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We use Floquet formalism to study fluctuations in periodically modulated continuous quantum thermal
machines. We present a generic theory for such machines, followed by specific examples of sinusoidal, optimal,
and circular modulations, respectively. The thermodynamic uncertainty relations (TUR) hold for all modulations
considered. Interestingly, in the case of sinusoidal modulation, the TUR ratio assumes a minimum at the heat
engine to refrigerator transition point, while the chopped random basis optimization protocol allows us to keep
the ratio small for a wide range of modulation frequencies. Furthermore, our numerical analysis suggests that
TUR can show signatures of heat engine to refrigerator transition, for more generic modulation schemes. We
also study bounds in fluctuations in the efficiencies of such machines; our results indicate that fluctuations
in efficiencies are bounded from above for a refrigerator and from below for an engine. Overall, this study
emphasizes the crucial role played by different modulation schemes in designing practical quantum thermal
machines.
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I. INTRODUCTION

The necessity of establishing a coherent framework of
thermodynamics within the realm of quantum mechanics mo-
tivated the field of quantum thermodynamics [1–3]. Such a
framework would lead to a deeper understanding of the en-
ergetics in the quantum regime, which is crucial in the era
of miniaturization of technologies. Moreover, along with the
average thermodynamic quantities of interest, the fluctuations
about the mean values are necessary for determining the qual-
ity of output of such miniature technologies.

In this regard, fluctuation theorems [4–7] are a remarkable
achievement, providing exact mathematical expressions for
arbitrary out-of-equilibrium scenario. Beyond that, recently it
has been shown that for out-of-equilibrium systems, there is a
limitation to achieving arbitrary precision, which is broadly
known as the thermodynamic uncertainty relations (TUR)
[8–14]. Since its first analytical proof for time-continuous
classical Markov jump process on a discrete set of states
[10], it was subsequently proven for Langevin dynamics with
continuous variables [15–17]. In the meantime, a plethora
of studies have been carried out to broaden the regime of
its applicability, to include quantum systems. Beyond the
standard framework, where the system relaxes to a unique
time-independent steady state and the dynamics is time rever-
sal symmetric [18], the original TUR [8,10] may not hold, thus
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requiring more general bounds. Specifically, for discrete-time
Markov chains [19–21], time-dependent driving [20,22–31],
underdamped Langevin equation [31–34], ballistic transport
in the presence of magnetic field [27,35], with measurement
and feedback control [36], and arbitrary initial states [37],
modified TUR have been put forward. Extensions to the quan-
tum scenario [38–45] are relatively less explored. In fact,
additional complexity that arises due to the genuine quantum
features, such as quantum coherence [39,46–52] can poten-
tially give rise to violation of the original TUR.

Discovery of TUR have further provided a deep under-
standing in analyzing the thermodynamics of precision for
a thermal machine. Along with the power and efficiency to
quantify the quality of an engine, the fluctuation around the
power output enters into the tradeoff relation following the
original statement of TUR [8–10]. This was first shown for
steady-state classical heat engine connected simultaneously
to two baths [13]. As the TUR does not always hold in its
original form, in general such a conclusion may not be true
for all types of thermal machines. As an example, for cyclic
heat engines this tradeoff can be overcome [26]. Nevertheless,
following this work, generalizations have been put forward
in both classical and quantum scenarios. For instance, quan-
tum thermoelectric junctions [39,46], autonomous quantum
thermal machines [48,52], periodic quantum thermal ma-
chines [52–55] and information driven engines [36] have been
studied.

In this paper, we first study a periodically driven continu-
ous quantum thermal machine [56] where the working fluid
consists of a minimal two-level system that can work both
as an engine and a refrigerator. Employing the techniques
of counting field statistics [4] and the Floquet formalism
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[57–60], we provide analytic expressions for the currents and
fluctuations. Very recently, a novel quantification of fluctua-
tions has been introduced for heat engines [61–63], defined as
the ratio of fluctuation of output work and fluctuation of heat
input from the hot bath. Analogous definition has also been
provided for refrigerator [62,63] defined as the ratio of the
fluctuation of heat extracted from cold bath and fluctuation
of input work. The mathematical form of this quantification
is reminiscent of efficiency (co-efficient of performance for
refrigerator) giving an essence of the fluctuation for relevant
quantities. In general one can define nth order for such quan-
tities taking the ratio of nth order central moments. It was
shown that such a quantity is bounded from both below and
above for continuous autonomous thermal machines [62]. One
advantage for using this quantity is that, as also shown pre-
viously for autonomous and discrete thermal machines, such
quantity receives a universal upper bound that is solely depen-
dent on the temperature ratio of the cold and hot heat baths.
We study the same quantity in the present context. We focus
on cases where the qubit is driven by sinusoidal, optimal,
and circular modulations. First demonstrating the validity of
TUR for each scenario, we find that for such nonautonomous
machines, while performing as an engine (refrigerator), the
lower (upper) bound is always satisfied, whereas we found
that the upper (lower) bound is not satisfied at least for one
model we considered.

To illustrate further on TUR, in contrast to sinusoidal mod-
ulation, the optimized protocol obtained via chopped random
basis (CRAB) method allows for reduced TUR ratio for the
input (heat current from the hot bath in the engine regime
and power in the refrigerator regime) for a wide range of
modulation frequencies, whereas the same may not be al-
ways true in the case of the output (power output in the
engine regime and heat current extracted from the cold bath in
the refrigerator regime). Furthermore, for such more generic
modulation schemes, we observe that the TUR can show
signatures of heat engine to refrigerator transition. Finally,
we focus on circular modulation with secular approximation
[64,65]. Combined with the Floquet analysis, we find that
the evolution of the diagonal and the off-diagonal elements
of the system density matrix are decoupled, leading to Pauli
type master equation for the diagonal entries. Consequently,
TUR is obeyed for heat currents in this model. In absence
of secular approximation, [64,65] evolution of diagonal and
off-diagonal elements of the density matrix may not decouple,
thereby leaving a possibility of violating the original TUR.

This paper is organized as follows. In Sec. II, we intro-
duce the techniques of counting field statistics to calculate
the currents and fluctuations in periodically driven open
quantum systems. In Sec. III, we introduce the model of
a minimal continuous quantum thermal machine; we derive
the corresponding generalized master equation in Sec. III A,
and discuss the generating function and moments of heat
currents and power in Sec. III B. In Sec. III C we present
the results for sinusoidal driving. We introduce the CRAB
optimization protocol in Sec. III D 1, and present the optimiza-
tion results in Sec. III D 2. Section III E deals with circular
modulation. Finally, in Sec. IV, we provide a summary of
our main results. We provide certain technical details in the
Appendices.

II. COUNTING FIELD STATISTICS FOR DRIVEN
OPEN QUANTUM SYSTEMS

We write the total Hamiltonian for the system and the
baths as

H (t ) = HS (t ) + HB + HSB = H0(t ) + HSB, (1)

where HB = Hh + Hc and HSB = HSh + HSc = S ⊗ Bh +
S ⊗ Bc. We are considering the situation where the two baths
are continuously connected to the system. Here Hh (Hc) de-
notes the Hamiltonian of the hot (cold) bath; the operators
S and B j act on the system and the j(= h, c)th bath, re-
spectively. We choose the initial state as a product state, i.e.,
ρ(0) = ρS (0) ⊗ ρB, where ρB = ρh ⊗ ρc and the reservoirs
are prepared in thermal states with respective Hamiltonians
Hh, Hc and inverse temperatures βh, βc, respectively. The
measured observables are the Hamiltonians Hh and Hc. To get
the probability distribution of this measurement, we introduce
counting field χ j ( j = h, c) to each reservoir. We introduce
χ ≡ {χh, χc} to denote collectively both the counting vari-
ables. The generating function corresponding to the two-point
measurement statistics is given by

G(χ, t ) = TrSB[ρ(χ, t )], (2)

where TrSB denotes tracing over both the bath and the system
degrees of freedom. The modified density matrix ρ(χ, t ) is
given as

ρ(χ, t ) = U (χ, t )ρ(0)U †(−χ, t ), (3)

with

U (χ, t ) = e−i(χhHh+χcHc )/2U (t )ei(χhHh+χcHc )/2 (4)

being the counting field dressed evolution operator. Here U (t )
is the unitary evolution operator generated by the total Hamil-
tonian H (t ). Defining ρS (χ, t ) = TrB[ρ(χ, t )], we get

G(χ, t ) = Tr[ρS (χ, t )]. (5)

The generating function allows us to evaluate the statistics
of energy transferred between system and each reservoir ob-
tained from two-point measurement scheme [4]:〈

�En
j

〉 = ∂n

∂ (iχ j )n G(χ, t ) |χ=0 . (6)

The first-order moment 〈�Ej〉 is the heat transferred between
the system and jth reservoir. With the spectral decomposition
of the bath Hamiltonian as

Hj =
∑

m

Ek
j |k j〉 〈k j | ≡

∑
k

Ek
j Pk

j , (7)

〈�Ej〉 is defined below, where two projective measurements
(the projectors {Pk

j } are defined above) are done on Hj at the
beginning and at time t .

