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Optimal transport of active particles induced by substrate concentration oscillations
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We show the existence of a stochastic resonant regime in the transport of active colloidal particles under
confinement. The periodic addition of substrate to the system causes the spectral amplification to exhibit a
maximum for an optimal noise level value. The consequence of this is that particles can travel longer distances
with lower fuel consumption. The stochastic resonance phenomenon found allows the identification of optimal
scenarios for the transport of active particles, enabling them to reach regions that are otherwise difficult to access,
and may therefore find applications in transport in cell membranes and tissues for medical treatments and soil
remediation.
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I. INTRODUCTION

The autonomous movement of active particles (APs) gen-
erated by the consumption of energy from the environment
gives rise to transport and self-organization processes signifi-
cantly different from those that occur when the particles are
not active. The study of such processes and the possibility
of their control is of great current interest because of their
enormous casuistry in biology and physico-chemistry [1–6].

The substrate (fuel) consumed by the particles is gener-
ally unevenly distributed and its concentration decreases with
time, thus altering the composition of the particle environ-
ment. A usual approximation of the proposed active particle
models is to assume that the fuel concentration is almost
constant along the particle trajectories, so that the driving
force exerted by the catalytic reaction is constant. Such an
approximation is justified when the substrate diffusion time
is much shorter than the particle travel time, so that the par-
ticles always move in a homogeneous medium [7–9]. When
this condition is not fulfilled, the study requires consideration
of the coupled dynamics of the particles and the substrate
[10–14]. Cases in which this should be taken into account
include nanoparticles that use specific substrates in tissues to
become activated and move to be detected in cellular diagnos-
tic methods and bacteria that consume hazardous chemicals
inhomogeneously distributed in soil and water [15–25].

Substrate dynamics is important for understanding the
movement of APs in biological and porous media where
in some cases it exhibits oscillatory behavior [12,26]. In
such media, particles often move through irregularly shaped
channels [27,28]. Such irregularities lead to entropy varia-
tions along the media that have been modeled by entropic
barriers [29,30]. Application of a periodic external stimulus
on particles can, in the presence of entropic barriers, lead
to stochastic resonance in which the signal-to-noise ratio or
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spectral amplification reaches maximum values for an optimal
noise level. Such a resonance is known as entropic stochastic
resonance [31–37].

The coupling of particle dynamics with substrate dynamics
raises the question of whether there exist optimal conditions
for APs transport to take place with maximum efficiency, i.e.,
longer particle displacement with lower energy consumption
[18,25]. Identifying scenarios in which these conditions are
met is the primary objective of this article.

We will show how a periodic injection of the substrate
into a confined system, characterized by an entropic potential,
results in a significant increase in the spectral amplification
indicating a minimization of the random effect of thermal
fluctuations [38]. The cooperation between signal (substrate
oscillations) and noise, characteristic of systems with stochas-
tic resonance, facilitates the transport of particles that can
travel longer distances with lower substrate consumption. The
general nature of the mechanism proposed makes it applicable
to a wide range of systems, such as microfluidic devices,
cell membrane transporters, drug delivery, and soil remedi-
ation, to name a few. The implementation of oscillating fuel
gradients in microfluidic devices, in order to study the adapt-
ability of the active particles to the medium, has been studied
in [39–42]. Such studies reveal the possibility of experimental
verification of our results.

The paper is organized as follows. In Sec. II, we present
the model for the transport of active particles under chemoki-
netic and diffusiophoretic forces in a confined medium. In
Sec. III, we analyze the Langeving and Fick-Jacobs dynam-
ics. In Sec. IV, we present our results. We demonstrate the
existence of a stochastic resonance regime in which particle
transport is more efficient. Finally, in Sec. IV we present our
main conclusions.

