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Ben Naim’s four-arm model with density anomaly: Theory and computer simulations

Tomaz Urbic *

University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
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Molecular dynamics, Wertheim’s integral equation theory (IET), and thermodynamics perturbation theory
(TPT) were used to study the thermodynamics and structure of particles interacting through angle-dependent
potential. The particles are modeled as two-dimensional Lennard-Jones disks with four hydrogen bonding arms
arranged symmetrically. The model was introduced by Ben-Naim and we call it the BN4 model. The BN4 model
exhibits density anomaly and other anomalous properties similar to those in water and in the Mercedes-Benz
(MB) model. The IET is based on the orientationally averaged version of the Ornstein-Zernike equation and
correctly predicts the pair correlation function of the model at high temperatures. Both TPT and IET are in
semiquantitative agreement with the simulation values of the molar volume, isothermal compressibility, thermal
expansion coefficient, and heat capacity.
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I. INTRODUCTION

Water is special. It has some properties that distinguish
it from other simpler liquids [1–4]. Liquid water covers
three-fourths of the earth’s surface. It controls the planet’s
geochemical cycles and is a dominant driver of biomolecules,
drug interactions, and biological actions. It is the central com-
pound in “green chemistry” and many industrial processes.
Water exhibits many anomalous properties that affect life at
a larger scale. Among the most important anomalies of pure
water are a temperature of maximum density in the liquid
phase, a lower density in the frozen state (ice) than in the liq-
uid state, a minimum in the isothermal compressibility, and a
large heat capacity. Water has almost universal solvent action
[5,6]. Anomalous liquids are liquids that exhibit unexpected
behavior upon variations of the thermodynamic conditions
in comparison to normal (argon-like) liquids. Water is the
classic example of those anomalous liquids. The anomalies
in water appear to be related to the ability of water molecules
to form tetrahedrally coordinated hydrogen bonds. There are
two very distinct mechanisms that give rise to the anomalous
properties, including angular-dependent interactions, such as
oriented hydrogen bonding in water, which can result in den-
sity maximum because of the competition between tetrahedral
order (low density) and translational order (high density). On
the other hand, density anomaly was also observed for Ga [7],
Bi [8], Te [9], S [10], Be, Mg, Ca, Sr, Ba, P, Se, Ce, Cs, Rb,
Co, and Ge where the system lacks oriented bonding.

An understanding of hydrogen bonding is therefore crucial
to understand the behavior and properties of water. Despite
extensive theoretical and experimental works, how water’s
properties come from its molecular structure remains poorly
understood. A large number of models of varying complexity
have been developed and analyzed to model water’s extraor-
dinary properties [5,6,11–21]. The properties of water can
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be in principle determined with quantum-mechanical calcu-
lations [22,23]. This offers the highest degree of exactness,
but it has a high computational cost. There have been two
main approaches in explaining the properties of water. First
is to perform computer simulations of atomically detailed
models which aim for realistic detail and include variables
describing van der Waals and Coulomb interactions, hydro-
gen bonding, etc. (reviewed in Ref. [13]). Many properties
of water and aqueous solutions can also be explained by
simpler models [24,25]. One class of such simpler models
has been developed by Nezbeda and co-workers [12,26,27].
In our opinion, the simplest model for water is the so-
called Mercedes–Benz (MB) model [28]. The MB model is
a two-dimensional model which was originally proposed by
Ben-Naim in 1971 [29,30]. In some publications it is also
referred to as the BNMB (Ben-Naim-Mercedes-Benz) model.
MB particles are modeled as Lennard-Jones (LJ) disks with
three hydrogen bonding arms arranged as in the MB logo.
The particles interact with other such waters through a LJ
interaction and an orientation-dependent hydrogen bonding
interaction through three radial arms. Ben-Naim in his paper
also proposed a four-arm model [29,30] which is the topic
of this study. We call this model the BN4 model. Interest in
two-dimensional (2D) simplified models is due to insights
that are not obtainable from all-atom computer simulations.
Simpler models are more flexible in providing insights and
illuminating concepts. The models also do not require large
computer resources. Our interest in using the 2D models is
that they serve as a test bed for developing analytical theories
that might ultimately be useful for more realistic models. An-
other advantage of the 2D models, compared to more realistic
water models, is that the underlying physical principles can be
more readily explored and visualized in two dimensions. The
MB model was also extensively studied with analytical meth-
ods like integral equation and thermodynamic perturbation
theory [31–36] and statistical mechanic theory [37–39]. The
phase diagram of the liquid part and percolation curve of the
model was calculated and reported [40], and the MB model
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FIG. 1. The BN4 particles.

has also been used to study systems within small geometric
spaces [36].

