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Stochastic walker with variable long jumps
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Motivated by recent interest in the stochastic resetting of a random walker, we propose a generalized model
where the random walker takes stochastic jumps of lengths proportional to its present position with certain
probability, otherwise it makes forward and backward jumps of fixed (unit) length with given rates. The model
exhibits a rich stochastic dynamic behavior. We obtain exact analytic results for the first two moments of the
walker’s displacement and show that a phase transition from a diffusive to superdiffusive regime occurs if the
stochastic jumps of lengths that are twice (or more) of its present positions are allowed. This phase transition is
accompanied by a reentrant diffusive behavior.
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I. INTRODUCTION

Stochastic dynamics is the fundamental characteristic of a
many-body system which has applications in diverse research
areas [1,2]. The simplest stochastic walk involves particle dy-
namics on a one-dimensional (1D) space leading to diffusive
dynamics at long times where the mean-squared displacement
of the walker grows linearly in time. Several generalizations
have been proposed [3–7] to account for the spatial and tem-
poral effects which may lead to nondiffusive dynamics that
has been observed in many natural and man-made systems.

A stochastic resetting model has been proposed recently
[8] wherein a random walker resets its position at random
times to the initial position. This resetting of the position
leads to nontrivial qualitative changes in the dynamics of the
walker [9–11] which has wide range applications such as in
target-search problems [12] and enzymatic activity [13], and
has been realized in a recent experiment [14] on the col-
loidal particles’ diffusion using holographic optical tweezers,
and a Brown particle dynamics reset using optical tweezers
[15]. However, many natural processes, such as the facilitated
diffusion of a protein on DNA in the search of a target se-
quence [16], may involve random hopping of variable lengths
to different sites. To account for such processes, we revisit
the resetting model in a more general setup and show a rich
variety of possibilities that emerge. We start from a micro-
scopic picture using discrete stochastic dynamics and report
exact results for the mean and the variance in the general case,
which allows us to construct the exact phase diagram for the
dynamics of the walker.

II. MODEL AND RESULTS

Consider a random walker in one dimension. At any instant
in time t , with the current position at Xt (assuming that the
walker starts at time t = 0 at X0 = 0), the walker can make
jumps of unit length to the left (−1) and to the right (+1)
with probability q and p, respectively, and can also jump a
length of − f Xt , where f is a (positive or negative) factor,
with probability r. Thus at any instant in time, p + q + r = 1.

For the discrete case f is always an integer, but can be a
fraction in the continuum limit which we shall discuss later.
For f = 1, the walker always goes back to the origin and
leads to a “stochastic resetting” walk [8]. We note that similar
modified resetting walks have been considered in recent works
[17,18], where the walker resets its position randomly to a new
position such that 0 < f � 1. A generalization of the resetting
walk f = 1 based on the distribution of resetting times has
also been considered in a recent work [19]. Here, we present
the exact results for transient and asymptotic dynamics of the
walker over the full range of f values.

Let σt = +1,−1,− f Xt−1 denote the jump at time t which
takes the walker to a new position Xt . Then the average length
of the first jump, 〈σ1〉 = p − q ≡ α, and the average jump at
time t is 〈σt 〉 = p − q − r f 〈Xt−1〉. Since Xt = ∑t

k=1 σk , this
immediately leads to

〈Xt 〉 = 〈σt 〉 + 〈Xt−1〉 = α + (1 − r f )〈Xt−1〉,
〈Xt 〉 = α

r f
[1 − (1 − r f )t ]. (1)

This is an exact result for the mean position of the walker
at time t . Note that if r f < 2, the mean position saturates
to α/(r f ) as t → ∞. However, for r f > 2, the walker’s
mean position 〈Xt 〉 ∼ (−1)t α

r f (r f )t , which changes between
positive and negative values with amplitude increasing expo-
nentially with time.