II. ACTIVE PARTICLE TRANSPORT
IN A CONFINED MEDIUM

We consider a set of non-interacting active particles swim-
ming in the confined space of Fig. 1. Each particle is subjected
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FIG. 1. Scheme of the system. The channel shape is defined in
Eq. (3) in which the values of the geometrical parameters are Lx = 1
and L = 2 (both scaled with Lx). APs are driven by a constant force
(white arrow) G in the orthogonal direction and by the substrate con-
centration gradient (color map) ρ(x, y, t ) in the longitudinal direction
whose flux is J . The higher concentration values in the color map
correspond to the red regions while the lower concentration values
correspond to the blue region. Snapshots of the process: (a) initial
state t = 0; (b) t1 > 0, particles moving to the right well; (c) t2 > t1,
particles moving to the left well.

to a diffusiophoretic force

Fd = kd∇ρ(x, t ), (1)

where ρ(x, t ) is the substrate concentration and kd the dif-
fusiophoresis coefficient [9,14,43], and to a self-propelling
chemo-kinetic force due to the chemical reaction taking place
over the catalytic part of the particle

Fch = kchJ (x, t )n, (2)

where kch is the chemo-kinetic coefficient and J (x, t ) the
reaction flux at the particle position. We will assume that
J (x, t ) = krρ(x, t ), with kr the reaction rate [9,14]. This
force parallel to the director vector n has its origin in the
propulsive force exerted by the bubbles generated in the cat-
alytic part of the particle, as a product of the reaction.

The Langevin dynamics of the APs position is described
by means of the Langevin equation

ξt
dx
dt

= Fch + Fd + Fr, (3)

where ξt = 6πμap is the translational friction coefficient,
with μ the viscosity and ap the radius of the particles. The
random term Fr fulfils a fluctuation-dissipation theorem [29].
Analogously, for the particle orientation (n) we have

dn
dt

= (I − nn) · 1

ξr

∂ψ

∂n
+ 1

ξr
Tr × n. (4)

Here, ξr = 8πμa3
p is the rotational friction coefficient, ψ is

the potential associated with the local substrate concentration
gradient [14,44], and Tr

i is a random torque which fulfills a
fluctuation-dissipation theorem. The reaction-diffusion equa-
tion for the fuel concentration is

∂

∂t
ρ(r, t ) = Ds∇2ρ(r, t ) +

n∑
i=1

Jiδ(r − x), (5)

(a)

(b)

FIG. 2. Active particle dynamics. APs mean position 〈x(t )〉
(black solid line) and periodic signal H (t ) (blue solid line) (a) posi-
tion of a single AP xi(t ) (black dashed line), obtained from Langevin
dynamics. (b) Substrate mean position 〈xs(t )〉 (red line). The oscil-
lation period is T = τb − τa while the frequency IS ω = π/T . The
values of the parameters used in the simulations are Jin = 3.25D,
G = 1.0, ω = 0.114, kd = 5, and kch = 10.

where n is the number of particles and Ds is the diffusivity of
the fuel.

The region in which active particles move is a two-
dimensional compartment cell of length 2L = 40 µm (see
Fig. 1) and height

h(x, t ) = a

(
b − cos

(
π

x

Lx

))
, (6)

where a = 15.75 µm, Lx = 10 µm, and b = 1.2, from which
the corresponding bottleneck diameter is 6 µm. Boundary con-
ditions of Eq. (5) are given by

∂

∂y
ρ

∣∣∣∣
y=±h(x,t )

= 0; −Ds
∂

∂x
ρ

∣∣∣∣
x=±L

= ±J (t ), (7)

where J (t ) = J (2H (t ) − 1). Here, J is the substrate flux at the
boundaries, and H (t ) = 
(t − 2nτa) − 
(t − 2nτb), with 


the Heaviside function, τa and τb define the period of one pulse
[blue solid line on Fig. 2], and n = (1, 2, . . .). Whit these
oscillation boundary conditions we ensure the oscillations of
the APs and avoid the accumulation of fuel only on one side
of the channel.

The cell is narrow enough for transport to occur mainly
in the axial direction, with the particle distribution reaching
local equilibrium very quickly in the transverse direction.
This coarse-graining description, known as the Fick-Jacobs
approach, in which the channel ripples are likened to en-
tropic barriers [29–31,33–35]. The coupled particles-substrate
dynamics is under this approximation described in terms
of the 1d concentration and probability density, c(x, t ) and
P(x, t ), defined by: ρ(x, y, t ) = c(x, t )gs(y|x) and p(x, y, t ) =
P(x, t )gp(y|x) with [30,36,45]

gi(x|y) = e−βUi (x,y)

e−βAi (x)
, e−βAi (x) =

∫
e−βUi (x,y)dy, (8)
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where i = (s, p), β = (kBT )−1, with kB the Boltzmann’s con-
stant and T the temperature, Ui(x, y) the potential, and Ai(x)
the free energy of mean force of APs and fuel.

