

ω0
tan

(
1

2
νω0

)
p2

0(τ )

]

= 1

cos
(

1
2νω0

) exp

(
i

2
zT�ντ z

)
,

(30)

where �ντ = VqτV T
qτ + VpτV T

pτ is a (2n + 2) × (2n + 2) matrix with

Vqτ =
√

2ω0 tan

(
1

2
ω0ν

)
[�̇0(τ ), �̇1(τ ), ..., �̇n(τ ),�0(τ ),�1(τ ), ...,�n(τ )]T (31)

and Vpτ = V̇qτ /ω0. In the same way, the Weyl symbol of 
ν (0) is given by

[
ν (0)]w(z) = 2 sinh( 1
2βsω0)

cosh( 1
2βνω0)

n∏
j=1

[
2 tanh

(
1

2
βbω j

)]
exp

(
−1

2
zT�νβz

)
, (32)

where βν ≡ βs + iν and �νβ is a (2n + 2) × (2n + 2) diagonal matrix

�νβ = Diag

{
2ω0 tanh

(
βνω0

2

)
, 2ω1 tanh

(
βbω1

2

)
, ..., 2ωn tanh

(
βbωn

2

)
,

× 2

ω0
tanh

(
βνω0

2

)
,

2

ω1
tanh

(
βbω1

2

)
, ...,

2

ωn
tanh

(
βbωn

2

)}
. (33)

Then, by using the Gaussian integral

∫
dζe− 1

2 ζTQζ =
√

(2π )Dim(Q)

Det(Q)
, (34)
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one can derive the expression of the characteristic function as [44]

χτ (ν) =
√

Det(�νβ − i�ν0)

Det(�νβ − i�ντ )
= [Det(I4 + iMντ )]−

1
2 , (35)

where I4 is a 4 × 4 identity matrix and

Mντ =
√

(�νβ − i�ν0)−1(Vq0,Vp0, iVqτ , iVpτ )

⎛
⎜⎜⎜⎝

Vq0

Vp0

iVqτ

iVpτ

⎞
⎟⎟⎟⎠
√

(�νβ − i�ν0)−1. (36)

Using Eq. (31), one can find 16 matrix elementals of Mντ are

Mντ = �ν

⎡
⎢⎢⎢⎢⎣

1 0 i�̇0(τ ) iω−1
0 �̈0(τ )

0 1 iω0�0(τ ) i�̇0(τ )

i�̇0(τ ) iω0�̇0(τ ) −2ϒντ ω−1
0 ϒ̇ντ

iω−1
0 �̈0(τ ) i�̇0(τ ) ω−1

0 ϒ̇ντ −�ντ

⎤
⎥⎥⎥⎥⎦, (37)

where

�ν = tan
(

1
2νω0

)
tanh

(
1
2βνω0

)− i tan
(

1
2νω0

) , (38)

ϒντ = 1

2
�̇2

0(τ ) + 1

2
ω2

0�
2
0(τ ) + ω0 tan

(
1
2ω0ν

)
2�ν

G(τ ), G(τ ) =
n∑

j=1

�̇2
j (τ ) + ω2

j�
2
j (τ )

ω j tanh
(

1
2βbω j

) , (39)

�ντ = 1

ω2
0

�̈2
0(τ ) + �̇2

0(τ ) + tan
(

1
2ω0ν

)
�νω0

K(τ ), K(τ ) =
n∑

j=1

�̈2
j (τ ) + ω2

j �̇
2
j (τ )

ω j tanh
(

1
2βbω j

) . (40)

With the expression of the characteristic function at hand, the average heat 〈Q(τ )〉 is given by

〈Q(τ )〉 = �̈2
0(τ ) + 2ω2

0[�̇2
0(τ ) − 1] + ω4

0�
2
0(τ )

4ω0 tanh( 1
2βsω0)

+ 1

4
K(τ ) + 1

4
ω2

0G(τ ). (41)

All results of �0(τ ), G(τ ), and K(τ ) can be expressed in terms
of the spectral density of normal modes I (�) in the continuum
limit (see Appendix A for details).