Similarly, using 〈σ 2
t 〉 = (1 − r) + r f 2〈X 2

t−1〉, we obtain

〈
X 2

t

〉 = A(r, f , α)(1 + r f 2 − 2r f )t−1 + 2α2

r2 f 2( f − 1)
(1 − r f )t

− 1

r f ( f − 2)

(
2α2

r f
+ 1 − r

)
, (2)

where

A(r, f , α) =
[

1 − r − 2α2

r2 f 2

(
1 − r f

f − 1
− 1

f − 2

+ 1 − r

r f ( f − 2)

)]
.
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FIG. 1. Phase diagram for the walker. The region filled with red
color represents the parameter space where the walker reaches a
steady state (SS) at long times. The vertical black line at f = 0 and
dotted blue line at f = 2 denote parameters where the dynamics is
diffusive. The blue curve is the locus of points with r f = 2 sepa-
rating the yellow and brown regions denoting two different (SD-1,
SD-2) superdiffusive dynamics of the walker.

In the limit f → 0, that is, instead of making jumps with
probability r, the walker decides to stay put, 〈Xt 〉 → αt and
〈X 2

t 〉 → α2t2 + (1 − α2 − r)t , leading to a diffusive dynam-
ics with a diffusion coefficient D = (1 − α2 − r)/2.

If 0 < f < 2, the walker reaches a steady state at asymp-
totically large times with 〈Xt 〉 → α/(r f ) and 〈X 2

t 〉 → [2α2 +
r f (1 − r)]/[r2 f 2(2 − f )]. For f = 2, the walker reenters into
a diffusive limit where the mean position reaches a constant
α/(2r) while the variance increases linearly in time with dif-
fusion coefficient D = (1 + α2/r − r)/2.

For f > 2, there are two scenarios: (i) If 2 < f < 2/r, the
position of the walker at long times saturates to α/(r f ) and the
variance diverges exponentially, 〈X 2

t 〉 ∼ A(r, f , α)(1 + r f 2 −
2r f )t−1, and (ii) when f > 2/r, the mean position of the
walker oscillates in time around α/(r f ) with an exponentially
growing amplitude, as is evident from Eq. (1). The second
moment, 〈X 2

t 〉, grows exponentially as in case (i).
The various phases of the walker in its parameter space

are shown in Fig. 1. The two distinct diffusive regimes are
marked by vertical lines at f = 0 and f = 2. For f = 0, both
the mean and the variance grow linearly in time, while for f =
2, the mean saturates while the variance show a linear growth
in time. In the red region (0 < f < 2) the walker reaches a
steady state (SS) at long times. In this case, the particle makes
jumps that always bring it towards its initial position which
mimics the presence of an effective confining potential and
thus leads to a steady state. For f = 2, these jumps do not
lead to any changes in the walker’s distance from the initial
position and lead to a diffusive dynamics at long times. Two
regions of superdiffusion (SD), SD-1 and SD-2, are separated
by a curve r = 2/ f , which is the locus of points where the
mean position of the walker fluctuates in time about α/2 while
the variance diverges exponentially. In region SD-1, the mean
position approaches a steady state but the variance increases
exponentially in time. In region SD-2, both mean and variance
grow exponentially in time.

The probability P(x, t ) that the walker is at position Xt = x
after (steps) time t satisfies the following rate equation (see
the Appendix),

P(x, t ) = pP(x − 1, t − 1) + qP(x + 1, t − 1)