Our analysis will be performed in terms of the dimen-
sionless quantities x̂ = x/Lx, ĉ(x, t ) = c(x, t )/c0, with c0 a
reference concentration (1D), and ρ̂(r, t ) = ρ(r, t )/ρ0, with
ρ0 a reference concentration (2D) the reference force FR =
ξRL2

x/(kBT ), where kBT is the Boltzmann term and ξR is the
reference friction coefficient, which depends on AP reference
radius aR. The relative diffusivity of the particle is defined
as D̂ = aR/ap, and the relative diffusion of the substrate
as D̂s = D̂(aR/as). The ratio between AP reference radius
and substrate radius is set as (aR/as) = 100. The dimension-
less time is t̂ = t/τd , with τd = L2

x/D̂. For convenience, we
rewrite k̂d = kd/D̂ and k̂ch = kch/D̂ then we define the di-
mensionless diffusiophoretic constant as k̂d = kd c0/(kBT ),
the chemo-kinetic constant as k̂ch = kchc0/(ξRLx ) and the re-
action rate k̂r = krτd . From now on, we will omit the tilde
symbols.

In the coarse-graining description, the fuel concentration
evolves according to the reaction-diffusion equation

∂

∂t
c(x, t ) = ∂

∂x

(
Ds

∂

∂x
+ Ds

∂As

∂x

)
c(x, t ) + J P(x, t ), (9)

where the drift force is an entropic force due to the irregular
shape of the boundary deriving from the entropic potential
As = −2ln(h(x)). The effective reaction flux in this descrip-
tion is J = −krc(x, t ).

In the overdamped regime, the probability distribution of
the particles evolves according to the Fick-Jacobs equation

∂

∂t
P = ∂

∂x

[
D

∂

∂x
+ ∂Ap

∂x
+ Fd + Fch

]
P, (10)

where the entropic potential is Ap = −Dln[ 2D
G sinh( Gh(x)

D )],
with G a dimensionless transverse force applied in order
to fix the particles to the potential wells thus generating
an activation regime [34,36]. The diffusiophoretic force is
in the coarse-graining description given by Fd = kd ( ∂c(x,t )

∂x −
c(x, t ) d ln h(x)

dx ) [14]. On the other hand, the chemo-kinetic
force in 1D is written as Fch = −kchJ n, where n is the director
vector in one dimension, i.e., a scalar quantity that changes
sign as a function of the difference in concentration between
the two compartments of the channel: n = �c(x, t )/cmax, with
cmax a reference value corresponding to the maximum sub-
strate concentration.

Periodic variations of the fuel concentration in the
cell are induced by bringing its ends into contact with
substrate sources giving rise to the boundary conditions
∂
∂x c(x, t )|x=±L = ±J (2H (t ) − 1). The boundary conditions
corresponding to Eq. (10) are ∂P(x,t )

∂x |x=−Lx = ∂P(x,t )
∂x |x=Lx = 0.

The initial value for both P(x, t ) and c(x, t ) is a δ function
centered on −Lx and Lx.

III. LANGEVIN AND FICK-JACOBS DYNAMICS

To solve the Langevin equations (3)–(5), we implemented
a multi-scale method [46] which uses the Euler scheme for
both x and n and the Crack-Nicholson finite element method
for ρ(r, t ). We analyzed the evolution of a set of 200 non-

interacting particles with boundary conditions that prevent
them from leaving the channel [35]. To solve the Fick-Jacobs
equations (9)–(10), we implemented a finite element method.
Figure 2 illustrates the dynamics of the APs for the two
approaches used. In the figure, we represent the average po-
sition of the particles 〈x〉 which for both approaches follows
the same behavior indicating that the Fick-Jacobs method is
sufficient to capture the particle dynamics and allows us to
reduce the computational time. We also represent the pulse
H (t ). In Fig. 2(a), we represent the single-particle dynamics
xi and in Fig. 2(b) the variations in substrate concentration due
to the pulse effect.

