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Subdiffusion with particle immobilization process described by a differential equation
with Riemann-Liouville-type fractional time derivative
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An equation describing subdiffusion with possible immobilization of particles is derived by means of the
continuous time random walk model. The equation contains a fractional time derivative of Riemann-Liouville
type which is a differential-integral operator with the kernel defined by the Laplace transform; the kernel controls
the immobilization process. We propose a method for calculating the inverse Laplace transform providing the
kernel in the time domain. In the long time limit the subdiffusion-immobilization process reaches a stationary
state in which the probability density of a particle distribution is an exponential function.
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I. INTRODUCTION

Subdiffusion occurs in a medium in which random walk
of molecules is very hindered; see for example Refs. [1–9].
The examples are transport of some molecules in living cells
[10], in viscoelastic chromatin networks [11], and in porous
media [12]; transport of water in aqueous sucrose glasses
[13]; and transport of sugars in agarose gel [14]. In some
processes diffusing molecules may be eliminated from further
diffusion in different ways. There may be a particle decay due
to a reaction when it meets other molecules [15–17]. Since
the particle disappears, the probability density P(x, t ) that the
particle is at a point x in time t is not normalized:∫ ∞

−∞
P(x, t )dx < 1. (1)

Another process that eliminates a particle from further dif-
fusion is a permanent immobilization of the particle. In this
case, the probability of finding a molecule in the system is
equal to 1 at any time. It is obvious that this process cannot
be described by a diffusion-reaction equation. The diffusion-
immobilization process has been observed in diffusion of
chemically reactive gases in polymer layer systems [18],
transport of molecules in zeolites [19], signal transduction in
living cells [20], drug release processes [21], immobilization
of enzymes affecting catalytic reactions [22], oxygen diffu-
sion trough gels [23], diffusion and immobilization of dyes
[24], and lithium ions in some nanocomposite anodes [25].
Both processes mentioned above can occur in diffusion of
antibiotics in a bacterial biofilm. One of the bacteria defense
mechanisms is to disintegrate the antibiotic molecules, and the
process can be described by diffusion-reaction equations. In
the other one bacteria can thicken the biofilm immobilizing
antibiotic molecules [26,27]; see also Refs. [28,29] and ref-
erences cited therein. The immobilized molecules have not
disappeared; they can further interact with the environment.
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The process of immobilization of diffusing molecules has
been described by a diffusion equation with an additional term
describing the immobilization process [18,21,25,30,31].

An effective tool for deriving the normal and anoma-
lous diffusion equations is the continuous time random
walk (CTRW) model [1–3,5,7,9,32–36]. In particular, the
model has been used to derive subdiffusion-reaction equa-
tions [37–41]. We use the CTRW model to derive an
equation describing subdiffusion with particle immobilization
in a one-dimensional homogeneous system. We assume that
after each jump a particle can be immobilized with the same
probability which does not change with time and is indepen-
dent of a particle position. This process is described by the
subdiffusion equation with a time derivative of the Riemann-
Liouville type, which is a differential-integral operator with a
kernel controlling the immobilization process. Based on the
Green’s functions, we show that the process reaches a steady
state in the long time limit.

II. MODEL

Within the CTRW model, when the average length of
a single particle jump ε is finite the form of the subdif-
fusion equation is determined by the probability density ψ

of the waiting time for a particle to jump. In terms of the
Laplace transform, L[ f (t )](s) = ∫ ∞

0 e−st f (t )dt ≡ f̂ (s), the
equation generated by the function ψ is as follows:

sP̂(x, s) − P(x, 0) = ε2sψ̂ (s)

2[1 − ψ̂ (s)]

∂2P̂(x, s)

∂x2
, (2)

and the derivation of this equation is described in the Ap-
pendix.