Computer simulations are an important tool to understand
the properties of liquids, but they can be quite time consum-
ing, even for simple 2D models. Because of this it is equally
important to develop simplified analytical approaches. A the-
ory has been developed for fluids where molecules associate
into dimers and higher clusters due to the presence of highly
directional attractive forces [41,42]. The theory has been suc-
cessfully applied to a number of different three-dimensional
fluid systems, including water and aqueous solutions (see, for
example, Refs. [12,43,44] and references therein). Wertheim
[41,42,45,46] proposed his statistical-mechanical approach

for strongly associating systems of molecules as thermody-
namics perturbation theory (TPT) and integral equation theory
(IET). The Wertheim’s TPT and orientationally averaged and
angle-dependent IETs were applied for the MB model be-
fore. We found that both TPT and IET approaches gave good
quantitative agreement with isothermal-isobaric (NPT) Monte
Carlo results for the molar volume, isothermal compress-
ibility, and other thermodynamic properties as a function of
temperature.

In this paper, we explored properties of the BN4 model by
computer simulations and Wertheim’s theory. The outline of
the paper is as follows. We present the model in Sec. II, and
the details of the molecular dynamics simulations, overview
of thermodynamics perturbation theory, and theory of integral
equation are done in Sec. III. In Sec. IV we show and discuss
the results, and we summarize everything in Sec. V.

II. BN4 MODEL

The particles are modeled as two-dimensional disks with
four bonding arms separated by an angle of 90◦ [29,30] which
is fixed (see Fig. 1). The interaction between particles i and
j is a sum of a LJ and a hydrogen bond (HB) or association
contribution

U (
−→
Xi ,

−→
Xj ) = ULJ(ri j ) + UHB(

−→
Xi ,

−→
Xj ). (1)

 0.7

 0.8

 0.9

1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0.2  0.25  0.3  0.35  0.4  0.45  0.5

ρ*

T*

0.39
0.45
0.5

0.55
0.6

0.65
0.75

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 0.2  0.25  0.3  0.35  0.4  0.45  0.5

κ*

T*

0.39
0.45
0.5

0.55
0.6

0.65
0.75

−2

−1.5

−1

−0.5

0

 0.5

1

 1.5

2

 0.2  0.25  0.3  0.35  0.4  0.45  0.5

α*

T*

0.39
0.45
0.5

0.55
0.6

0.65
0.75

0

1

2

3

4

5

6

7

8

9

 10

 0.2  0.25  0.3  0.35  0.4  0.45  0.5

c* p

T*

0.39
0.45
0.5

0.55
0.6

0.65
0.75

(c) (d)

(a) (b)

FIG. 2. Temperature dependence of (a) the density, (b) the isothermal compressibility multiplied by pressure, (c) the thermal expansion
coefficient, and (d) the heat capacity for various pressures for σLJ = 0.7.
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FIG. 3. Temperature dependence of (a) the density, (b) the isothermal compressibility multiplied by pressure, (c) the thermal expansion
coefficient, and (d) the heat capacity for various pressures for σLJ = 0.8.

ri j is the distance between particles i and j.
−→
Xi and

−→
Xj are the

vectors representing the coordinates and the orientation of the
ith and jth particle. The LJ part has a standard form

ULJ(ri j ) = 4εLJ

((
σLJ

ri j

)12

−
(

σLJ

ri j

)6
)

. (2)

σLJ and εLJ are the contact value of potential and the depth.
The HB interaction is the sum of interactions U kl