B. The high-temperature limit

In the exact results of Eqs. (35) and (41), the expres-
sions of χτ (ν) and 〈Q(τ )〉 are complicated. We leave them
to purely numerical calculations. However, via analyzing the
high-temperature behaviors of G(τ ) and K(τ ), we can obtain
their asymptotic forms, which are helpful for us to build a
physical picture on the heat distribution in the quantum Brow-
nian motion. In the high-temperature limit, namely, ω jβb →
0, we have coth( 1

2ω jβb) 	 2/(ω jβb), which results in

GHT(τ ) 	 2

βbω
2
0

+ 2

βbω
2
0

e−ητ

×
[
η2 cos(2ςτ )

4ς2
− η sin(2ςτ )

2ς
− ω2

0

ς2

]
, (42)

KHT(τ ) 	 2

βb
+ 2

βb
e−ητ

×
[
η2 cos(2ςτ )

4ς2
+ η sin(2ςτ )

2ς
− ω2

0

ς2

]
, (43)

where ς ≡
√

ω2
0 − η2/4. With these expressions at hand, one

can easily prove that the characteristic function χτ (ν) satisfies
the symmetry relation χτ (ν) = χτ [−i(βb − βs) − ν], which
means the EFT in the differential form holds at any relaxation
time in the high-temperature regime. This result is in good
agreement with previous Born-Markovian studies [35,36] be-
cause the dissipative quantum harmonic oscillator generally
experiences a Markovian decoherence at high temperature
[71–73].

Such a Markovian dynamics leads to a canonical thermal-
ization, namely, ρs(∞) = ρ th

s , which validates the EFT in the
equilibrium steady state, as demonstrated in many previous
references [35,36,44]. To clarify this point, we can take the
long-time limit ω0τ → ∞, which leads to �0(∞) = 0 and

GHT(∞) = 2

βbω
2
0

	 1

ω0
coth

(
βbω0

2

)
, (44)

KHT(∞) = 2

βb
	 ω0 coth

(
βbω0

2

)
. (45)

Using these long-time expressions, we immediately find

χHT
∞ (ν) =χth(ν) = Zs(βs + iν)Zb(βb − iν)

Zs(βs)Zb(βb)
, (46)
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FIG. 1. (a) The characteristic function χ∞(−iδβ ) with δβ ≡ βb − βs is plotted as the function of the coupling strength η with different
temperatures of the heat bath: ω0βb = 2.4 (red stars), ω0βb = 2.2 (blue rectangles), ω0βb = 0.2 (green diamonds), and ω0βb = 1 (orange
circles). Other parameters are chosen as ω0βs = 2 and ω0 = 2 cm−1. (b) The characteristic function χ∞(−iδβ ) versus the temperature of the
heat bath ω0βb with different temperatures of the quantum system: ω0βs = 1 (blue rectangles), ω0βs = 1.6 (orange circles), ω0βs = 2 (red
stars), and ω0βs = 2.4 (green diamonds). Other parameters are chosen as η = 0.04 and ω0 = 2 cm−1.

which is independent of the details of the relaxation dynam-
ics, say, the coupling strength η. And Eq. (46) recovers the
conclusion reported in Ref. [44].

On the other hand, with the help of Eqs. (42) and (43), the
expression of 〈Q(τ )〉 reduces to

〈QHT(τ )〉 	 e−ητ

βb

[
eητ ς2 − ω2

0

ς2
+ η2 cos(2ςτ )

4ς2

]

+ coth

(
βsω0

2

)[
ω0(ω2

0 − eητ ς2)

2ς2
− η3 sin(2ςτ )

8ω0ς

− (ω4
0 − 3ς2ω2

0 + 2ς2) cos(2ςτ )

2ω0ς2

]
e−ητ . (47)

From the above expression, one can see the average heat starts
from 〈Q(0)〉 = 0 and gradually approaches to a steady value,
which is given by

〈QHT(∞)〉 = 〈Qth〉

= 1

2
ω0

[
2

βbω0
− coth

(βsω0

2

)]

	 1

2
ω0

[
coth

(βbω0

2

)
− coth

(βsω0

2

)]
. (48)

The above expression of 〈QHT(∞)〉 is simply the difference
of the mean energies of the quantum harmonic oscillator at
temperatures 1/βb and 1/βs. It can be rewritten in terms
of the thermal occupation number, namely, 〈QHT(∞)〉 =
ω0[n̄(βb) − n̄(βs)] with n̄(βα ) ≡ (eω0βα − 1)−1. This result is
consistent with that of Ref. [35] and is physically reasonable.