+ rP(x/(1 − f ), t − 1), (3)

with the boundary condition P(x → ∞, t ) → 0. Note that in
the random-walk process where r = 0, that is, the walker is al-
lowed to make only jumps of unit length each time, P(x, t ) =
0 for |x| > t , and the rate equation can be solved iteratively to
get P(x, t ) = (1/2) tC(t−x)/2 p(x+t )/2q(t−x)/2, which reduces to
a Gaussian in the large t � x limit. The condition P(x, t ) = 0
for |x| > t remains valid even for r 	= 0 if and only if f � 2.
Since in this case the jumps of random lengths do not take
the particle further away from the origin, and in order to
reach a position at a distance |x|, the walker must traverse at
least once all the positions lying at the intermediate distances,
leading to either a diffusive dynamics or a steady state at long
times. For f > 2, however, the particle can make jumps of
arbitrary lengths that can take the walker further away from
the initial point without visiting all intermediate positions,
leading to “ultrasuperdiffusive” dynamics where the variance
and mean grow exponentially in time. Note that the above
conclusions remain valid even if the walker performs ballistic
motion (q = 0) in between the random variable jumps.

For f < 0, the walker always makes random jumps of
variable lengths that take it away from the origin. This leads to
a monotonically increasing mean position 〈Xt 〉 and 〈X 2

t 〉 such
that the asymptotic dynamics is always superdiffusive.

In Eq. (3), the last term on the right-hand side (rhs) is the
contribution to P(x, t ) from the jumps of variable lengths. For
f → 1, P(x/(1 − f ), t ) → δ(x), reducing to the rate equa-
tion for a random walker with “stochastic resetting” [8].

For t, x � 1, using the Taylor expansion of P(x ± 1, t − 1)
around P(x, t ), Eq. (3) can be reduced to a Fokker-Plank (FP)
equation for the probability density. For f = 0, we obtain

∂

∂t
P(x, t ) = −α

∂

∂x
P(x, t ) + 1

2
(1 − r)

∂2

∂x2
P(x, t ), (4)

which has the well-known Gaussian solution

P(x, t ) = e− (x−αt )2

2t (1−r)

√
2πt (1 − r)

. (5)

Similarly, for the “resetting” walk ( f = 1) the FP equa-
tion is

∂

∂t
P(x, t ) = − α

1 − r

∂

∂x
P(x, t ) + 1

2

∂2

∂x2
P(x, t )

− r

1 − r
P(x, t ) + r

1 − r
δ(x), (6)

where the first term on the rhs determines the drift of the
probability distribution, and the second term is the usual dif-
fusion term. The third and fourth terms are proportional to the
parameter r and represent (loss) outflow and (gain) inflow to
the probability P(x, t ) due to the long jumps.
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The solution of the FP Eq. (6) at the steady state leads to
the distribution,

P(x � 0) = r

1 − r

e
−x

(√
α2

(1−r)2
+ 2r

1−r − α
1−r

)
√

α2

(1−r)2 + 2r
1−r

, (7)

P(x < 0) = r

1 − r

e
x
(√

α2

(1−r)2
+ 2r

1−r + α
1−r

)
√

α2

(1−r)2 + 2r
1−r

. (8)

The steady state is therefore represented by a distribution
which falls off exponentially with different rates for x � 0
and x < 0, and the difference in the rates is controlled by
the parameter α which determines drift in the FP equa-
tion. For α = 0, the distribution reduces to a simpler form,
P(x) = √

r/(2 − 2r)e−|x|√2r/(1−r). As expected, when r → 1,
P(x) → δ(x) which also follows readily from Eq. (6) as the
last two terms on the rhs become dominant as r → 1. Note
that the FP Eq. (6) has a different form as compared to
the one reported in the literature [8,11]. However, this dif-
ference is arising due to the use of a discrete model. If one
identifies a diffusion coefficient D = 1 − r and rescales the
time t with t/(1 − r), Eq. (6) is identical to the one reported
in the literature. Nonetheless, Eq. (6) makes the r dependence
of the diffusion coefficient explicit, which is not obvious from
the equation reported earlier.