Substrate injection oscillations induce periodicity of the
chemo-kinetic and diffusiophoretic forces. To find the effec-
tive potential associated with the total drift on the particles
[8,33], we will use the Rayleigh function [47–50]

R(x, ẋ, t ) = (ẋ, t ) − ∂Ap(x)

∂x
ẋ − (Fch + Fd )ẋ (11)

with ẋ the velocity of the particle. The first term of this
expression is the dissipation function (ẋ, t ) = 1

2ξ ẋẋ, the sec-
ond term is the free energy rate due to the entropic forces
and the last term is the free energy rate related with the
diffusiophoretic and chemo-kinetic forces. In the Rayleighian,
we have ignored the thermal fluctuations of the substrate
and the particle, since active and entropic forces dominate
the process. The dissipation function is related to the mini-
mum of the Rayleigh function R∗ with respect to ẋ, in the
form

R∗(x, ẋ∗, t ) = −(ẋ∗, t ) = − 1

2ξ

(
∂Ap(x)

∂x
+ (Fch + Fd )

)2

,

(12)

in which ẋ∗ is the particle velocity path, which depends on
x and t , that minimizes the Rayleigh function. In view of
Eq. (12), Eq. (10), can be written as

∂P

∂t
= ∂

∂x

[
D

∂

∂x
+

√
2ξ−1(x, t )

]
P, (13)

where the drift term results from the effective potential Veff

defined through

∂Veff (x, t )

∂x
=

√
2ξ−1(x, t ). (14)

Figure 3 shows the oscillations of the dissipation function
(x, t ) (dashed red line) and of the effective potential Veff (x)
(solid black line), together with the variations of the AP proba-
bility P(x, t ) (solid black line) and the substrate concentration
c(x, t ) (solid blue line). Parts (a,b) of the figure show that the
AP probability reaches a maximum when the dissipation func-
tion is minimum. Moreover, the positive and sharp concavity
of the dissipation function is related to the global maximum
of P. In (b,d), we observe how the peak of the probability dis-
tribution shifts together with the concentration peak towards
the ends of the channel, thus observing an almost complete
passage of the particles through the bottleneck.
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(a)

(b)

(c)

(d)

FIG. 3. Effective potential, dissipation function, particle prob-
ability, and substrate concentration at t = 1.0 (a),(b) and t = 28
(c),(d); (a),(c) Effective potential Veff (x, t ) (black line), and dissi-
pation function (x, t ) (red line); (b),(d) probability distribution
(black line) and fuel concentration (blue line). The parameters used
are: J = 3.25D kr = 1, G = 0.15, ω = 0.114, kd = 5, kch = 10. Red
arrows indicate the location of the minimum of  and the maximum
of the probability distribution of the active particle.

IV. RESULTS

A. Stochastic resonance regime

We have computed the spectral amplification η =
(M1/F0)2, where M1 is the first harmonic of 〈x(t )〉 at long
times, in Fourier space and F0 is the input signal amplitude
[34,38]. In this work, we have considered a dimensionless
input signal amplitude: F0 = 1, see Fig. 2 (solid blue line). For
this reason, we computed the maximum distance the particles
can reach xmax, as a function of the model parameters [35].
This quantity can be expressed as xmax = 〈x〉 + σ , where σ is
the standard deviation of x. From the substrate concentration,
we have computed the substrate consumption C

C = 1

tT

∫ ∞

0

∫ L

−L
J dxdt . (15)

where tT is the total time.
Figure 4 shows that cooperation between periodic substrate

oscillations in the cell and thermal noise leads to a maximum
of the spectral amplification which results in a decrease in
the substrate consumption and an increase in the maximum
distance that particles reach in the cell. In Fig. 4(a), we repre-
sent the substrate consumption and the maximum distance as
a function of D with and without fuel injection (squares and
circles, respectively). Under fuel injection, particles reach the
resonant state at D ∼ 0.3, at which the spectral amplification
represented in the inset has a maximum close to the maximum
of xmax at D ∼ 0.25. Beyond this value, C saturates.