C. Exact numerical results

To justify these high-temperature results in the above sub-
section, we also provide the exact numerical simulations. In
Fig. 1(a), we plot the characteristic function χ∞[−i(βb −
βs)] as a function of the dimensionless coupling strength η.
One can see χ∞[−i(βb − βs)] 	 χ∞(0) = 1 if η is small,
which means the EFT in the integral form is satisfied in
the weak-coupling regime. However, as the coupling strength
becomes strong, the value of χ∞[−i(βb − βs)] moves away

from χ∞(0) = 1, which implies the appearance of the non-
canonical thermalization as well as the breakdown of the
EFT. As demonstrated in many previous studies [73–76], the
emergence of a noncanonical distribution is commonly linked
to the non-Markovian effect. In this sense, our result suggests
the non-Markovianity may invalidate the EFT. Moreover, we
display χ∞[−i(βb − βs)] as the function of the temperature
of the heat bath in Fig. 1(b). From Fig. 1(b), one can find
χ∞[−i(βb − βs)] approaches to χ∞(0) = 1 with the increase
of the bath temperature, i.e., ω0βb → 0. This numerical con-
clusion is completely consistent with that of the analytical
analysis in the high-temperature regime. Exceptions can occur
in the vicinities of ω0βb = ω0βs, which corresponds to the
trivial case: there is no heat exchange if the system and the
bath are at the same temperature.

In Fig. 2, we display the dynamics of 〈Q(τ )〉 with (a) dif-
ferent bath temperatures and (b) different coupling strengths.
If the system-bath coupling is not too strong, we find, except
some oscillations at the beginning of the time evolution, the
analytical results obtained by the hight-temperature approx-
imation [Eq. (47)] are in qualitative agreement with exact
numerical simulations. However, the long-time equilibrium
state is no longer a canonical Gibbs state in the strong-
coupling regimes, which leads to a relatively large deviation
from the approximate expression of 〈Qth〉 [Eq. (48)], as plot-
ted in the inset figure of Fig. 2(b).

The oscillations observed in Fig. 2 may be traced back
to the non-Markovian effect. In the Markovian regime, the
energy, which is presented as the quantum heat in our pa-
per, unidirectionally flows between the system and the bath.
However, as reported in previous Refs. [77–79], in the non-
Markovian regime, an energy backflow may occur and leads to
these oscillations of quantum heat flux. Some previous works
[77,78] deem the occurrence of the energy backflow as an
evidence of non-Markovianity.

V. CONCLUSION

Before concluding our paper, two important remarks shall
be made here.
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FIG. 2. (a) The dynamics of the average heat 〈Q(τ )〉 is plotted with different temperatures of the heat bath: ω0βb = 0.2 (green diamonds),
ω0βb = 0.4 (red stars), and ω0βb = 0.6 (blue rectangles). Other parameters are chosen as ω0βs = 2 and η = 0.02. (b) The dynamics of
the average heat 〈Q(τ )〉 is plotted with different coupling strengths: η = 0.05 (green diamonds), η = 0.15 (red stars), and η = 0.25 (blue
rectangles). The inset figure depicts the steady-state average heat in the long-time regime. Other parameters are chosen as ω0βb = 0.2,
ω0βs = 2, and ω0 = 2cm−1. The solid lines are analytical results predicted by Eq. (47) and the black dashed lines are high-temperature
approximate results from the expression of 〈Qth〉 in Eq. (48).

(i) As demonstrated in Sec. IV, the original Jarzynski-
Wójcik fluctuation theorem generally breaks down in the
strong-coupling regime. This result naturally brings about one
question: Does a generalized fluctuation theorem for heat
exchange exist in these strong-coupling open systems? Com-
pletely different from that of the weak-coupling case, in the
strong coupling regime, the joint state of the composite sys-
tem is so hybridized or entangled that one cannot sufficiently
distinguish one from another. In this circumstance, Eq. (3)
is no longer applicable and the initial quantum corrections
shall be taken into account. In Ref. [80], the authors derived
a series of generalized EFTs for initially quantum correlated
thermal bipartite system. These fluctuation relations fully cap-
ture quantum correlations and quantum coherence, which are
commonly neglected in the weak-coupling case. It would be
interesting to apply their formalism to the Caldeira-Leggett
model considered in this paper.