HB between all
arms of different particles

UHB( �Xi, �Xj ) =
4∑

k,l=1

U kl
HB(ri j, θi, θ j ), (3)

which is described by Gaussian function in distance and both
angles

U kl
HB(ri j, θi, θ j )

= εHBG(ri j − rHB)G(�ik �ui j − 1)G( �jl �ui j + 1) (4)

= εHBG(ri j − rHB)G

{
cos

[
θi + 2π

3
(k − 1)

]
− 1

}

× G

{
cos

[
θ j + 2π

3
(l − 1)

]
+ 1

}
. (5)

εHB = −1 is a HB energy parameter and rHB = 1 is a charac-
teristic length of HB. −→ui j is the unit vector along −→ri j and

−→
ik is

the unit vector representing the kth arm of the ith particle. θi

is the orientation of ith particle with respect to x axes. G(x) is
an unnormalized Gaussian function

G(x) = exp

(
− x2

2σ 2

)
. (6)

The strongest HB occurs when an arm of the first particle is
co-linear with the arm of the second particle and the two arms
point in opposing directions. The LJ well depth εLJ is 0.1 times
the HB interaction energy εHB and the Lennard-Jones contact
parameter σLJ is varied between 0.7rHB and 1.1rHB. The width
of Gaussian for distances and angles is σ = 0.085rHB.

III. THEORY
A. Molecular dynamics

Molecular dynamics simulations were used for the calcu-
lation of properties of the BN4 model. All calculations were
done with our own software. The simulations were performed
in canonical (NVT) isobaric-isothermal (NPT) ensembles
with periodic boundary conditions and minimal image con-
vention. Trajectory integration was done using the velocity
Verlet integrator [47], and the length of the time step was
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FIG. 4. Temperature dependence of (a) the density, (b) the isothermal compressibility multiplied by pressure, (c) the thermal expansion
coefficient, and (d) the heat capacity for various pressures for σLJ = 0.9.

set to 0.001 (t∗ = t
√

εHB

mr2
HB

). At the beginning the system was

equilibrated by a simulation of a minimum of 50 000 steps
in length, then the sampling phase of simulation was done
in 20 series, where each series was a minimum of 50 000
steps long. During the sampling phase, structural and thermo-
dynamic properties were calculated as an average over time.
The number of particles in the system was between 100 and
400, which is equivalent to between 1000 and 8000 particles in
three dimensions. The initial position of the particles was ran-
domly selected in a way that particles did not overlap. Initial
velocities were drawn from the Maxwell-Boltzmann distri-
bution. In the equilibration phase, a simple velocity rescale
was used to control the temperature. To keep the temperatures
and pressures constant in production runs, we employed the
Berendsen thermostat [48] with a time constant equal to 0.1
and the Berendsen barostat with same time constant as for
thermostat. During the sampling phase thermodynamic quan-
tities were calculated as statistical averages [49,50].

B. Thermodynamic perturbation theory

Here we are briefly reviewing Wertheim’s first-order per-
turbation theory [41,51], used previously [31–33] for the 2D
MB model of water. We start with the Helmholtz free energy
for BN4 particles, which is a sum of an ideal term Aid , a

reference term ALJ, and a perturbation term AHB which takes
into account the association of BN4 molecules into hydrogen-
bonded networks

A

NkBT
= Aid

NkBT
+ ALJ

NkBT
+ AHB

NkBT
. (7)

N is the number of BN4 particles, and kB and T are
Boltzmann’s constant and temperature. The Lennard-Jones
contribution ALJ was calculated using the Barker-Henderson
(BH) perturbation theory [31,49]. Within the BH theory, the
reference system is the hard-disk system

ALJ

NkBT
= AHD

NkBT
+ ρ

2kBT

∫ ∞

σLJ

gHD(r, η)uLJ(r)d−→r . (8)

AHD is the hard-disk part of the Helmholtz free energy, ρ

is the number density of BN4 particles, η is the packing
fraction of the hard-disk reference system, and gHD(r, η)
is the pair distribution function of the hard-disk reference
fluid [31]. The diameter of the hard-disk reference fluid was
calculated by averaging the Boltzmann factor [31]. The contri-
bution of hydrogen bonding to the Helmholtz free energy was
calculated by