〈�Ej〉 =
∑
m,n

pm
j pnm

j

(
En

j − Em
j

)
, (8)

where

pnm
j = Tr

[
Pn

j U (t )Pm
j ρ(0)Pm

j U †(t )Pn
j

]
(9)

and pm
j = Tr[ρ(0)Pm

j ] is the probability to measure Em
j at t =

0. In Eq. (9) and in the definition of pm
j , the projector Pk

j is

014137-2



PRECISION BOUND AND OPTIMAL CONTROL IN … PHYSICAL REVIEW E 108, 014137 (2023)

understood as 1 ⊗ Pk
j . Now Eq. (6) in turn results in the mean

heat current given by

〈Jj (t )〉 = d

dt
〈�Ej〉 = −i

d

dt

∂

∂χ j
G(χ, t ) |χ=0 . (10)

As per our convention, positive (negative) sign implies current
is entering (leaving) the system.

We now proceed to study the dynamics of ρ(χ, t ). Follow-
ing Eq. (3), the evolution of this modified density matrix is
given as [4]

∂tρ(χ, t ) = −i[H (χ, t )ρ(χ, t ) − ρ(χ, t )H (−χ, t )], (11)

where H (χ, t ) = e−i(χhHh+χcHc )/2H (t )ei(χhHh+χcHc )/2. In the in-
teraction picture one gets (the operators are labeled by tilde)

ρ̃(χ, t ) = U0ρ(χ, t )U †
0 , (12)

where U0 is the unitary operator generated by the Hamiltonian
H0(t ) = HS (t ) + HB; the interaction picture Hamiltonian is
given by

H̃I (χ, t ) = U0HSB(χ, t )U †
0 = S̃ (t ) ⊗ (B̃h(χh, t ) + B̃c(χc, t )).

(13)

In the interaction picture, the equation of motion (11) now
becomes

∂t ρ̃(χ, t ) = −i[H̃I (χ, t )ρ̃(χ, t ) − ρ̃(χ, t )H̃I (−χ, t )]. (14)

Next, considering the weak coupling assumption and perform-
ing the standard Born-Markov approximation, we arrive at the
following master equation:

∂t ρ̃S (χ, t ) = −
∫ ∞

0
dτTrB[H̃I (χ, t )H̃I (χ, t − τ )ρ̃S (χ, t )ρB

− H̃I (χ, t )ρ̃S (χ, t )ρBH̃I (−χ, t − τ )

− H̃I (χ, t − τ )ρ̃S (χ, t )ρBH̃I (−χ, t )

+ ρ̃S (χ, t )ρBH̃I (−χ, t − τ )H̃I (−χ, t )], (15)

where we have used TrB[H̃I (χ, t )ρB] = 0 [66]. The first term
on the right-hand side of Eq. (15) can be written as

∑
j=h,c

∫ ∞

0
dτ S̃ (t )S̃ (t − τ )ρ̃S (χ, t )� j (τ ), (16)

where we have TrB̃ j
[B̃ j (χ, t1)B̃ j (η, t2)ρ j] = TrB̃ j

[B̃ j (χ −
η, t1 − t2)B̃ jρ j] ≡ � j (χ − η, t1 − t2) and � j (0, t ) = � j (t ).
Also, S̃ (t ) is the system operator (in the interaction picture)
coming from the interaction Hamiltonian HSB. Similarly, eval-
uating the other terms, we finally have

∂t ρ̃S (χ, t ) = −
∑
j=h,c

∫ ∞

0
dτ [S̃ (t )S̃ (t − τ )ρ̃S (χ, t )� j (τ )

− S̃ (t )ρ̃S (χ, t )S̃ (t − τ )� j (−2χ,−τ )

− S̃ (t − τ )ρ̃S (χ, t )S̃ (t )� j (−2χ, τ )

+ ρ̃S (χ, t )S̃ (t − τ )S̃ (t )� j (−τ )]. (17)

Equation (17) is the generalized master equation for a generic
quantum system in presence of arbitrary modulation, the so-
lution of which will provide the required generating function.
For later convenience, we introduce the Fourier transform of
the correlation functions,

� j (−2χ, τ ) = 1

2π

∫ ∞

−∞
dνe−iν(χ+τ )Gj (ν). (18)

III. A MINIMAL CONTINUOUS QUANTUM
THERMAL MACHINE

In this section, we focus on the specific case of a thermal
machine modeled by a minimal (two-level system) working
medium in the presence of a periodic modulation [56],

HS (t ) = HS (t + T ), HS (t ) = 1
2ω(t )σz, (19)

with period T = 2π/�. Additionally, we consider S = σx.
One can represent S̃ (t ) = σx(t ) = U †

S (t )σxUS (t ) in the Flo-
quet basis as [67]

σ̃x(t ) =
∑
q∈Z

(η(q)e−i(ω0+q�)tσ− + η∗(q)ei(ω0+q�)tσ+),

η(q) = 1

T

∫ T

0
exp

(
i
∫ t

0
(ω(s) − ω0)ds

)
e−iq�t dt . (20)

To justify the above equation we refer to the Floquet theory
discussed in detail in Appendix A.

We note that the resonance condition � = ω0 =
1
T

∫ T
0 dt ω(t ) may result in effective squeezing, as reported in

Ref. [68]. Furthermore, experimental constraints may impose
a limitation on the maximum frequencies of modulation in
any setup. Consequently, in this study we restrict ourselves to
low-frequency modulation only, given by � < ω0.

We note that one can consider an autonomous quan-
tum thermal machine as well, which can operate even in
the absence of any external periodic modulation [69]. How-
ever, such machines are outside the scope of this present
work.

A. Generalized quantum master equation with counting fields

With the above expansion of σ̃x(t ) [see Eq. (20)], we
perform a secular approximation for Eq. (17); neglecting the
terms with q 	= q′, the first term of the expression Eq. (17)
becomes

1

2

∑
q, j

|η(q)|2[Gj (−ω0 − q�)σ−σ+ρ̃S (χ, t )

+ Gj (ω0 + q�)σ+σ−ρ̃S (χ, t )], (21)

where j = {h, c}. In the above we have neglected the Cauchy
principal value and used

∫ ∞

0
dτeiτ (y−x) = πδ(y − x). (22)
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Following similar steps and writing for both hot and cold baths, we finally obtain,

∂t ρ̃S (χ, t ) =
∑

q, j={h,c}
Lq

i (χ j, t )[ρ̃S (χ, t )]

=
∑

q, j={h,c}

Pq

2
(Gj (ω0 + q�)[2e−i(ω0+q�)χ j σ−ρ̃S (χ, t )σ+ − σ+σ−ρ̃S (χ, t ) − ρ̃S (χ, t )σ+σ−]

+ Gj (−ω0 − q�)[2ei(ω0+q�)χ j σ+ρ̃S (χ, t )σ− − σ−σ+ρ̃S (χ, t ) − ρ̃S (χ, t )σ−σ+]), (23)

where Pq = |η(q)|2 is the weight of the qth Floquet mode. For
χ = 0, we get back the original master equation without the
counting field χ [4]. We note that here for simplicity we have
assumed ω0 + q� is positive for all the significant Floquet
modes, which can be the case for modulations with Pq → 0
for large |q|. A more general case with positive as well as
negative ω0 + q� is discussed in Appendix C.