Following similar steps, a FP equation can be obtained
for f = 2 (see the Appendix) which leads to the following
approximate distribution function at long times,

P(x, t ) =
√

r

2πγ t

(
1 + αx

2γ t

)
e−rx2/(2γ t ), (9)

with γ = α2 + r(1 − r). This distribution is significantly dif-
ferent from the distribution for f = 1, Eqs. (7) and (8). The
distribution (9) is peaked at x = α/(2r) which is also the
mean value of the walker’s position. Thus the mean position
saturates while the variance increases linearly in time with
rate γ /r. An exact solution for f = 2 in the conjugate Fourier
space is given by Eqs. (A9) and (A10) in the Appendix.

Note that for α = 0, Eq. (9) reduces to a simple Gaussian
distribution with zero mean which is identical to the distri-
bution for f = 0. Thus, for α = 0, the dynamics for f = 0
and f = 2 are identical. This is because for f = 2, the walker
makes random transitions from x → −x with probability r
which, for α = 0, is the same as staying ( f = 0) at the current
position since P(x > 0, t ) = P(x < 0, t ). Thus depending on
the value of f , the dynamics shows qualitative changes and
leads to very different spatial profiles for the distribution
function: Gaussian for f = 0, exponential for f = 1, modified
Gaussian for f = 2, and power law (see Fig. 2) for f = 3.

A numerical solution of Eq. (3) is shown in Fig. 2 for f =
1, 2 (diffusion) and f = 3 (SD-1) for p = q = 0.3 at t = 30.
Compared to the diffusive region, the distribution function
P(x) falls off extremely slowly in the region SD-1. For f = 3,
we find that the distribution is quite oscillatory and decays
according to the power law ∼(b0 + x)−d0 (shown by the red
curve in Fig. 2).

In the standard 1D random walk, the walker visits all po-
sitions <x to arrive at the position x. This holds true even for

FIG. 2. Probability distribution (blue) at t = 20 for p = q = 0.3,
r = 0.4, f = 3 obtained from a recursive solution of Eq. (3). The red
curve is the fit a0(b0 + x)−d0 with a0 = 4.212, b0 = 73.677, d0 =
1.587. The inset shows results for f = 1.0 (red) and f = 2.0 (blue).

the stochastic walks considered here with f = 0 and f = 1.
However, for f > 1, this does not hold true as the long jumps
take the walker to a position x from −x without visiting
positions between the initial position and the position x. This
has interesting consequences on the first-passage-time (FPT)
probability F (x, t ) [20], the probability density to reach the
point x for the first time at time t .

For f = 0, from Eq. (4), F (x, t ) = x√
2π (1−r)t3

e− (x−αt )2

2(1−r)t

which has a form similar to the one obtained for the standard
(r = α = 0) random walk. However, the crucial difference is
in the behavior at a large time. F (x, t ) falls off exponentially
F (x, t ) ∼ e−α2t/[2(1−r)] at large t and, unlike FPT for the stan-
dard random walk, has all its moments well defined. This is
to be expected as the mean position of the walker, 〈x〉 = αt ,
increases linearly with time leading to a faster decay in the
probability to visit a position less than the average value for
times t ∼ 〈x〉/α. The mean FPT, 〈t〉 = (1 − r + 2αx)/(2α2),
grows linearly ∼x/α for large x and, as expected, diverges as
α → 0.

For f = 2,

F (x, t ) = rαx2 + γ t (2rx − α)

4γ t2
√

2πγ rt
e− rx2

2γ t , (10)

which has a power-law tail F (x, t ) ∼ t−3/2 for large t , similar
to the standard case, and therefore has no finite moments.
Although the distribution in Eq. (9) is valid for large times
and the corresponding FPT distribution, Eq. (10), is valid for
x � α/(2r), both results are exact for α = 0.

III. CONCLUSION

In conclusion, a discrete 1D random-walk model is used to
obtain exact analytic results for the transient and the asymp-
totic dynamics of a stochastic walker with random long jumps.
The jump lengths are proportional to the position of the walker
at the time of the jump. It is found that the asymptotic dynam-
ics depends sensitively on the lengths of jumps and exhibits
a rich phase diagram which involves a reentrance of the
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diffusive dynamics, although of different natures. The exact
results obtained here may increase the scope of applications
of the resetting walk introduced earlier in the literature.