AHB

NkBT
= 4

(
log x − x

2
+ 1

2

)
. (9)
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FIG. 5. Temperature dependence of (a) the density, (b) the isothermal compressibility multiplied by pressure, (c) the thermal expansion
coefficient, and (d) the heat capacity for various pressures for σLJ = 1.0.
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FIG. 6. Snapshots of the system for (a) σLJ = 0.7, p∗ = 0.19, T ∗ = 0.30; (b) σLJ = 0.7, p∗ = 0.19, T ∗ = 0.45; (c) σLJ = 0.8, p∗ = 1.5,
T ∗ = 0.30; and (d) σLJ = 0.8, p∗ = 1.5, T ∗ = 0.5. Red lines connect BN4 molecules that form HBs.
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x is the fraction of molecules not bonded at one particular
arm and is obtained from the mass-action law [41] in the
form

x = 1

1 + 4ρx	
. (10)

	 is defined by [41,51]

	 = 2π

∫
gLJ(r, ρ) f̄HB(r)rdr. (11)

f̄HB(r) is an orientationally averaged Mayer function for the
hydrogen bonding potential of one site. The pair distribution
function gLJ(r) is obtained by solving the Percus-Yevick equa-
tion for Lennard-Jones disks.

In the improved TPT [33], instead of the density ρ we
used the effective density ρe f in Eqs. (7)–(11). The logic for
this is that the particles cannot access the whole space in the
system when they form bonds. When BN4 molecules form a
hydrogen bond, it sterically occludes space, which becomes
inaccessible to any other molecule [33]. The effective particle
volume was calculated as

V e f = 1

ρ
− n̄V ′

2
, (12)

where V ′ is the volume not accessible to other molecules when
two molecules form a hydrogen bond and can be approxi-
mated by simple geometry. Two water molecules that form
a hydrogen bond are separated by a distance 1. If the LJ core
is approximated by the diameter d of HD molecules from BH
perturbation theory, V ′ can be approximated as

V ′ =
√

d2 − 1

2
− πd2

4
. (13)

In Eq. (12), n̄ is the average number of hydrogen bonds per
molecule. Each particle has four arms. The probability that a
hydrogen bond is formed at one arm is (1 − x), where x is the
ratio of nonbonded molecules at one arm. We now get

n̄ = 4(1 − x). (14)

The effective particle density is calculated as

ρe f = 1

V e f
. (15)

The set of Eqs. (10)–(15) must be solved iteratively to get the
effective density ρe f and the fraction of molecules x that are
not hydrogen bonded. The effective packing fraction is then
calculated as ηe f = ρe f πd2/4. Once the effective density and
packing fraction are known, the Helmholtz free energy can be
calculated with Eqs. (7)–(9). In both versions of TPT, once
the Helmholtz free energy is known, other thermodynamic
quantities may be calculated using standard thermodynamic
relations [49].

C. Integral equation theory

In this section we briefly overview the orientationally av-
eraged version of the multidensity Ornstein-Zernike (OZ)
equation with the polymer Percus-Yevick (PPY) closure
[31,41,52]. An extensive description of the theory was given
in an MB paper [31]. The orientation averaging of the OZ
equation is an additional approximation of the theory not
present in the molecular dynamics studies. An advantage of
this approximation is that it allows a relatively simple numeri-
cal evaluation of the structural and thermodynamic properties.
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FIG. 8. Comparison of pair correlation functions for (a) σLJ = 0.7, p∗ = 0.19, T ∗ = 0.3; (b) σLJ = 0.7, p∗ = 0.19, T ∗ = 0.4; (c) σLJ = 0.8,
p∗ = 0.5, T ∗ = 0.3; (d) σLJ = 0.8, p∗ = 0.5, T ∗ = 0.4; (e) σLJ = 1.0, p∗ = 0.75, T ∗ = 0.35; and (f) σLJ = 1.0, p∗ = 0.75, T ∗ = 0.45.