B. Generating function, mean currents, and fluctuations

With the above generalized master equation (23) in hand,
we now compute the mean and fluctuations of the heat
currents and the output power. Importantly, for the master
equation in Eq. (23), the evolution of the diagonal and off-
diagonal elements are decoupled. As a result, it is enough to
consider only the evolution of the diagonal entries of ρ̃S (χ, t ),
where we have noted that the generating function is given by
the trace of ρ̃S (χ, t ) [see Eq. (5)]. In the energy eigenbasis, the
time evolution of the diagonal entries ρ̃00(χ, t ) and ρ̃11(χ, t )
can be expressed as

(
˙̃ρ00(χ, t )
˙̃ρ11(χ, t )

)
= L(χ )

(
ρ̃00(χ, t )

ρ̃11(χ, t )

)
, (24)

where the elements of the matrix

L(χ ) =
[

l00 lχ

01

lχ

10 l11

]
(25)

are

l00 = −
∑
q, j

PqGj (ω0 + q�), (26)

lχ

01 =
∑
q, j

PqGj (−ω0 − q�)ei(ω0+q�)χ j , (27)

lχ

10 =
∑
q, j

PqGj (ω0 + q�)e−i(ω0+q�)χ j , (28)

l11 = −
∑
q, j

PqGj (−ω0 − q�). (29)

We use the moment generating function Eq. (5) to define the
cumulant generating function as

C(χ, t ) ≡ logG = log Tr[ρ̃S (χ, t )], (30)

which directly gives us the mean, variance, and the higher-
order cumulants. The steady state is reached in the limit
of long times, when the cumulant generating function is

dominated by the eigenvalue λ(χ ) of L(χ ) with the largest
real part. Therefore, one can write [70]

lim
t→∞ C(χ, t ) ≈ λ(χ )t, (31)

where

λ(χ ) = 1
2 (l00 + l11) + 1

2

√
(l00 + l11)2 − 4

(
l00l11 − lχ

01lχ

10

)
.

(32)

This in turn results in the mean current in the steady state
to be given by

〈Jj〉 = lim
t→∞

d

dt

∂

∂ (iχ j )
C(χ, t )

∣∣∣∣
χ=0

= ∂λ(χ )

∂ (iχ j )

∣∣∣∣
χ=0,

(33)

=
∑

q

Pq(ω0 + q�)

w + 1
Gj (ω0 + q�)[e−β j (ω0+q�) − w].

(34)

Here, w is the ratio of the diagonal entries of ρ̃S (0, t ) in the
steady state, evaluated setting χ = 0 in the Eq. (24) and can
be obtained straightforwardly as

pss
1

pss
2

≡ w =
∑

q, j PqGj (ω0 + q�)e−β j (ω0+q�)∑
q, j PqGj (ω0 + q�)

= l11

l00
. (35)

To arrive at this expression we have used the Kubo-Martin-
Schwinger (KMS) boundary condition [71],

Gj (−ν) = e−νGj (ν), ν > 0, (36)

and assumed (ω0 + q�) > 0 for simplicity. The KMS condi-
tion above is the direct consequence of the fact that the bath
states are in thermal equilibrium with inverse temperature β j .
For setups with both positive as well as negative (ω0 + q�),
one can consider the same KMS condition (36) to do the
analysis, as discussed in Appendix C. Similarly, the current
fluctuation is given as

var(Jj ) = lim
t→∞

d

dt

∂2

∂ (iχ j )2 C(χ, t )

∣∣∣∣∣
χ=0

= ∂2λ(χ )

∂ (iχ j )2

∣∣∣∣
χ=0

,

(37)
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which upon simplification leads to the following expression:

var(Jj ) =
∑

q

Pq(ω0 + q�)2

w + 1
Gj (ω0 + q�)[e−β j (ω0+q�) + w] − 2〈Jj〉2∑

q, j PqGj (ω0 + q�)[e−β j (ω0+q�) + 1]

− 2∑
q, j PqGj (ω0 + q�)[e−β j (ω0+q�) + 1]

[ ∑
q′,q′′

Pq′Pq′′e−β j (ω0+q′�)(ω0+q′�)(ω0+q′′�)Gj (ω0 + q′�)Gj (ω0 + q′′�)

]
.

(38)

One can use the above results to evaluate the average entropy production rate

〈Ṡ〉 = −βh〈Jh〉 − βc〈Jc〉, (39)

and average output power

〈P〉 = −〈Jh〉 − 〈Jc〉, (40)

and fluctuations (variance) in power

var(P ) = var(Jh) + var(Jc) + 2 Cov(Jh, Jc). (41)

Here the covariance term is given by Cov(Jh, Jc) = 〈JhJc〉 − 〈Jh〉〈Jc〉, where

〈JhJc〉 = ∂2λ(χ )

∂ (iχc)∂ (iχh)

∣∣∣∣
χ=0

= 1

l00 + l11

(
∂lχ

10

∂ (iχc)

∂lχ

01

∂ (iχh)
+ ∂lχ

01

∂ (iχc)

∂lχ

10

∂ (iχh)

)∣∣∣∣
χ j=0

− 2

l00 + l11
〈Jh〉〈Jc〉;

(
∂lχ

10

∂ (iχc)

∂lχ

01

∂ (iχh)
+ ∂lχ

01

∂ (iχc)

∂lχ

10

∂ (iχh)

)∣∣∣∣
χ j=0

= −
∑
q′,q′′

Pq′Pq′′e−βh (ω0+q′�)(ω0 + q′�)(ω0 + q′′�)Gh(ω0 + q′�)Gc(ω0 + q′′�)

−
∑
q′,q′′

Pq′Pq′′e−βc (ω0+q′′�)(ω0 + q′�)(ω0 + q′′�)Gh(ω0 + q′�)Gc(ω0 + q′′�). (42)

Next, we demonstrate the validity of TUR for the heat currents
and power for the specific examples of sinusoidal and circular
modulations. In addition, we also study the bounds on the ratio
of fluctuations for the currents.

C. Sinusoidal modulation

In this section we focus on the specific case of sinusoidal
modulation:

ω(t ) = ω0 + λ � sin(�t ). (43)

Here we assume a weak modulation, quantified by 0 � λ �
1. This assumption allows us to consider only the harmonics
q = 0,±1, with

P0 ≈ 1 − λ2

2
, P±1 ≈ λ2

4
, (44)

with the higher-order harmonics Pq ≈ 0 for |q| > 1 in the
limit of small λ. Additionally, we consider the bath spectral
functions such that

Gc(ω) ≈ 0 for ω � ω0, Gh(ω) ≈ 0 for ω � ω0. (45)

The above choice of spectral separation of the baths in
Eq. (45) allows the hot (cold) bath to interact with the WM
only at higher (lower) energies, which is crucial for the op-
eration of the quantum thermal machine as a heat engine or
a refrigerator [56,72]. This is reminiscent of an Otto cycle,
where the WM interacts with the hot (cold) bath only at higher

(lower) frequencies [73]. One can use Eqs. (33)–(42) and
Eq. (44) to arrive at the mean heat currents, power and their
fluctuations (see Appendix B).

With the above setup, one can show that there exists a criti-
cal modulation frequency � ≡ �cr = ω0(Th − Tc)/(Th + Tc),
such that the machine works as a heat engine (〈Jh〉 > 0,
〈Jc〉 < 0, 〈P〉 < 0) for � < �cr and as a refrigerator (〈Jh〉 <

0, 〈Jc〉 > 0, 〈P〉 > 0) for � > �cr. The power output van-
ishes while the efficiency approaches the Carnot limit for
� → �cr [56].