ACKNOWLEDGMENTS

I thank Prof. B. J. Cherayil for useful discussions and
for providing relevant literature in the initial stages of this
project. Financial support from SERB, India under Grant No.
CRG/2020/0011100 is acknowledged.

APPENDIX: DERIVATION OF THE RATE EQUATION (3)

In order to derive the rate equation (3), we define the
characteristic function

Q(λ, t ) = 〈
eiλXt

〉 =
∑

Xt

eiλXt P(x, t ), (A1)

where P(x, t ) is the probability to be at Xt = x at time t as
defined in the main text. Using Xt = Xt−1 + σt and averaging
over σt , which, due to Markovian dynamics, is independent of
Xt−1, we get

〈eiλXt 〉σt = eiλXt−1

∞∑
n=0

(iλ)n

n!

〈
σ n

t

〉
σt
, (A2)

where 〈· · · 〉σt is used to denote that the averaging is only over
the last step σt . Since 〈σ n

t 〉σt = p + (−1)n + (−1)n f nX n
t−1, we

get

〈
eiλXt

〉
σt

= eiλXt−1

∞∑
n=0

(iλ)n

n!

〈
σ n

t

〉
σt

= eiλXt−1
(
peiλ + qe−iλ + re−iλ f Xt−1

)
. (A3)

Finally, averaging over all Xt−1 and using Eq. (A1), we get

Q(λ, t ) = peiλQ(λ, t − 1) + qe−iλQ(λ, t − 1)

+ rQ(λ(1 − f ), t − 1). (A4)

Inverse transforming, P(x, t ) = ∫
dλ
2π

e−iλXt Q(λ, t ), and using∫
dλ

2π
e−iλXt Q(λ(1 − f ), t − 1)

=
∫

dλ

2π
e−iλXt

∑
Xt−1

eiλ(1− f )Xt−1 P(Xt−1)

=
∑
Xt−1

P(Xt−1)δXt ,(1− f )Xt−1 = P(Xt/(1 − f ))

≡ P(x/(1 − f ), t − 1), (A5)

leads to Eq. (3).

Fokker-Planck equation for f = 2

For f = 2, the rate equation (3) is P(x, t ) = pP(x − 1, t −
1) + qP(x + 1, t − 1) + rP(−x, t − 1). Using a Taylor ex-
pansion around P(±x, t ), we obtain the following equation

for x � 0,

∂

∂t
P(x, t ) + r

1 − r

∂

∂t
P(−x, t )

= − α

1 − r

∂

∂x
P(x, t ) + 1

2

∂2

∂x2
P(x, t )

− r

1 − r
[P(x, t ) − P(−x, t )]. (A6)

A conjugate equation for x < 0 can be obtained by replacing
x → −x in the above equation. Note that P(x, t ) and P(−x, t )
are not conserved as the walker can make random jumps
from left to right and vice versa. The sum of the probability
P+(x, t ) = P(x, t ) + P(−x, t ) is however conserved and fol-
lows a coupled FP equation,

∂P+(x, t )

∂t
= 1

2
(1 − r)

∂2P+(x, t )

∂x2
− α

∂

∂x
P−(x, t ). (A7)

The difference P−(x, t ) = P(x, t ) − P(−x, t ) satisfies the fol-
lowing coupled equation,

∂

∂t
P−(x, t ) = 1

2

1 − r

1 − 2r

∂2

∂x2
P−(x, t ) − 2r

1 − 2r
P−(x, t )

− α

1 − 2r

∂

∂x
P+(x, t ). (A8)

Equations (A7) and (A8) are solved in a Fourier domain to
obtain

P+(k, t ) = 2e−t 2r+k2 (1−r)2

2(1−2r)

[
cosh

(
tλ

2(1 − 2r)

)

+ 2r + k2r(1 − r)

λ
sinh

(
tλ

2(1 − 2r)

)]
, (A9)

where we have used P+(k, 0) = 2 and

λ =
√

r2[k2(1 − r) + 2]2 − 4k2α2(1 − 2r).