(ii) In our formalism, the quantum heat is defined as the
energy change of the heat bath plus the interaction Hamilto-
nian. Such an energy transfer can be quantified by measuring
only the quantum system, if the whole Caldeira-Leggett
model is time-independent. Due to the fact that Dim(Ĥs) 

Dim(Ĥtot ), the measurements over the quantum system are rel-
atively simple. However, quantum work is generally defined
in a time-dependent system. A time-dependent external field,
which drives the system out of equilibrium and injects energy
into the system, is indispensable. Thus, to investigate the
quantum work distribution in the Caldeira-Leggett model, the
two-point energy measurement shall be done over the whole
composite system Ĥtot [39], which involves a huge number of
degrees of freedom. It is still an unknown question whether
our scheme is feasible to the case of quantum work. The
same problem can be encountered in the study of irreversible
entropy production [8,81].

In summary, we investigate the statistics of quantum
heat in a non-Markovian decoherence process described by
the Caldeira-Leggett model. By using the normal mode
transformation and the phase-space formulation approach,
we analytically derive the expressions of the characteristic

function and the average heat beyond the frequently used
Born-Markovian and weak-coupling approximations. At high
temperature, the reduced dynamics of the dissipative har-
monic oscillator is Markovian and a completely canonical
thermalization occurs in the long-time regime. In this case,
we find the EFT for quantum heat is fully satisfied at any
relaxation time. However, with the decrease of the bath tem-
perature, the dissipative harmonic oscillator experiences a
non-Markovian decoherence in the strong-coupling regime,
which induces a non-canonical thermalization. Under this cir-
cumstance, we find the EFT for quantum heat generally breaks
down. The non-Markovian effect on the quantum heat distri-
bution presented in our paper may have potential applications
in the study of finite-time quantum heat engines.
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APPENDIX A: CONTINUUM LIMIT

In the continuum limit of normal modes, the explicit ex-
pression of �0(τ ) is

�0(τ ) =
n∑

j=0

u2
j0

sin(�jτ )

�j

= 2

π

∫ ∞

0
d�I (�) sin(�τ ).

(A1)

For the Ohmic dissipation considered in the main text, the
integral over � can be analytically worked out. The expression
of �0(τ ) is then given by

�0(τ ) = sin(ςτ )

ς
e− 1

2 ητ , (A2)

which decays exponentially.
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Next, we derive the expressions of G(τ ) and K(τ ) by
employing the skills proposed in Ref. [67]. By using the
Matsubara expansion of the coth function

coth

(
βbω j

2

)
= 2

βbω j
+ 4

βb

∞∑
k=1

ω j

ω2
j + v2k2

, (A3)

where v = 2π/βb and the relation

u jl = cl

�2
j − ω2

l

u j0, (A4)

we have

G(τ ) =
n∑

j=1

�̇2
j (τ ) + ω2

j� j (τ )2

ω j tanh
(

1
2βbω j

) = 2

βbω
2
j

n∑
j=1

[
n∑

l=1

u2
j0 cos(��τ )c j

�2
� − ω2

j

]2

+ 4

βb

n∑
j=1

∞∑
k=1

1

v2k2 + ω2
j

[
n∑

l=1

u2
j0 cos(�lτ )c j

�2
l − ω2

j

]2

+ 2

βb

n∑
j=1

[
n∑

l=1

u2
j0 sin(�lτ )c j

�l
(
�2

l − ω2
j

)
]2

+ 4ω2
j

βb

n∑
j=1

∞∑
k=1

1

v2k2 + ω2
j

[
n∑

l=1

u2
j0 sin(�lτ )c j

�l
(
�2

l − ω2
j

)
]2

. (A5)