We now focus on fluctuations in the operation of the
thermal machine described above. To this end, we choose
Lorentzian forms for the spectral functions of heat baths de-
scribed by

Gh(ω � 0) = γ0�
2�(ω − ω0 − ε)

(ω − ω0 − δ)2 + �2
,

Gc(ω � 0) = γ0�
2�(ω0 − ε − ω)

(ω − ω0 − δ)2 + �2
,

Gj (ω < 0) = Gj (ω � 0)e−βhω, j = {h, c}. (46)

Here, γ0 is the coupling strength, � is the width of the
spectrum, � denotes the Heaviside function, ε is an infinites-
imally small-positive constant which ensures that Gh(0 �
ω < ω0) = Gc(ω > ω0) = 0 [see Eq. (45)], and δ > 0 is an
energy shift, such that Gh(ω) assumes maximum value at
ω = ω0 + δ.
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FIG. 1. Plot of TUR ratio for heat current Jh (green solid line)
and power P (blue dashed-dotted line) with �, for sinusoidal mod-
ulation. Here, ω0 = 30, βh = 0.005, βc = 0.01, λ = 0.02, � = 0.2,
δ = 3, and γ0 = 1. Critical modulation frequency �cr = 10, separat-
ing the heat engine and the refrigerator regimes are denoted by the
vertical black dashed line. The red horizontal dashed line represents
the value of the TUR ratio’s lower limit (2). The TUR value saturates
to the lower limit at the critical frequency �cr. Inset: We plot the
difference between the TUR ratio for the power P and the heat
current Jh, as a function of �.

A consistently performing thermal machine demands low
noise-to-signal ratio var(J )/〈J 〉2, for J ∈ {Jh, Jc,P}. How-
ever, a low noise-to-signal ratio may imply a high entropy
production rate 〈Ṡ〉, which in turn can result in low efficiency
[55]. Consequently, one tradeoff relation for precision and
cost of a thermal machine is the TUR:

R j = 〈Ṡ〉var(J )

〈J 〉2 , (47)

where j = h, c, or P for J = Jh, Jc, and P , respectively.
For the quantum thermal machine discussed here, the oc-
cupation probabilities p0 = ρ00 and p1 = ρ11 of the energy
eigenstates of HS follow a Pauli-type master equation with
time-independent coefficients, as shown in Eq. (24) (setting
χ = 0). Consequently, one can expect that with the KMS
condition, the conventional TUR relation,

R j � 2 (48)

is satisfied [14,18,50,74]. We validate the above inequality
(48) numerically, as shown in Fig. 1; here we display the TUR
ratio for hot and power currents as a function of �. For both
cases, the TUR ratio is always lower bounded by the value
2. Note that, for � < �cr, the machine works as an engine
and for � > �cr the machine works as a refrigerator. As �

approaches �cr the TUR value tends to saturate to 2 as at
this crossover point all the currents vanish. Furthermore, the
expressions for the mean and variance of the currents imply
(see Appendix B)

var(Jh)

〈Jh〉2
= var(Jc)

〈Jc〉2
, (49)

D := var(P )

〈P〉2
− var(Jh)

〈Jh〉2
= 1

2

(
ω2

0

�2
− 1

)
. (50)

Interestingly, the relative fluctuations for both hot and cold
currents are the same. As a result, the TUR ratio for both
the currents will also be the same and will always be lower

bounded by the value 2, i.e.,

〈Ṡ〉var(Jh)

〈Jh〉2
= 〈Ṡ〉var(Jc)

〈Jc〉2
� 2. (51)

The second relation in Eq. (50) leads to some important con-
sequences: In the absence of strong modulation (� < ω0), as
〈Ṡ〉 � 0, one immediately obtains D〈Ṡ〉 � 0, implying

〈Ṡ〉var(P )

〈P〉2
� 〈Ṡ〉var(Jh)

〈Jh〉2
� 2. (52)

Inequalities (51) and (52) show that reduction in the entropy
production rate 〈Ṡ〉 comes at the cost of higher noise-to-signal
ratios of the heat currents and power, thus signifying a tradeoff
between the two. The inset of Fig. 1 shows the quantity D〈Ṡ〉
in log scale. At the crossover point (� = �cr), D is finite
[Eq. (50)], whereas 〈Ṡ〉 is zero. Consequently, this gives rise to
D〈Ṡ〉 vanishing at � = �cr = 10, as also verified numerically
in the inset of Fig. 1.

We next discuss another recently obtained bound on the ra-
tio of fluctuations of currents and power; following Ref. [62],
we define the following quantities:

η(2)
eng = var(P )

var(Jh)
, for engine;

η
(2)
ref = var(Jc)

var(P )
, for refrigerator. (53)

Based on Onsager’s reciprocity relations in the linear response
regime for autonomous continuous machines, it was recently
shown that η(2) is bounded from both above as well as below,
as [62]

〈η〉2
eng � η(2)

eng � η2
C, for engine;

〈η〉2
ref � η

(2)
ref �

(
1 − ηC

ηC

)2

= η2
R, for refrigerator. (54)

Here 〈η〉eng = 〈P〉/〈J〉h and 〈η〉ref = 〈J〉c/〈P〉 denote the ef-
ficiency of the engine and the coefficient of performance for
the refrigerator, respectively. ηC = 1 − βh

βc
is the Carnot effi-

ciency. Knowledge about such bounds in the present context
is crucial for designing optimal nonautonomous continu-
ous quantum thermal machines beyond linear response. We
therefore now assess the validity of these bounds for our peri-
odically driven continuous quantum thermal machine setup.
Following the above expressions in Eqs. (49) and (50) for
relative fluctuations in the engine regime, we arrive at the
following relations:

η(2)
eng = var(P )

var(Jh)
>

〈P〉2

〈Jh〉2
= 〈η〉2

eng, (55)

therefore implying that the lower bound gets respected. Note
that, as in this case, the equality in the lower bound is never
achieved in the engine regime � < ω0. Next, in the refrigera-
tor regime, we find

η
(2)
ref = var(Jc)

var(P )
<

〈Jc〉2

〈P〉2
= 〈η〉2

ref � η2
R, (56)

thus signifying the violation of the lower bound but always
validating the upper bound. Note that, for finite-time discrete
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FIG. 2. Scatter plot of η2
C − η(2)

eng in the engine regime, for sinu-
soidal modulation. We have considered 105 sets of values for ω0,
βh, βc, and � in the range (0,10), with the constraints βh < βc,
and � < �cr . For the values of � along the x-axis, we plot the
corresponding values of η2

C − η(2)
eng along the y axis. Here, λ = 0.02,

� = 0.2, δ = 3, and γ0 = 1.

quantum Otto cycle, a setup that is in stark contrast to the
present situation, similar observations were pointed out [63].

For the upper bound in the engine regime, we provide
a scatter plot and observe the validity of the corresponding
bound. In Fig. 2, we plot the difference between η2

C and
η(2)

eng with � for 105 randomly generated set of parameters
within the range (0,10), satisfying the constraints βh < βc and
� < �cr, for each point. From the figure it is evident that
the difference is always positive, implying the validity of the
upper bound in the engine regime. For the refrigerator regime,
we have already argued in Eq. (56) that the upper bound is
respected. It saturates in the limit when the entropy production
rate vanishes, as illustrated in Fig. 3, the upper bound saturates
for both engine and refrigerator case in the limit of zero power
which corresponds to � → �cr. We emphasize that the above
results are specific to sinusoidal modulation. In Sec. III D we
show that in case of more generic modulation schemes, the
lower bound for engine and the upper bound for refrigerator
always remain robust.

FIG. 3. Plot of η
(2)
ref with �, for sinusoidal modulation. Here,

ω0 = 30, βh = 0.005, βc = 0.01, λ = 0.02, � = 0.2, δ = 3, and
γ0 = 1. Critical modulation frequency �cr = 10. The horizontal red
dashed line represents η2

R = 1. Inset: We plot η(2)
eng with � for the

same parameter values. The red dashed horizontal line represents
η2

C = 0.25.