Similarly,

P−(k, t ) = 4iαk

λ
e−t 2r+k2 (1−r)2

2(1−2r) sinh

(
tλ

2(1 − 2r)

)
. (A10)

Note that for α = 0, P−(k, t ) = 0, that is, P(x, t ) = P(−x, t ),
as expected. P+(x, t ) is then identical to the distribution for
the f = 0 case. This is because for f = 2, the walker makes
random long jumps from x → −x (and vice versa) with prob-
ability r, which is the same as remaining at x with probability
r since the dynamics in the x � 0 space are identical to the
one in x < 0 space for α = 0.

Next, in order to compute the distribution in real space,
P(x, t ), we compute the Fourier transform of P+(k, t ) and
P−(k, t ). We perform this transformation approximately by
expanding the hyperbolic cosine and sine functions near
k = 0,

cosh

(
tλ

2(1 − 2r)

)
≈ cosh

(
rt

1 − 2r

)
e

r(1−r)
2(1−2r) γ1tk2

,

1

λ
sinh

(
tλ

2(1 − 2r)

)
≈ 1

2r
sinh

(
rt

1 − 2r

)
e

r(1−r)
2(1−2r) γ2tk2

× e− 1
2 (1−r)γ k2

, (A11)
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where γ = 1 − α2(1 − 2r)/[r2(1 − r)], γ1 = γ tanh[tr/(1 − 2r)], and γ2 = γ coth[tr/(1 − 2r)]. A small k expansion in
Eq. (A11) is expected to work well at large times since it appears together with a Gaussian function in k which dominates
at small k at large times.

This leads to

P+(x, t ) = 2

√
1 − 2r

2πt (1 − r)β2
e− rt

1−2r sinh

(
rt

1 − 2r

)[√
β2

β1
coth

(
rt

1 − 2r

)
e− 1−2r

2tβ1 (1−r) x2

+
(

1 + 1 − 2r

2tβ2
− (1 − 2r)2x2

2(1 − r)β2
2 t2

)
e− 1−2r

2tβ2 (1−r) x2
]
, (A12)

P−(x, t ) = 2α√
2π r

(
1 − 2r

(1 − r)tβ2

) 3
2

e− tr
1−2r sinh

(
rt

1 − 2r

)
xe− 1−2r

2tβ2 (1−r) x2

, (A13)

where β1 = 1 − r(1 + γ1) and β2 = 1 − r(1 + γ2) + γ (1 − 2r)/t . Note that for t → 0, tβ1 approaches zero as →t (1 − r)
while tβ2 → γ (1 − 2r). This results in P−(x, t → 0) = 0 and P+(x, t → 0) = 2δ(x). In the limit when t is large such that
e−tx sinh(tx) → 1/2 and coth(tx) → 1, β1 = β2 → (1 − 2r)[α2 + r(1 − r)]/(r − r2). In this long-time limit, Eqs. (A12) and
(A13) reduce to

P+(x, t ) = 2

(
1 + r(1 − r)

4t[α2 + r(1 − r)]
− r2(1 − r)

4[α2 + r(1 − r)]2

x2

t2

)√
r

2πt[α2 + r(1 − r)]
e− r

2t[α2+r(1−r)]
x2

, (A14)

P−(x, t ) = α

r
√

2π

(
r

t[α2 + r(1 − r)]

) 3
2

xe− r
2t[α2+r(1−r)] . (A15)

Further, for large t , if we ignore the last two terms inside the parentheses in P+(x, t ) in Eq. (A14) and use P(x, t ) = [P+(x, t ) +
P−(x, t )]/2, we get the result reported in Eq. (9) in the main text.
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