Then, using (∑
�

a�

)2

=
∑

�

a2
� +

∑
� �=�′

a�a�′ ,

we have

G(τ ) = 2

βb

n∑
l=1

u4
j0 cos2(�lτ )

n∑
j=1

c2
j(

�2
l − ω2

j

)2
ω2

j

+ 2

βb

∑
l �=l ′

u2
j0 cos(�lτ )u2

l ′0 cos(�l ′τ )
n∑

j=1

c2
j(

�2
l − ω2

j

)(
�2

l ′ − ω2
j

)
ω2

j

+ 2

βb

n∑
l=1

u4
j0 sin2(�lτ )

n∑
j=1

c2
j

�2
l

(
�2

l − ω2
j

)2 + 2

βb

∑
l �=l ′

u2
j0 sin(�lτ )u2

l ′0 sin(�l ′τ )
n∑

j=1

c2
j

�l�l ′
(
�2

l − ω2
j

)(
�2

l ′ − ω2
j

)

+ 4

βb

n∑
l=1

u4
j0 cos2(�lτ )

∞∑
k=1

n∑
j=1

c2
j(

�2
l − ω2

j

)2(
v2k2 + ω2

j

)

+ 4

βb

∑
l �=l ′

u2
j0 cos2(�lτ )u2

l ′0 cos2(�l ′τ )
∞∑

k=1

n∑
j=1

c2
j(

�2
l − ω2

j

)(
�2

l ′ − ω2
j

)(
v2k2 + ω2

j

)

+ 4

βb

n∑
l=1

u4
j0 sin2(�lτ )

∞∑
k=1

n∑
j=1

c2
jω

2
j

�2
l

(
�2

l − ω2
j

)2(
v2k2 + ω2

j

)

+ 4

βb

∑
l �=l ′

u2
j0 cos2(�lτ )u2

l ′0 cos2(�l ′τ )
∞∑

k=1

n∑
j=1

c2
jω

2
j

�l�l ′
(
�2

l − ω2
j

)(
�2

l ′ − ω2
j

)(
v2k2 + ω2

j

) . (A6)

From Eqs. (22) and (23), we note the following two relations:

n∑
j=1

c2
j

ω2
j − �2

l

= ω2
0 − �2

l +
∑

j

c2
j

ω2
j

,

n∑
j=1

c2
j(

ω2
j − �2

l

)2 = 1

u2
l0

− 1. (A7)

On the other hand, from Eq. (17), we find the Laplace transform of the friction function is

γ́ (z) =
∫ ∞

0
dte−ztγ (t ) =

n∑
j=1

c2
j

ω2
j

z

z2 + ω2
j

, (A8)

which leads to

n∑
j=1

c2
j

z2 + ω2
j

=
n∑

j=1

c2
j

ω2
j

− zγ́ (z). (A9)
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Using Eqs. (A7) and (A9), the summations over j can be worked out:

G(τ ) =
n∑

l=1

u2
l0

�l tanh
(

1
2βb�l

) − 2

βb

{
ω2

0

[
n∑

l=1

u2
l0 cos(�lτ )

�2
l

]2

− �2
0(τ )

}

− 2�0(τ )
n∑

l=1

u2
j0 sin(�lτ )

tanh
(

1
2βb�l

) − 4

βb

∞∑
k=1

[
ω2

0 + v2k2 + vkγ́ (vk)
][ n∑

l=1

u2
l0 cos(�lτ )

v2k2 + �2
l

]2

+ 4

βb

∞∑
k=1

[
n∑

l=1

u2
l0�l sin(�lτ )

v2k2 + �2
l

]2

+ 4

βb

∞∑
k=1

v2k2[ω2
0 + vkγ́ (vk)]

[
n∑

l=1

u2
l0 sin(�lτ )

�l
(
v2k2 + �2

l

)
]2

. (A10)

With the help of the spectral density of normal modes, we finally derive

G(τ ) = 2

π

∫ ∞

0
d�

I (�)

tanh
(

1
2βb�

) − 2

βb

{
ω2

0

[
2

π

∫ ∞

0
d�

I (�) cos(�τ )

�

]2

− �2
0(τ )

}

− 2�0(τ )

[
2

π

∫ ∞

0
d�

�I (�) sin(�τ )

tanh
(

1
2βb�

)
]