D. TUR minimization through optimal control

1. CRAB optimization protocol

The sinusoidal modulation discussed above does not guar-
antee optimal operation. We therefore now focus on the
CRAB optimization protocol [75–77], aimed at minimizing
the TUR ratio for heat currents and power. The CRAB opti-
mization scheme has proven to be highly successful in several
theoretical [78,79] and experimental [80,81] works, and it
can be modeled as a generic periodic modulation of ω(t )
expressed as a truncated Fourier series:

ω(t ) = ω0 + μ

2NR(t )

N∑
n=1

[
an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

)]
,

(57)

where the Hamiltonian is given by Eq. (19). Here the positive
integer N denotes the total number of frequencies consid-
ered, while T is the time period of modulation. The function
R(t ) → ∞ for t = 0 and t = T , while R(t ) = 1 for interme-
diate times, such that ω(t ) = ω0 at the beginning and end of a
cycle. We numerically optimize the Fourier coefficients −1 �
an � 1, −1 � bn � 1, to optimize a relevant cost function,
subject to certain constraints, such as the strength of control
μ. In the present case, we perform the above optimization
protocol to minimize the TUR ratio R j , as defined in Eq. (47),
for various currents and power (see also Appendix C). For the
optimization, we choose the same spectral function as done
for the sinusoidal case [Eq. (46)].

2. Optimization and result

For any modulation frequency � = 2π/T , we numerically
optimize the coefficients {an}, {bn} through pattern search op-
timization method, to minimize the TUR ratio for Jh [Rh, see
Fig. 4(a)], Jc [Rc, see Fig. 4(b)], and P [RP , see Fig. 4(c)]
for that �. Here n = 1, 2, 3, ..., N , and we consider a cutoff
N = 10. The optimal set of coefficients {an, bn}� defines the
periodic modulation with the corresponding �. As seen in
Figs. 4(a), 4(b), and 4(c) the TUR ratio R j � 2 for all �,
for j = h, c, and P . Furthermore, we note that in the case
of the sinusoidal modulation, the TUR ratio was minimal
at the crossover point where all the currents were zero (see
Fig. 3). However, the numerical optimization scheme suggests
one can use the CRAB protocol to get a small TUR ratio
(R j → 2+) for Jh and Jc at nonzero output power for a wide
range of modulation frequencies � in the heat engine regime
(〈Jh〉 > 0, 〈Jc〉 < 0, 〈P〉 < 0), thus highlighting the advantage
of performing CRAB optimization. Moreover, a noteworthy
observation in Fig. 4(a) is that in the heat engine regime
(0 < � � 4), the TUR ratio for the input, i.e., Rh can be
reduced to small values and can saturate the TUR bound
through optimal control, whereas the same may not be always
true in the case of the output heat current Jc in the refrigerator
regime � � 4, as shown by Rc in Fig. 4(c). This may be
attributed to small values of 〈Jc〉 in the refrigerator regime [cf.
inset of Fig. 4(b)], as compared to larger values of 〈Jh〉 in the
heat engine regime [cf. inset of Fig. 4(a)]. A similar behavior
is also noticed for the TUR ratio Rp as well. Furthermore, the
contrasting behaviors of TUR in the heat engine (0 < � � 4)
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FIG. 4. Plot showing the TUR ratio (a) Rh for the hot current Jh, (b) Rc for the cold current Jc, and (c) Rp for the output power P , as a
function of �, for the CRAB modulation Eq. (57). As expected, R j is bounded from below by R j = 2 for all values of �, for j = h, c, and P .
The insets show the variation of the mean energy currents 〈Jh〉, 〈Jc〉 and the mean power 〈P〉 as functions of �. As seen in panels (a) and (b),
through CRAB optimization, one can have Rh,c → 2+ at nonzero output power, for a wide range of �. The parameters are fixed as ω0 = 30,
βh = 0.005, βc = 0.01, � = 0.2, δ = 3, γ0 = 1, μ = 1, and N = 10.

and the refrigerator (� � 4) regimes in Figs. 4(a), 4(b), and
4(c) suggest that TUR can exhibit signatures of heat engine to
refrigerator transition for more generic modulation schemes.
We next study the bounds in the fluctuations in efficiencies
in Figs. 5(a)–5(c), for the pulses used in Figs. 4(a)–4(c). As
seen in Fig. 5(a), the lower bound in the refrigerator regime, as
suggested by Eq. (54), is violated for a wide range of �, while
the upper bound, i.e., η

(2)
ref � η2

R always remains valid. This is
in agreement with our observation for the case of sinusoidal
modulation [see Eq. (56)]. Interestingly, in the engine regime,
a completely opposite trend is observed for the bounds. We
observe that the lower bound, i.e., η(2)

eng � 〈η〉2 always re-
mains valid, as was also the case for sinusoidal driving [see
Eq. (55)]; in contrast, now the upper bound gets violated for
this optimal driving scenario. In summary, in all the cases we
observe the validity of the lower bound for the engine and the
upper bound for the refrigerator. This is in stark contrast to
autonomous quantum thermal machines, where the upper and
lower bounds for fluctuations have been shown to hold in the
linear response regime [62,63]. However, the absence of linear

response and the presence of external periodic modulation
invalidates those bounds in the present context. These results
indicate crucial differences in the nature of the fluctuations
for currents in the engine and the refrigerator regimes, as
well as in nonautonomous continuous thermal machines in
comparison to their autonomous counterparts. A comparative
analysis of fluctuations and optimization in continuous and
stroke thermal machines may yield interesting results as well
[26]. Furthermore, they emphasize the importance of rigorous
studies regarding bounds of fluctuations in generic quantum
thermal machines.

E. Circular modulation

We next consider circular modulation, given by

HS (t ) = ω0

2
σz + g(σ−ei�t + σ+e−i�t ). (58)

In contrast to the sinusoidal and the CRAB modulations dis-
cussed above, here [HS(t ), HS(t ′)] may not commute for t 	=
t ′. This noncommutative property of the system Hamiltonian

FIG. 5. Plot of 〈η〉2
ref , η

(2)
ref , and η2

R with �, in the refrigerator regime. In Fig. 5(a), for any �, we have considered the pulse used in Fig. 4(a),
aimed at minimizing Rh for that particular �. Similarly, in Figs. 5(b) and 5(c) we have considered the pulse used in Figs. 4(b) and 4(c),
respectively. The insets show the plots for of η(2)

eng, 〈η〉2
eng, and η2

C with � in the heat engine regime. We observe that in all cases the lower bound

for the engine, i.e., η(2)
eng � 〈η〉2 and the upper bound for the refrigerator, i.e., η

(2)
ref � η2

R always remain valid.
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can lead to quantum friction, thereby changing the qualitative
nature of the thermal machine [82]. Consequently, such mod-
ulation (58) can play an important role in understanding the
role of fluctuations in continuous minimal quantum thermal
machines. Moreover, as we show below, the model considered
here results in the realization of a heat accelerator, thereby

allowing us to extend our analysis to periodically modulated
continuous thermal machines operating beyond the heat en-
gine or refrigerator regimes [83].