We make the following assumptions.
(1) The probability of finding a particle in the system is

equal to 1 at any time:∫ ∞

−∞
P(x, t )dx = 1. (3)
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(2) Since the particle can be permanently stopped, the
probability that the particle will make a jump is less than 1:∫ ∞

0
ψ (t )dt < 1. (4)

A. Subdiffusion equation

To obtain the subdiffusion equation we assume

ψ̂ (s) = 1

1 + τ sα
, (5)

where 0 < α < 1, and τ is a parameter with the units of sα .
This function satisfies the normalization condition∫ ∞

0
ψ (t )dt ≡ ψ̂ (0) = 1. (6)

This condition means that the particle cannot be stopped per-
manently with nonzero probability. From Eqs. (2) and (5) we
get

sP̂(x, s) − P(x, 0) = Ds1−α ∂2P̂(x, s)

∂x2
, (7)

where D = ε2/2τ is a subdiffusion coefficient given in the
units of m2/sα . Due to the relations

L−1[s f̂ (s) − f (0)](t ) = df (t )

dt
, (8)

L−1[sβ f̂ (s)](t ) =
RLdβ f (t )

dtβ
, (9)

0 < β < 1, where

RLdβ f (t )

dtβ
= 1

�(1 − β )

d

dt

∫ t

0
(t − u)−β f (u)du (10)

is the Riemann-Liouville time fractional derivative of the
order β ∈ (0, 1). From Eqs. (7)–(9) we get the subdiffusion
equation

∂P(x, t )

∂t
= D

RL∂1−α

∂t1−α

∂2P(x, t )

∂x2
. (11)

B. Subdiffusion-immobilization equation

In order to find a function ψ (t ) that satisfies Eq. (4), i.e.,
ψ̂ (0) < 1, we assume that the Laplace transform of the func-
tion is

ψ̂ (s) = 1

1 + τγ + τ sα
, (12)

where 0 < α < 1, and the parameter γ , which controls
molecule immobilization, is given in the units of 1/sα . The
probability ps of stopping the molecule permanently is ps =
1 − ψ̂ (0) = τγ /(1 + τγ ), and then γ = ps/[(1 − ps)τ ]. The
function ψ is interpreted here as a probability density of wait-
ing time for a particle to jump provided that the particle has
not been permanently immobilized by this time. From Eqs. (2)
and (12) we get

sP̂(x, s) − P(x, 0) = D
s1−α

1 + γ s−α

∂2P̂(x, s)

∂x2
. (13)

The inverse Laplace transform of the right-hand side of
Eq. (13) is calculated using the formula

L−1

[
s1−α

1 + γ s−α
f̂ (s)

]
(t ) =

RL
F d1−α f (t )

dt1−α
, (14)

where
RL

F d1−α f (t )

dt1−α
= d

dt

∫ t

0
Fα (t − t ′; γ ) f (t ′)dt ′ (15)

is the Riemann-Liouville-type fractional derivative with the
kernel Fα which is defined by its Laplace transform

F̂α (s; γ ) = 1

γ + sα
. (16)

For γ = 0, this derivative is the Riemann-Liouville derivative
Eq. (10) of the order 1 − α. Equations (13)–(16) provide the
following subdiffusion-immobilization equation (SIE):

∂P(x, t )

∂t
= D

RL
F ∂1−α

∂t1−α

∂2P(x, t )

∂x2
. (17)

Calculation of the inverse transform of Eq. (16) is usu-
ally done by power series expansion of the function when
γ /sα < 1, and then inverting the transform term by term using
the formula L−1[1/sβ](t ) = tβ−1/�(β ), β > 0. The result is
the Mittag-Leffler (ML) function [42,43]. However, this pro-
cedure is valid for relatively large values of the parameter s,
which correspond to small values of the time variable. To get
the inverse Laplace transform over the whole time domain we
propose to use the following method.

(1) Instead of F̂α in Eq. (16) find the inverse transform of
F̂α (s, γ )e−asμ

, where a, μ > 0.
(2) Expand F̂α in a power series of s considering both cases

sα > γ and sα < γ separately.
(3) Use the formula [44]

L−1[sνe−asμ]
(t ) ≡ fν,μ(t ; a)

= 1

tν+1

∞∑
n=0

1

n!�(−nμ − ν)

(
− a

tμ

)n

,

(18)

where a, μ > 0.
(4) Calculate the limit of a → 0+ in the obtained functions.