In our model, the presence of thermal fluctuations and the
availability of substrate are key in driving particles towards the
bottleneck. In the case of a closed system, without fuel supply,
the substrate quickly achieves a homogeneous distribution,
which does not favour particle transport. A periodic injection
of substrate restores the substrate consumed by the particles

(a)

(b)

FIG. 4. Representation of C, xmax and η (inset) as a function
of D. (a) With fuel injection, J = 0.0125Ds, (squares) and without
fuel injection (circles), for kr = 1.0, kch = kd = 5, G = 1, and ω =
0.114. (b) Behavior of these quantities as a function of the injection
frequency, for kr = 1.0, kch = kd = 5, G = 1, and J = 0.0125Ds.
The insets represent the spectral density as a function of the noise
level.

and brings the system to the quasi-stationary state shown in
Fig. 2.

Figure 4(b) shows the existence of an optimal value of
the oscillation frequency of fuel supply that facilitates parti-
cle transport. The frequencies used here destroy the coherent
response of the system leading to a discrepancy between the
values of η and xmax. For ω = 0.082 the value of xmax is
lower than that for ω = 0.09, evidencing a non-monotonous
behavior of the transport and consumption with the frequency.
There is, therefore, an intermediate frequency that maximizes
transport and minimizes consumption at a noise level value
where η reaches a maximum, as shown in the box.

The noise level at which the maxima of η and xmax are
observed is D ∼ 0.25, which corresponds to particle sizes
ap = 4aR, at which resonant behavior is found. Using the
relation aR/as we find ap = 400as. When fuel is H2O2, whose
particle size is of about 0.25 nm, the radius of the APs is
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(a) (b)

(c) (d)

FIG. 5. Representation of the maximum distance traveled by the APs per amount of fuel consumed x∗
max/C, the spectral amplification η∗

and noise D∗at which those maximums were found as a function of (a) frequency ω, for kd = 5, kch = 5, G = 1, kr = 1, and J = 1.25D;
(b) chemo-kinetic coefficient kch (lines with squares), for kd = 5, and diffusiophoretic coefficient kd (lines with circles), for kch = 5, both
curves obtained for ω = 0.114, G = 1, kr = 1, and J = 1.25D; (c) reaction rate constant kr , for ω = 0.114, kd = 5, kch = 5, and G = 1); and
(d) substrate flux J , for ω = 0.114, kd = 5, kch = 5, G = 1, and kr = 1.0.

ap = 0.1 µm, whereas if the fuel is glucose, of particle size
0.9 nm, ap = 0.36 µm. The different behaviors of η and xmax

observed in Fig. 4 indicate that energetic efficiency and trans-
port efficiency do not necessarily occur simultaneously.

The amount of substrate that the particles need to consume
to travel a maximum distance, i.e., xmax/C, is a measure of
transport efficiency. We have computed xmax/C and η, and
calculated the maximum values of these functions which we
denote by x∗

max/C and η∗ and represent as a function of the
parameters ap, ω, kd , kch, kr , and J . We have also com-
puted the noise level D∗ at which those maximum values are
found.

The advantage of the periodic chemokinetic force over
other periodic external forces, which could also give rise to
stochastic resonance, is that the former is generated by a
change of fuel concentration in the system which is easier
to implement experimentally [39–41]. The latter requires the
identification of a property of the particles, such as the electric
charge, which may be subject to change due to their interac-
tion with the bath. Moreover, the application of an external
force could also affect the fuel concentration distribution and
thus the chemokinetic forces.

B. Resonance-induced transport enhancement

In Fig. 5(a), we show that x∗
max/C and η∗ behave approxi-

mately as ω−1, which points to a reduction in efficiency as the
fuel input frequency increases. We observe a non-monotonic
behavior of η∗ within the frequency interval 0.082<ω < 0.09,
which contrasts with the monotonic behavior of x∗

max/C which
highlights the difference between transport and energy effi-
ciencies. The resonant regime take place at 0.2 < D∗ < 0.3
for all values of ω. For frequencies ω ∼ 0.05, the optimal
particle radius, at which the APs has resonant behavior, is four
times larger than the reference radius. For example, when the
substrate is H2O2 the radius is 0.1 µm, while when for glucose
is 0.36 µm.