The multidensity OZ equation for the model described is
written as

ĥ(k) = ĉ(k) + ĉ(k)ρĥ(k) (16)

where ĥ(k) and ĉ(k) are the matrices whose elements are the
Fourier transforms of the partial correlation functions hi j (r)
and ci j (r). We use partial correlation functions which remain
finite upon decrease of the temperature [31]. In Eq. (16) ρ

represents the matrix which replaces the Wertheim density
parameters σ and contains the partial number densities. In

the calculations we restrict ourselves to the so-called “ideal
network” approximation [52,53]. This means that we neglect
the part of the correlation responsible for formation of the
ring-like structures [52]. Originally the OZ equation involves
the matrices c, h, and ρ of dimensionality 5 × 5. By tak-
ing into account the equivalence of the bonding arms we
obtain

ŵ(k) =
(

ŵ00(k) ŵ01(k)
ŵ10(k) ŵ11(k)

)
, (17)
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results of both theories.

where w stands for either the h or c correlation function, and
ρ is the matrix containing the partial densities,

ρ =
(

ρ 4ρ

4ρ 12ρ

)
. (18)

The coefficients 4 and 12 in ρ result from the reduction of
the dimensionality of the OZ equation [31]. In order to solve
the OZ equation an additional relation between the h and c
correlation functions is needed. In the present study we choose
the PPY closure [41] in the form

ci j (r) = fLJ(r)[ti j (r) + δi0δ j0]

+ δi1δ j1x2 f̄HB(r)eLJ(r)[t00(r) + 1], (19)

where t (r) = h(r) − c(r), x is the fraction of particles
not bonded at one arm, fLJ(r) = eLJ(r) − 1, and eLJ(r) =
exp[−βULJ(r)]. Furthermore, f̄HB(r) is the orientationally
averaged Mayer function for the hydrogen-bond potential be-
tween arms of two different particles [Eq. (3)] and x follows
from mass-action law as given by Eq. (10). The total pair
distribution function g(r) is calculated via the relations

g(r) = g00(r) + 4g01(r) + 4g10(r) + 16g11(r). (20)

The OZ equation together with the PPY closure condi-
tion is solved by a direct iteration. The forward and inverse
Bessel-Fourier transforms, needed to couple the correlation

functions in real and Fourier spaces, have been performed by
the method of Talman [54]. Once the pair correlation function
is known other thermodynamic properties can be calculated
with standard thermodynamic relations [31].

IV. RESULTS AND DISCUSSION

All the results are presented in dimensionless units,
normalized to the strength of the optimal HB εHB and HB sep-
aration rHB. (T ∗ = kBT/|εHB|, uex∗ = uex/|εHB|, V ∗ = V/r2

HB,
and p∗ = pr2

HB/|εHB|).
As first we checked properties of the model and pres-

ence of density maxima for different types of the potential,
the distance of the hydrogen bond in comparison to the
Lennard-Jones core. To do this we have varied parameter σLJ.
Thermodynamics properties including density ρ∗, thermal
expansion coefficient α∗, isothermal compressibility κ∗, and
heat capacity at constant pressure c∗

p are plotted in Figs. 2–5
for different sizes of the Lennard-Jones core. The interplay of
long-range opened structures and short-range closed packed
structures results in density maxima. The density maxima can
be observed for cores smaller than 1.0 (σLJ < 1.0). For size
σLJ = 0.9 the density maxima is still present (see Fig. 4) while
for size σLJ = 1.0 it is already gone (see Fig. 5). An increase
in size of the LJ core moves the density maxima to higher
temperatures and pressures as well as shifts the melting point
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FIG. 10. Comparison of temperature dependence of (a) the density, (b) the isothermal compressibility multiplied by pressure, (c) the
thermal expansion coefficient, and (d) the heat capacity for various pressures for σLJ = 0.8 and p∗ = 0.5 between molecular dynamics results
and results of both theories.