One can refer to the Floquet analysis in Appendices A
and D to arrive at the following generalized master equa-
tion [65,84], starting from Eq. (17),

˙̃ραβ = −
∑
j=h,c

∫ ∞

0
dτ� j (τ )

∑
m,n,l,l ′

ei(εα−εm )t ei(εm−εn )(t−τ )eil�t eil ′�(t−τ )Sl
αmSl ′

mnρnβ

+
∑
j=h,c

∫ ∞

0
dτ� j (−2χ,−τ )

∑
m,n,l,l ′

ei(εα−εm )t ei(εn−εβ )(t−τ )eil�t eil ′�(t−τ )Sl
αmSl ′

nβρmn

+
∑
j=h,c

∫ ∞

0
dτ� j (−2χ, τ )

∑
m,n,l,l ′

ei(εn−εβ )t ei(εα−εm )(t−τ )eil�(t−τ )eil ′�t Sl
αmSl ′

nβρmn

−
∑
j=h,c

∫ ∞

0
dτ� j (−τ )

∑
m,n,l,l ′

ei(εm−εn )(t−τ )e−i(εn−εβ )t eil�(t−τ )eil ′�t Sl
mnSl ′

nβραm, (59)

where ε′
αs are the eigenvalues of the Floquet Hamiltonian

HF , and all the indices are integers (Appendix A). We here
perform the secular approximations for the above master
equation; we neglect the fast oscillating terms of the form
eil�t (for l 	= 0). Additionally, we also neglect the terms of the
form of ei(εα−εβ )t (for α 	= β) [64,65]. As a result of the secular
approximation, evolution of diagonal and off-diagonal terms
of the above master equation get decoupled, and we get a
conventional Pauli rate equation with the diagonal entries con-
taining time-independent transition rates. We therefore have(

˙̃ρ00(χ, t )
˙̃ρ11(χ, t )

)
=

(
lχ

00 lχ

01

lχ

10 lχ

11

)(
ρ̃00(χ, t )

ρ̃11(χ, t )

)
, (60)

where

lχ

00 = ∣∣S1
11

∣∣2 ∑
j=h,c

[Gj (�)(e−i�χ j − 1) + Gj (−�)(ei�χ j − 1)]

− ∣∣S1
12

∣∣2 ∑
j=h,c

Gj (� − �R) − ∣∣S1
21

∣∣2 ∑
j=h,c

Gj (−� − �R),

(61)

lχ

01 = |S1
12|2

∑
j=h,c

Gj (−� + �R)e−i(−�+�R )χ j

+ ∣∣S1
21

∣∣2 ∑
j=h,c

Gj (� + �R)e−i(�+�R )χ j , (62)

lχ

10 = |S1
12|

2 ∑
j=h,c

Gj (� − �R)e−i(�−�R )χ j

+ ∣∣S1
21

∣∣2 ∑
j=h,c

Gj (−� − �R)ei(�+�R )χ j , (63)

lχ

11 = ∣∣S1
22

∣∣2 ∑
j=h,c

[Gj (�)(e−i�χ j − 1) + Gj (−�)(ei�χ j − 1)]

− |S1
12|2

∑
j=h,c

Gj (−� + �R) − ∣∣S1
21

∣∣2 ∑
j=h,c

Gj (� + �R).

(64)

As before, we are interested in the long time limit and com-
puting the steady-state currents and fluctuations. We once
again use the properties of the cumulant generating function
[Eqs. (31), (33), and (37)] to calculate the mean and variance
of the heat currents and the power and check the validity of the
inequality (48). Here we consider a Lorentzian bath spectrum
for both the hot bath and the cold bath as follows:

Gj (ω) = γ0�
2

(δ − ω)2 + �2
, (65)

Gj (−ω) = Gj (ω)e−β jω, j = {h, c}, (66)

where the parameters are defined after Eq. (46); Gh(ω) and
Gc(ω) assume maxima at ω = δ. As shown in the inset of
Fig. 6, the machine always works as a heat accelerator for
all values of �. Thermal machines working on time scales in
which the typical Born-Markov approximations do not hold

FIG. 6. Plot of TUR ratio for hot (black solid) and cold (blue
dotted line) bath currents as a function of driving frequency �, for
circular modulation. Here, ω0 = 25, βh = 0.01, βc = 0.06, g = 0.02,
� = 0.2, δ = 3, and γ0 = 1. The dashed horizontal red line repre-
sents the value of the lower bound (2) of TUR ratio. The inset shows
the hot (blue dashed-dotted), cold (black solid line) bath currents,
and the power (red dotted line).
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may lead to different possibilities [85,86]. As we do not get
any useful work from this machine, we are not interested in the
fluctuations of power and all the precision bounds introduced
in the previous section. Instead, we solely focus on the TUR
ratio for hot and cold heat currents. As shown in Fig. 6,
the inequality (48) is satisfied in this scenario. This can be
expected as due to the secular approximation, the diagonal
and off-diagonal elements of the system density matrix evolve
independently in time which results in a Pauli-type master
equation with time-independent coefficients for the occupa-
tion probabilities. This, along with the local detailed balance
condition, results in the condition R � 2 [14,18,50,74]. Un-
like the case of sinusoidal modulation, the noise-to-signal
ratio is not the same for hot and cold currents in the case of
circular modulation, as can be seen from Fig. 6. For sinusoidal
modulation, the spectral separation condition Eq. (45) results
in the difference between noise-to-signal ratio for the hot and
cold current to vanish, as shown in Appendix B. However, the
same is not true in the case of circular modulation.

IV. CONCLUSION

In this paper, we discuss periodically driven continuous
heat machines from the Floquet perspective. Employing the
counting field statistics approach, we compute the steady-
state heat currents and the associated fluctuations for generic
periodically driven continuous thermal machines with the
two-level systems as a working medium. We have exempli-
fied our theory using the specific cases of sinusoidal, CRAB
optimized and circular modulations. We have analyzed dif-
ferent precision bounds and tradeoffs with these fluctuations;
specifically, we find that TUR is satisfied for the machines
considered here. One can operate the sinusoidally modulated
thermal machine as a heat engine, or a refrigerator, depending
on the frequency of modulation, thus motivating us to study
the fluctuations in this model in greater detail. Interestingly,
our analysis shows that the noise-to-signal ratio for the heat
currents from the hot and the cold baths are equal in the case of
sinusoidal modulation. Moreover, one can define a parameter
to quantify the fluctuations in efficiency, which appears to
be bounded from both above and below in the heat engine
regime, while the existence of an equivalent lower bound is
not clear in the case of the refrigerator regime. Note that
similar phenomena was observed recently for a discrete stroke
heat machine as well [63].

We have used CRAB optimization protocol to minimize
TUR and study the bounds in the fluctuations of efficiency.
As expected, the TUR is always bounded from below by two.
Numerical analysis suggests that (i) in the heat engine regime,
one can use optimal control to operate the thermal machine
with minimum TUR (= 2) for the heat currents, at nonzero
power output; (ii) one can reduce the TUR ratio for the input
(heat current absorbed from the hot bath in the engine regime
and power in the refrigerator regime) to small values through
optimal control, whereas the same may not be always true in
the case of the output (power output in the engine regime and
heat current extracted from the cold bath in the refrigerator
regime) (see Fig. 4); (iii) the lower (upper) bound for the
fluctuations in efficiency is always satisfied in the heat engine
(refrigerator) regime [see Eq. (54) and Fig. 5].

Finally, we have used circular modulation to show that the
TUR ratio is satisfied in the case of a continuously driven heat
accelerator as well.

The results presented in this work highlight the impor-
tance of optimal control to study fundamental bounds in the
performance of quantum machines, and for designing high-
performing quantum devices. We note that violation of the
TUR bound Eq. (48) has been reported in similar models de-
scribed by phenomenological master equation and in presence
of coherent dynamics [39,46,48–51]. Consequently, the valid-
ity of the TUR bound in absence of secular approximation
is an intriguing open question, which we plan to address in
future works. The validity/existence of the bounds for fluc-
tuations in broad classes of quantum machines is also worth
looking at.
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lowship at NCU, Toruń, Poland. B.K.A. acknowledges the
MATRICS Grant No. MTR/2020/000472 from SERB, Gov-
ernment of India, and the Shastri Indo-Canadian Institute
for providing financial support for this research work in
the form of a Shastri Institutional Collaborative Research
Grant (SICRG). V.M. acknowledges support from Science
and Engineering Research Board (SERB) through MATRICS
(Project No. MTR/2021/000055) and Seed Grant from IISER
Berhampur. S.M. and V.M. acknowledge funding support for
Chanakya–PG fellowship (Project No. I-HUB/PGF/2021-
22/019) from the National Mission on Interdisciplinary Cyber
Physical Systems, of the Department of Science and Tech-
nology, Government of India, through the I-HUB Quantum
Technology Foundation.