We note that

fν,μ(t ; 0+) = 1

tν+1�(−ν)
, (19)

and the result is independent of the parameter μ.
From the formula

e−asμ

γ + sα
=

⎧⎪⎨
⎪⎩

e−asμ ∑∞
n=0(−γ )ns−(n+1)α, s > γ 1/α,

e−asμ

γ

∑∞
n=0

( − 1
γ

)n
snα, s < γ 1/α,

(20)

and Eqs. (18) and (19) we obtain

Fα (t ; γ ) =
⎧⎨
⎩

1
t1−α Eα,α (−γ tα ), t < tb,

− 1
γ 2t1+α Ẽα,α

( − 1
γ tα

)
, t > tb,

(21)
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FIG. 1. Plot of the function Fα . The dashed vertical line shows
the location of the parameter tb = 11.5. The solid line with squares
is the plot of the upper function in Eq. (21) which describes Fα for
t < tb; the solid line with circles is the plot of the lower function in
Eq. (21) which represents Fα for t > tb. In the numerical calculations,
the leading 20 terms in the series appearing in the functions Eα,α and
Ẽα,α have been included.

where Eα,β (u) = ∑∞
n=0

un

�(αn+β ) , with α, β > 0, is the two-

parameter ML function, and Ẽα,β (u) = ∑∞
n=0

un

�(−αn−β ) is a
generalization of the ML function for negative parameters.
We note that conditions s > γ 1/α and s < γ 1/α do not deter-
mine the parameter tb. For example, the condition s > γ 1/α

is equivalent to 1/sβ+1 < 1/(sβγ 1/α ) for β > 0 (assuming
that s is a real positive parameter). The inverse Laplace
transform of the inequality provides t < β/γ 1/α where β is
a positive number. Thus, the above inequality does not de-
termine tb. Here we define the parameter tb as the shorter
time at which the upper and the lower functions in Eq. (21)
are matched; see Fig. 1. We mention that the parameter tb
has no physical interpretation; it separates the time domains
in which the methods of Laplace transform calculations are
different.

In terms of the Laplace transform the solution to Eq. (16)
(the Green’s function) for the initial condition P(x, 0) = δ(x),
where δ is the Dirac-delta function and boundary conditions
P(±∞, t ) = 0, is

P̂(x, s) =
√

γ + sα

2s
√

D
e−|x|

√
γ+sα√

D . (22)

The solution fulfils the condition
∫ ∞
−∞ P̂(x, s)dx = 1/s which

provides the normalization of the function P in Eq. (3).
Let γ �= 0. We calculate the inverse Laplace transform of

the function (22) for small and large values of s separately. In
calculation, we use the formulas

√
1 + u ≈ 1 + u/2 − u2/8

and e−u ≈ 1 − u + u2/2, u → 0, and keep the leading terms
in the obtained series. When sα > γ we obtain

P̂(x, s) = 1

2
√

Ds1−α/2

(
1 − b1

sα/2
+ b2

sα

)
e− |x|√

D
sα/2

, (23)

where b1 = γ |x|/2
√

D and b2 = (γ /2)(1 + |x|2γ /2
√

D). If
sα < γ , we get

P̂(x, s) =
√

γ

2s
√

D
e−

√
γ

D |x|(1+ sα

2γ
)
[

1 + sα

2γ
− b

s2α

γ 2

]
, (24)

where b = √
γ /D|x| + 1/8. Equations (18) and (23) provide

the Green’s functions in the limit of short time:

P(x, t ) = 1

2
√

D
[ f−1+α/2,α/2(t ; η)

− b1 f−1,α/2(t ; η) + b2 f−1−α/2,α,2(t ; η)], (25)

where η = |x|/√D. From Eqs. (18) and (24) we get the
Green’s function in the long time limit:

P(x, t ) = 1

2

√
γ

D
e−

√
γ

D |x|
[

f−1,α (t ; ξ ) + 1

2γ
fα−1,α (t ; ξ )

− b

γ 2
f2α−1,α (t ; ξ )

]
, (26)

where ξ = |x|/2
√

Dγ .
Since the mean particle position equals zero, in terms of

the Laplace transform the mean square displacement of the
particle is

L[〈(�x)2(t )〉](s) =
∫ ∞

−∞
x2P̂(x, s)dx = 2D

s(γ + sα )
. (27)

When γ �= 0, for small s we have L[〈(�x)2(t )〉](s) =
2D/[1/s − 1/(γ s1−α )]. Thus, in the limit of long time we get

〈(�x)2(t )〉 = 2D

γ

[
1 − 1

γ�(1 − α)tα

]
. (28)

In the limit t → ∞, the stationary state described by the
following function is reached:

P(x, t → ∞) ≡ Pst (x) = 1

2

√
γ

D
e−

√
γ

D |x|. (29)

For illustration, plots of functions Fα and P are shown in
Figs. 1 and 2, respectively. The parameters are α = 0.7, γ =
0.6, and D = 10, and all parameters are given in arbitrarily
chosen units. In Fig. 3 the Green’s functions for the stationary
state are presented.