to higher temperatures. For the thermal expansion coefficient
we observe negative values on the left of the density maxima.
Heat capacity at constant pressure is high but it decreases
with increasing pressure. The decrease of heat capacity with
increasing pressure is due to smaller possible states available
in highly dense liquid. There is a high peak present close to
the melting point. The isothermal compressibility is rather low
at high pressure and high for low pressure. In solid state it
is almost zero. The density maxima is most pronounced at a
size of LJ core around 0.8. Figure 6 shows some snapshots
of the typical structures for a small size of LJ core where
density maxima is most pronounced. Figure 6(a) shows the
typical structures at low temperature and Fig. 6(b) at high
temperature. At low temperature the system is in liquid phase
while at high temperature we have a gas phase. In Fig. 6(c)
we have a snapshot of the system with LJ core σLJ = 0.8 at
temperature and pressure of density maxima. We can observe
a lot of square cell structures as well as close contacts. At
lower temperatures than this point there are more square cell
structures present, leading to lower density, while at higher
temperatures these HB structures are melting, which again
leads to lower density. In Fig. 6(d) we can see these structures.
In all the figures we can see that BN4 particles form a lot of
hydrogen bonds and ring structures.

In comparison to the 2D MB model we have observed
the following differences for size of core 0.7. The melting
point for BN4 is higher than for the MB model (see Fig. 7);
for the MB model it is around T ∗ = 0.15, while for BN4
it is around T ∗ = 0.25. The density for the BN4 model is
higher than for the MB model at the same temperature and
pressure. BN4 does not have density maxima at this pressure.
At all temperatures the density of the BN4 model is higher
because the crystal phase of the MB model has more empty
spaces. The crystal phase of BN4 has cubic symmetry while
the MB model has hexagonal symmetry. The BN4 model
freezes in crystal structure with less defects than the MB
model.

In continuation of our study we first check how well
the structure of the BN4 model can be reproduced by IET
by calculating pair correlation functions. Figure 8 shows a
comparison of correlation functions for different sizes and
state points obtained by molecular dynamics and IET. At
high temperatures the IET is able to reproduce the structure
rather well, while at lower temperature only for bigger cores.
For a size of core equal to σLJ = 0.8 the IET is failing to
predict correct positions and highs of peaks at low temper-
atures. There are two reasons for this. One is that we are
neglecting formation of ring structures in IET. The second
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FIG. 11. Comparison of temperature dependence of (a) the density, (b) the isothermal compressibility multiplied by pressure, (c) the
thermal expansion coefficient, and (d) the heat capacity for various pressures for σLJ = 1.0 and p∗ = 0.75 between molecular dynamics results
and results of both theories.

reason is orientational averaging. We are treating HBs in
an averaged way. This approximation is equivalent to form-
ing HB at a random angle. This approximation is okay at
high temperatures and high sizes. At low temperatures and
small sizes this is no longer valid. It is also interesting
to see that at even smaller sizes (σLJ = 0.7) the agreement
improves.

At the end, we have also verified how well both theories,
IET and TPT, can properly predict thermodynamics proper-
ties (see Figs. 9–11). Both theories correctly predict trends.
Like in the case of pair correlation function, the biggest error
is at size σLJ = 0.8. Both theories failed to predict density
maxima for all sizes like it was observed for the MB model
[31]. For density dependence both theories have the proper
trend but it looks like they have a systematic error. This is
different than observed for the MB model [31], where the
IET and TPT results are not shifted in comparison to com-
puter simulations. The best agreement is for heat capacity and
thermal expansion at higher temperatures. At low tempera-
tures both fail in predicting negative thermal expansion. The
BN4 model has very low compressibility due to close packed
square structures and the theories are not able to account for
this.

V. CONCLUSIONS

We have determined properties of the BN4 model by
molecular dynamics and two statistical-mechanical theories
developed for associated fluids by Wertheim. The BN4 model
balances Lennard-Jones interactions with an orientation de-
pendence that is intended to mimic hydrogen bonding. The
BN4 model has volume anomalies like real water. The IET
is somewhat more demanding from a computational point of
view than the TPT, but both are orders of magnitude more
efficient than the computer simulations. Both theories qualita-
tively reproduce the temperature trends of key thermodynamic
properties like molar volume, isothermal compressibility,
thermal expansion coefficient, and heat capacity. Both the-
ories improve at high temperatures, where the orientational
averaging approximation is least problematic.
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