APPENDIX A: FLOQUET THEORY

In this Appendix, we assume a periodically modulated
Hamiltonian HS (t ) with time period T , i.e., HS (t ) = HS (t +
T ), where T = 2π

�
. Solution of Schrödinger equation with this

Hamiltonian reads as

|ψ (t )〉 = U (t, t0) |ψ (t0)〉 , (A1)

where U (t, t0) = T e−i
∫ t

t0
H (τ )dτ . Owing to the periodicity of

the Hamiltonian H (t ), one can show that [57–60]

U (t0 + nT, t0) = [U (t0 + T, t0)]n. (A2)

The unitary Floquet propagator U (t0 + T, t0) can be
written as

U (t0 + T, t0) = e−iHF [t0]T , (A3)

where HF is called the Floquet Hamiltonian [72]. Clearly,
HF [t0] depends on our choice of t0. Consequently, to avoid
confusion we choose t0 = 0, and write U (T ) = e−iHF T .

The next quantity we are interested in is the unitary propa-
gator for arbitrary time t . One can show that

U (t, 0) ≡ U (t ) = P(t )e−iHF t ,

where P(t + T ) = P(t ) = U (t )eiHF t . (A4)
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P(t ) is called the kick operator. Denoting the complete set of
eigenvectors for U (T ) by {|φ j〉}, one can write

U (T ) |φ j〉 = e−iε j T |φ j〉 ⇒ HF =
∑

j

ε j |φ j〉 〈φ j | . (A5)

Further,

U (t ) |φ j〉 = P(t )e−iHF t |φ j〉 = e−iε j t |φ j (t )〉 , (A6)

where |φ j (t )〉 = P(t ) |φ j〉, with |φ j (t + T )〉 = |φ j (t )〉. Any
initial state can be written as the linear combination of the
Floquet modes |φ j〉,

|ψ (t0)〉 =
∑

j

c j |φ j〉 . (A7)

Clearly, |ψ (t )〉 = ∑
j c je−iε j t |φ j (t )〉 is a solution of

Schrödinger equation. One can express U (t ) and P(t ) as

U (t ) =
∑

j

e−iε j t |φ j (t )〉 〈φ j | , P(t ) =
∑

j

|φ j (t )〉 〈φ j | .

(A8)
To evaluate the term S̃(t ) = U †

S (t )SUS (t ) in Eq. (16), we pro-
ceed as follows:

S̃(t ) =
∑

j,k

ei(εk−ε j )t 〈φk (t )| S |φ j (t )〉 (|φk〉 〈φ j |),

=
∑
j,k,α

ei(εk−ε j )t eiα�t Sα
k j (|φk〉 〈φ j |), (A9)

where

Sα
k j =

[
1

T

∫ T

0
dt 〈φk (t )| S |φ j (t )〉 e−iα�t

]
(A10)

are the Fourier components of the periodic function
〈φk (t )| S |φ j (t )〉. Now, for the Hamiltonian in Eq. (19), HF =
1
2ω0σz and P(t ) = 1

2λ� sin(�t )σz. This implies |φ1〉 and
|φ2〉 are |0〉 and |1〉 , respectively, where σz |0〉 = − |0〉 and
σz |1〉 = |1〉. Hence,

e−iHF t = eiω0t/2 |0〉 〈0| + e−iω0t/2 |1〉 〈1| . (A11)

Using this, we can write

σ̃x(t ) = e−iω0t 〈0| P†(t )σxP(t ) |1〉 (|0〉 〈1|)
+ eiω0t 〈1| P†(t )σxP(t ) |0〉 (|1〉 〈0|). (A12)

Putting P(t ) = ∑
j |φ j (t )〉 〈φ j |, one can see that this equa-

tion is exactly the same as Eq. (A9). Now, from the Fourier
components of the terms 〈i| P†(t )σxP(t ) | j〉 and noting that
|0〉 〈1| = σ− = 1

2 (σx − iσy) and |1〉 〈0| = σ+ = 1
2 (σx + iσy),

we recover the Eq. (20), where

η(q) =
[

1

T

∫ T

0
dt 〈0| P†(t )σxP(t ) |1〉 e−iq�t

]
(A13)

are the Fourier components.

APPENDIX B: EXPRESSIONS FOR MEAN CURRENTS AND FLUCTUATIONS UNDER SINUSOIDAL MODULATION

In this Appendix, we provide expressions for the mean currents and the associated fluctuations for the sinusoidal driving case.
From Eq. (33), we get

〈Jh〉 = −λ2

4

(ω0 + �)Gh(ω0 + �)Gc(ω0 − �)(e−βc (ω0−�) − e−βh (ω0+�) )

Gh(ω0 + �)(1 + e−βh (ω0+�) ) + Gc(ω0 − �)(1 + e−βc (ω0−�) )
,

〈Jc〉 = −λ2

4

(ω0 − �)Gh(ω0 + �)Gc(ω0 − �)(e−βc (ω0−�) − e−βh (ω0+�) )

Gh(ω0 + �)(1 + e−βh (ω0+�) ) + Gc(ω0 − �)(1 + e−βc (ω0−�) )
. (B1)

It can be easily seen from the above expressions that at � = �cr both these currents and as a result the power also vanishes [56].
Next, we provide expressions for the variance starting from Eq. (37), given by

var(Jh) = λ2

4

(ω0 + �)2Gh(ω0 + �)[2e−βh (ω0+�)Gh(ω0 + �) + Gc(ω0 − �)(e−βc (ω0−�) + e−βh (ω0+�) )]

Gh(ω0 + �)(1 + e−βh (ω0+�) ) + Gc(ω0 − �)(1 + e−βc (ω0−�) )

− λ2

2

[
e−βh (ω0+�)(ω0 + �)2G2

h(ω0 + �) + 16/λ4〈Jh〉2

Gh(ω0 + �)(1 + e−βh (ω0+�) ) + Gc(ω0 − �)(1 + e−βc (ω0−�) )

]
,

var(Jc) = λ2

4

(ω0 − �)2Gc(ω0 − �)[2e−βc (ω0−�)Gc(ω0 − �) + Gh(ω0 + �)(e−βc (ω0−�) + e−βh (ω0+�) )]

Gh(ω0 + �)(1 + e−βh (ω0+�) ) + Gc(ω0 − �)(1 + e−βc (ω0−�) )

− λ2

2

[
e−βc (ω0−�)(ω0 − �)2G2

c (ω0 − �) + 16/λ4〈Jc〉2

Gh(ω0 + �)(1 + e−βh (ω0+�) ) + Gc(ω0 − �)(1 + e−βc (ω0−�) )

]
. (B2)

Covariance term is given by 〈JhJc〉 − 〈Jh〉〈Jc〉, where

〈JhJc〉 = −λ2

4

[
(ω0 + �)(ω0 − �)Gh(ω0 + �)Gc(ω0 − �)(e−βh (ω0+�) + e−βc (ω0−�) ) + 32/λ4〈Jh〉〈Jc〉

Gh(ω0 + �)(1 + e−βh (ω0+�) ) + Gc(ω0 − �)(1 + e−βc (ω0−�) )

]
. (B3)
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APPENDIX C: MEAN CURRENT AND FLUCTUATIONS FOR CRAB MODULATION

In this Appendix, we focus on the mean currents and fluctuations for the generic periodic modulation used for CRAB
optimization in Sec. III D (see the Supplemental Material of Ref. [87]). We note that in contrast to sinusoidal modulation [see
Eqs. (43) and (44)], in the case of CRAB modulation one can have multiple Floquet modes with significant weights Pq. This can
in turn result in negative ωq = ω0 + q� for large |q|. We can rewrite Eq. (33) as follows:

〈Jj〉 = lim
t→∞

d

dt

∂

∂ (iχ j )
C(χ, t )

∣∣∣∣
χ=0

= ∂λ(χ )

∂ (iχ j )

∣∣∣∣
χ=0,

=
∑

q

+ Pq(ω0 + q�)

w′ + 1
Gj (ω0 + q�)[e−β j (ω0+q�) − w′]