III. FINAL REMARKS

The process of subdiffusion with particle immobilization
in a one-dimensional system can be described by an equa-
tion with a fractional time derivative of the Riemann-Liouville
type, which is a differential-integral operator with the kernel
Fα defined by its Laplace transform Eq. (16). The equation can
be easily generalized to the three-dimensional case just like
the “ordinary” subdiffusion equation. We have proposed a
method for determining the inverse Laplace transform of the
kernel. In our opinion, this method can be widely used for cal-
culating inverse Laplace transforms L−1[ f̂ (s)](t ) for a wide
class of functions f .

In a homogeneous unbounded system the subdiffusion-
immobilization process reaches a stationary state which is
described by Pst (x) in Eq. (29). This distribution depends only
on the quotient γ /D expressed in the units of 1/m2 and it does
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FIG. 2. Plots of Green’s functions for times given in the legend.
The plots represent the function Eq. (23) for t = 0.1, 0.5 and Eq. (24)
for t = 15, 50, 100.

not explicitly depend on the parameter α. The achievement of
the steady state is suggested by Fig. 2, where the Green’s func-
tions for relatively long times differ very little from each other.
In the stationary state there is 〈(�x)2(t → ∞)〉 = 2D

γ
, and the

particle is finally immobilized with probability equal to 1. We
mention that an interesting issue worth further consideration
may be the achievement of a stationary state in a system
bounded by partially permeable membranes or impermeable
walls, as well as in a heterogeneous system.

The subdiffusion-immobilization process is described by
Eq. (17) that can be obtained in practice by replacing the
time fractional Riemann-Liouville derivative Eq. (10) with
the more general Riemann-Liouville-type derivative with the
kernel Fα in Eq. (15) in the ordinary subdiffusion equa-
tion Eq. (11). There is a different situation than in the
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FIG. 3. Plots of the function Pst in Eq. (29) for different values of
the ratio γ /D given in the legend.

subdiffusion-reaction equation in which the reaction term
is involved in the ordinary subdiffusion equation; see for
example Refs. [15,17,41]. We mention that the Riemann-
Liouville-type fractional derivatives with different kernels
have been considered in Refs. [45–48].

An interesting problem is to consider a subdiffusion-
immobilization equation with the fractional Riemann-
Liouville-type time derivative with respect to another function
g (g-subdiffusion-immobilization equation). Such an equa-
tion could significantly extend the range of processes it
describes. The g-subdiffusion equation has been recently con-
sidered in Ref. [49] (see also references cited therein) in
which subdiffusion equation with the fractional Caputo time
derivative of the order α, equivalent to Eq. (11), has been con-
sidered. The g-subdiffusion equation results in a change in the
time scale, t → g(t ), comparing with the ordinary subdiffu-
sion equation. The stochastic interpretation of g subdiffusion
is based on a modified CTRW model. The g-subdiffusion
equation describes, among others, a process of continuous
transition from subdiffusion to ultraslow diffusion (slow sub-
diffusion), to subdiffusion with changed parameters, and to
superdiffusion. Another process in which the time clock has
been changed compared to ordinary subdiffusion is the pro-
cess described by a tempered subdiffusion equation (TSE)
with a tempered fractional time derivative [50,51]. This equa-
tion can be derived from the CTRW model assuming that ψ

is a tempered α-stable distribution. We mention that the equa-
tions SIE Eq. (17) and TSE are not equivalent. The qualitative
differences between these equations are, among others, in
their stationary states. The process described by TSE reaches
the stationary state when particle diffuses in a potential field
V [51]. When dV/dx = 0, the stationary state is described by
the uniform distribution for TSE and by the function Eq. (29)
for SIE.
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APPENDIX: DERIVATION OF EQ. (2)