− 4

βb

∞∑
k=1

[
ω2

0 + v2k2 + vkγ́ (vk)
][ 2

π

∫ ∞

0
d�

I (�)� cos(�τ )

v2k2 + �2

]2

+ 4

βb

∞∑
k=1

[
2

π

∫ ∞

0
d�

I (�)�2 sin(�τ )

v2k2 + �2

]2

+ 4

βb

∞∑
k=1

v2k2
[
ω2

0 + vkγ́ (vk)
][ 2

π

∫ ∞

0
d�

I (�) sin(�τ )

v2k2 + �2

]2

. (A11)

Following the same steps, one finds

K(τ ) = 2

π

∫ ∞

0
d�

I (�)�2

tanh
(

1
2βb�

) − 8

π2

[∫ ∞

0
d�I (�)� cos(�τ )

][∫ ∞

0
d�

�2I (�) cos(�τ )

tanh
(

1
2βb�

)
]

− 2

βb

{
ω2

0�
2
0(τ ) −

[
2

π

∫ ∞

0
d�I (�)� cos(�τ )

]2
}

− 16

π2βb

∞∑
k=1

[
ω2

0 + v2k2 + vkγ́ (vk)
][∫ ∞

0
d�

I (�)�2 sin(�τ )

v2k2 + �2

]2

+ 16

π2βb

∞∑
k=1

[∫ ∞

0
d�

I (�)�3 cos(�τ )

v2k2 + �2

]2

+ 16

π2βb

∞∑
k=1

v2k2[ω2
0 + vkγ́ (vk)]

[∫ ∞

0
d�

I (�)� cos(�τ )

v2k2 + �2

]2

. (A12)

In our numerical simulations, we set the upper bounds as �c = 50ω0 for all integrals over � and kc = 10 for all sums over k.
The increase of the two upper bounds do not change our physical conclusions.

FIG. 3. (a) The spectral density of normal norms I (�) versus � with different cutoff frequencies: ωc/ω0 = 0.5 (green diamonds), ωc/ω0 =
1 (red stars), and ωc/ω0 = 20 (orange rectangles). Other parameters are η = 0.06 and ω0 = 2cm−1. The characteristic function χ∞(−iδβ )
is plotted as the function of (b) the coupling strength η and (c) the temperature of the heat bath ω0βb with different cutoff frequencies:
ωc/ω0 = 50 (green diamonds) and ωc/ω0 = 500 (red stars). The temperature of the heat bath in (b) is ω0βb = 0.2 and the coupling strength in
(c) is η = 0.25. Other parameters are chosen as ω0βs = 2 and ω0 = 2cm−1. (d) The dynamics of the average heat 〈Q(τ )〉 with different cutoff
frequencies: ωc/ω0 = 0.5 (green diamonds) and ωc/ω0 = 500 (red stars). Other parameters are chosen as η = 0.05, ω0βs = 2, ω0βb = 0.2, and
ω0 = 2cm−1. The black dashed line in (d) presents the high-temperature approximate result from Eq. (48). The blue solid lines in (a)–(d) are
the results of the special case f (ω, ωc ) = 1 considered in the main text.
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APPENDIX B: LORENTZIAN CUTOFF CASE

In this Appendix, we would like to discuss the case of the Ohmic spectral density with a Lorentzian cutoff, namely, f (ω,ωc) =
ω2

c/(ω2 + ω2
c ). The corresponding expression of γ́ (z) reads γ́ (z) = ηωc/(z + ωc). In Fig. 3(a), we plot I (�) with different cutoff

frequencies. When ωc/ω0 is small, I (�) is underdamped (sharply peaked) while, with the increase of ωc/ω0, I (�) becomes
overdamped (broad). In the special case ωc � ω0, the underdamped spectrum convergences to the one considered in the main
text, i.e., the case of J (ω) = ηω. Both underdamped and overdamped baths can result in non-Markovian dynamical effects [82].
With the expression of I (�) at hand, we also compute the characteristic function and the average heat in this Lorentzian-cutoff
case. As displayed in Figs. 3(b)–3(d), all the physical conclusions presented in the main text remain unchanged. These results
demonstrate our findings are universal to different forms of the original spectral density.
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