+
∑

q

− Pq(|ω0 + q�)|
w′ + 1

Gj (|ω0 + q�|)e−β j (|ω0+q�|)[e−β j |ω0+q�)| − w′]. (C1)

Here,
∑

q
+(

∑
q
−) denotes summation over integer q such that ωq � 0(ωq < 0), ωq = ω0 + q�, while w′ is the ratio of the

diagonal entries of ρ̃S (0, t ) in the steady state and can be obtained straightforwardly as

pss
1

pss
2

≡ w′ =
∑+

q, j PqGj (ω0 + q�)e−β j (ω0+q�) + ∑−
q, j PqGj (|ω0 + q�|)∑+

q, j PqGj (ω0 + q�) + ∑−
q, j PqGj (|ω0 + q�|)e−β j (|ω0+q�|) = l11

l00
. (C2)

To arrive at this expression we have used the KMS boundary condition

Gj (−ω0 − q�) = e−β j (ω0+q�)Gj (ω0 + q�), for ωq � 0. (C3)

Similarly, the variation is given as

var(Jj ) = lim
t→∞

d

dt

∂2

∂ (iχ j )2 C(χ, t )

∣∣∣∣∣
χ=0

= ∂2λ(χ )

∂ (iχ j )2

∣∣∣∣
χ=0

, (C4)

which upon simplification leads to the following expression:

var(Jj ) =
∑

q

+ Pq(ω0 + q�)2

w′ + 1
Gj (ω0 + q�)[e−β j (ω0+q�) + w′]

+
∑

q

− Pq(ω0 + q�)2

w′ + 1
Gj (|ω0 + q�|)e−β j (|ω0+q�|)[e−β j (ω0+q�) + w′]

− 2〈Jj〉2∑+
q, j PqGj (ω0 + q�)[e−β j (ω0+q�) + 1] + ∑−

q, j PqGj (|ω0 + q�|)e−β j (|ω0+q�|)[e−β j (ω0+q�) + 1]

− 2∑+
q, j PqGj (ω0 + q�)[e−β j (ω0+q�) + 1] + ∑−

q, j PqGj (|ω0 + q�|)e−β j (|ω0+q�|)[e−β j (|ω0+q�|) + 1]

×
[∑

q′,q′′

++
Pq′Pq′′e−β j (ω0+q′�)(ω0 + q′�)(ω0 + q′′�)Gj (ω0 + q′�)Gj (ω0 + q′′�)

+
∑
q′,q′′

−−
Pq′Pq′′ (ω0 + q′�)(ω0 + q′′�)Gj (|ω0 + q′�|)Gj (|ω0 + q′′�|)e−β j (|ω0+q′′�|)

+
∑
q′,q′′

+−
Pq′Pq′′ (ω0 + q′�)(ω0 + q′′�)Gj (ω0 + q′�)Gj (|ω0 + q′′�|)e−β j (|ω0(q′+q′′ )�|)

+
∑
q′,q′′

−+
Pq′Pq′′ (ω0 + q′�)(ω0 + q′′�)Gj (|ω0 + q′�|)Gj (ω0 + q′′�)

]
, (C5)

where
∑++

q′,q′′ (
∑−−

q′,q′′ ) denotes summation over integer q′ and q′′ such that ωq′ > 0, ωq′′ > 0(ωq′ < 0, ωq′′ < 0) and
∑+−

q′,q′′ (
∑−+

q′,q′′ )
denotes summation over the integer q′ and q′′ such that ωq′ > 0, ωq′′ < 0(ωq′ < 0, ωq′′ > 0). The covariance term is given by
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Cov(Jh, Jc) = 〈JhJc〉 − 〈Jh〉〈Jc〉, where

〈JhJc〉 = ∂2λ(χ )

∂ (iχc)∂ (iχh)

∣∣∣∣
χ=0

= 1

l00 + l11

(
∂lχ

10

∂ (iχc)

∂lχ

01

∂ (iχh)
+ ∂lχ

01

∂ (iχc)

∂lχ

10

∂ (iχh)

)∣∣∣∣
χ j=0

− 2

l00 + l11
〈Jh〉〈Jc〉;

×
(

∂lχ

10

∂ (iχc)

∂lχ

01

∂ (iχh)
+ ∂lχ

01

∂ (iχc)

∂lχ

10

∂ (iχh)

)∣∣∣∣
χ j=0

=

−
∑
q′,q′′

++
Pq′Pq′′e−βh (ω0+q′�)(ω0 + q′�)(ω0 + q′′�)Gh(ω0 + q′�)Gc(ω0 + q′′�)

−
∑
q′,q′′

++
Pq′Pq′′e−βc (ω0+q′′�)(ω0 + q′�)(ω0 + q′′�)Gh(ω0 + q′�)Gc(ω0 + q′′�)

−
∑
q′,q′′

−−
Pq′Pq′′e−βc (|ω0+q′′�|)(ω0 + q′�)(ω0 + q′′�)Gh(ω0 + q′�)Gc(|ω0 + q′′�|)

−
∑
q′,q′′

−−
Pq′Pq′′e−βh (|ω0+q′�)|(ω0 + q′�)(ω0 + q′′�)Gh(|ω0 + q′�|)Gc(|ω0 + q′′�|)

−
∑
q′,q′′

+−
Pq′Pq′′e−βh (|ω0+q′�)|e−βc (|ω0+q′′�)|(ω0 + q′�)(ω0 + q′′�)Gh(|ω0 + q′�|)Gc(|ω0 + q′′�|)

−
∑
q′,q′′

+−
Pq′Pq′′ (ω0 + q′�)(ω0 + q′′�)Gh(|ω0 + q′�|)Gc(|ω0 + q′′�|)

−
∑
q′,q′′

−+
Pq′Pq′′ (ω0 + q′�)(ω0 + q′′�)Gh(|ω0 + q′�|)Gc(|ω0 + q′′�|)

+
∑
q′,q′′

−+
Pq′Pq′′e−βh (|ω0+q′�)|e−βc (|ω0+q′′�)|(ω0 + q′�)(ω0 + q′′�)Gh(|ω0 + q′�|)Gc(|ω0 + q′′�|). (C6)

APPENDIX D: FLOQUET ANALYSIS
FOR CIRCULAR MODULATION

Here we summarize the Floquet analysis for the circular
driving case. In this case, the Floquet Hamiltonian and the
kick operator are given as

HF =
(

ω0 − �

2

)
σz + gσx − �

2
1, (D1)

P(t ) = e− i�t
2 (σz+1). (D2)

Following the previous discussion, we calculate the Floquet
eigenmodes and eigen-energies by the eigenvalue decomposi-
tion of HF :

∑2
j=1 ε j |φ j〉 〈φ j |.

ε1 = 1
2 (−� − �R) and ε2 = 1

2 (−� + �R), (D3)

where � = ω0 − � and �R =
√

�2 + 4g2.
Now the corresponding eigenvectors are given

by

|φ1〉 = cos θ |0〉 − sin θ |1〉 , |φ2〉 = sin θ |0〉 + cos θ |1〉 ,

(D4)

where σz |0〉 = − |0〉, σz |1〉 = |1〉 and tan 2θ = �
�R

. As
|φ j (t )〉 = P(t ) |φ j〉, we get

|φ1(t )〉 = cos θ |0〉 − e−i�t sin θ |1〉 , (D5)

|φ2(t )〉 = sin θ |0〉 + e−i�t cos θ |1〉 . (D6)

With the above relations we calculate Sα
k j :

S0
k j = 0, S1

11 = S−1
11 = − sin 2θ

2
, S1

22 = S−1
22 = sin 2θ

2
,

S1
12 = 1

2
(cos 2θ − 1), S−1

12 = 1

2
(cos 2θ + 1),

S1
21 = 1

2
(cos 2θ + 1), S−1

21 = 1

2
(cos 2θ − 1). (D7)

Fourier coefficients other than α = ±1 are zero.
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