To derive the subdiffusion equation we use a simple model
of a particle random walk along a one-dimensional homoge-
neous lattice. Usually, in the CTRW model both a particle
jump length and waiting time for a particle to jump are ran-
dom variables. We assume that the jump length distribution
λ has the form λ(x) = 1

2 [δ(x − ε) + δ(x + ε)]. Random walk
with discrete time n is described by the equation Pn+1(m) =
1
2 Pn(m + 1) + 1

2 Pn(m − 1), where Pn(m) is a probability that
a diffusing particle is at the position m after the nth step. Let
the initial particle position be m = 0. Moving from discrete
m to continuous x spatial variable we assume x = mε and
Pn(x) = Pn(m)/ε, where ε is a distance between discrete sites.
The above equations and the relation [Pn(x + ε) + Pn(x −
ε) − 2Pn(x)]/ε2 = ∂2Pn(x)/∂x2, where ε → 0, provide the
following equation in the limit of small ε;

Pn+1(x) − Pn(x) = ε2

2

∂2Pn(x)

∂x2
. (A1)
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To move from discrete to continuous time we use the formula
P(x, t ) = ∑∞

n=0 Qn(t )Pn(x) [32], where Qn(t ) is the probabil-
ity that a diffusing particle takes n steps in the time interval
(0, t ). The function Qn is a convolution of n distributions ψ

and a function U (t ) = 1 − ∫ t
0 ψ (t ′)dt ′ which is the probabil-

ity that a particle does not change its position after the nth
step, Û (s) = [1 − ψ̂ (s)]/s, Qn(t ) = (ψ ∗ ψ ∗ . . . ∗ ψ︸ ︷︷ ︸

n times

∗U )(t ),

where ( f ∗ h)(t ) = ∫ t
0 f (u)h(t − u)du. Due to the following

property L[( f ∗ h)(t )](s) = f̂ (s)ĥ(s) we obtain

P̂(x, s) = 1 − ψ̂ (s)

s

∞∑
n=0

ψ̂n(s)Pn(x). (A2)

Combining Eqs. (A1) and (A2) we get Eq. (2).
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[19] M. Eić, A. Micke, M. Kočirík, M. Jama, and A. Zikánová,
Diffusion and immobilization mechanisms in zeolites studied
by ZLC chromatography, Adsorption 8, 15 (2002).

[20] B. Fourcade, Fluctuation correlation models for receptor immo-
bilization, Phys. Rev. E 96, 062403 (2017).

[21] G. Frenning and M. Strømme, Drug release modeled by disso-
lution, diffusion, and immobilization, Inte. J. Pharmaceut. 250,
137 (2003).

[22] C. geor malar, M. Seenuvasan, K. S. Kumar, A. Kumar, and
R. Parthiban, Review on surface modification of nanocarriers
to overcome diffusion limitations: An enzyme immobilization
aspect, Biochem. Eng. J. 158, 107574 (2020).

[23] S. H. Omar, Oxygen diffusion through gels employed for im-
mobilization, Appl. Microbiol. Biotechnol. 40, 173 (1993).

[24] N. A. A. Suhaimi, C. P. Y. Kong, N. N. M. Shahri, M.
Nur, J. Hobley, and A. Usman, Dynamics of diffusion- and
immobilization-limited photocatalytic degradation of dyes by
metal oxide nanoparticles in binary or ternary solutions,
Catalysts 12, 1254 (2022).

[25] P. Stein, D. Vrankovic, M. Graczyk-Zajac, R. Riedel, and
B.-X. Xu, A model for diffusion and immobilization of lithium
in SiOC nanocomposite anodes, JOM: the Journal of the Min-
erals, Metals Mater. Soc. 69, 1524 (2017).

[26] G. G. Anderson and G. A. O’Toole, Bacterial Biofilms, Current
Topics in Microbiology and Immunology Vol. 322 (Springer-
Verlag, Berlin, 2008).

[27] T. F. C. Mah and G. A. O’Toole, Mechanisms of biofilm
resistance to antimicrobial agents, Trends Microbiol. 9, 34
(2001).

[28] T. Kosztołowicz and R. Metzler, Diffusion of antibiotics
through a biofilm in the presence of diffusion and absorption
barriers, Phys. Rev. E 102, 032408 (2020).

[29] T. Kosztołowicz, R. Metzler, S. Wąsik, and M. Arabski,
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