In Fig. 5(b), we see that x∗
max/C and η∗ depend linearly

on kd (circle lines) and kch (square lines) for the values
of the parameters indicated in the figure legend. The noise
level at which the maxima occur is D ∼ 0.25, and the par-
ticle radius is four times the reference radius. Our results
show that both efficiencies are more sensitive to changes
in kd than to changes in kch if both have a value higher
than 5. Suggesting that under confinement diffusiophoresis
is dominant, possibly because the entropic effects over the
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gradient of c(x, t ) in Fd are higher than the reaction flux J
effect over Fch. That makes diffusiophoresis more efficient
over longer distances than chemo-kinesis, as previous results
indicate [11,18,20,22].

In Fig. 5(c), shows the behavior of x∗
max/C, η∗, and D∗

as a function of kr , whereas transport efficiency behaves
exponentially, energetic efficiency follows a power law. We
see that D∗ increases monotonically with kr . The maximum
value reached by the energetic efficiency is found at kr ∼ 5
which corresponds to D∗ ∼ 0.35, and to the APs radius ap ∼
2.8aR. For kr � 1, D∗ ∼ 0.25 and the APs radius increases:
ap ∼ 4aR. On the other hand, increasing kr reduces fuel readi-
ness which affects the diffusiophoretic and chemo-kinetic
forces. This fact has not been observed in previous treatments
where the fuel concentration is considered to be unchanged.
In this case, variations of kr lead to sub-optimal transport and
energetic efficiencies. We can then conclude that an increased
particle travel distance results in heightened fuel consumption,
an undesirable outcome.

Figure 5(d) shows an almost linear dependence of x∗
max/C

and η∗ on the substrate flow J . The quantity D∗ decreases for
flux values between 0.05 and 0.3. As a result of those lin-
ear behaviours, increasing substrate concentration improves
transport efficiency, which means an increase in distance trav-
eled without a considerable increase in substrate consumption.
Optimal efficiencies occur at J ∼ 7Ds which correspond to
D∗ = 0.05, and to particle sizes of about 20 times that of
the reference size. As shown above, the optimal particle size
depends on the type of fuel used. For H2O2 the size is 0.5 µm,
while for glucose is 1.8 µm.

Our analysis allows us to identify the values of the model’s
parameters that optimize APs transport. This is the case
when: kd = 5, kch = 15, kr = 3, J = 3.250D, G = 1, and ω =
0.114. The noise intensity at which this maximum occurs
is D = aR/ap ∼ 0.1. When the substrate is H2O2 or glucose
the radii needed to reach the optimum efficiencies fall in

the range 0.015 µm–0.15 µm. The selected parameter val-
ues offer insights into the optimal particle sizes for efficient
transportation. These sizes predominantly fall within the
nanoscopic range, making them suitable for particles that
can pass through cell membrane transporters and facilitate
drug delivery in medical applications. Similar studies using
auto-chemotactic droplets on irregular channels with substrate
sources dependence have been carried out in [11], and are
important to control and quantify the behavior of APs inside
the channels.

V. CONCLUSIONS

The fuel in the bath results in a chemokinetic force on
the particles. Its consumption by the particles causes their
concentration to decrease, so that the displacement of the
particles becomes smaller and smaller at long time limit. We
have shown that oscillations in substrate concentration pro-
duced by periodic injection into a cell restores the effect of
the chemo-kinetic force and result in a transport optimization
in which APs need to consume less substrate to move. Inter-
mittent injection induces a periodic force on particles whose
synchronization with noise induces a stochastic entropic res-
onance regime in which spectral amplification is maximized
and transport is optimized.

Our study enables us to identify optimal conditions for the
transport of active particles, allowing them to reach regions
that are difficult to access, and could therefore find applica-
tions in transport across cell membranes, drug delivery for
medical treatments, and porous media.
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