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Large-scale heterogeneities can alter the characteristics of compressive failure
and accelerated seismic release
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Externally stressed brittle rocks fail once the stress is sufficiently high. This failure is typically preceded by
a pronounced increase in the total energy of acoustic emission (AE) events, the so-called accelerated seismic
release. Yet, other characteristics of approaching the failure point such as the presence or absence of variations
in the AE size distribution and, similarly, whether the failure point can be interpreted as a critical point in a
statistical physics sense differs across experiments. Here, we show that large-scale stress heterogeneities induced
by a notch fundamentally change the characteristics of the failure point in triaxial compression experiments under
a constant displacement rate on Westerly granite samples. Specifically, we observe accelerated seismic release
without a critical point and no change in power-law exponent ε of the AE size distribution. This is in contrast to
intact samples, which exhibit a significant decrease in ε before failure. Our findings imply that the presence or
absence of large-scale heterogeneities play a significant role in our ability to predict compressive failure in rock.
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I. INTRODUCTION

The process of brittle fracturing is a complex phenomenon.
When a brittle rock is sufficiently externally stressed, it re-
sponds with microfracturing processes occurring in the rock
mass to release part of the accumulated elastic strain energy.
Microcracks nucleate at sites with high stress concentration
typically coinciding with pre-existing flaws [1,2]. Some part
of the released energy during a microcrack comes in the form
of seismic waves with seismic energy of varying sizes and
the size distribution typically decays as a power law [3,4].
Over time, microcracks create a fractal-like network with
a crack length distribution following a power law [5]. This
coalescence of microcracks or so-called damage localization
process continues until eventually a transition from an intact
state to a macroscopically failed state occurs [6,7].

The sudden onset of failure was investigated in classical
frameworks where failure was often modeled as a threshold
criterion: In the Mohr-Coulomb framework [8], isotropic ma-
terial failure would only occur once the conditions of the
failure criterion were met, and similarly in the Griffith crack
theory [9] a crack can only thermodynamically grow once
its criterion is satisfied via an energy balance. For homo-
geneous rocks, which contain little to no defects, localized
stress concentration is relatively low resulting in little strain
energy dissipation. As strain energy is stored, unstable crack
growth becomes energetically favorable causing rapid fracture
propagation during abrupt rock failure. As a consequence, the
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natural conclusion is that brittle fracture is accompanied by
a first-order phase transition: A transition that occurs in an
abrupt and discontinuous manner making failure exceedingly
difficult to predict. However, in 1962 Japanese seismologist
Mogi observed that the rupture or fracture process was heav-
ily dependent on the degree of the material’s heterogeneity
or disorder and that warnings of failure were more present
in the heterogeneous material than in intact material [10].
This new insight lead to the possibility of catastrophic failure
prediction: The material’s microstructural disorder, which can
be characterized by the material’s flaws and defects, allows
the interaction and pervasion of nucleation sites, stopping
long-term crack growth [11] and allowing for the acceleration
and accumulation of damage as failure is approached [12,13].
Methods using this acceleration of rates of microcracks or
damage events were developed and applied not only to failure
forecasting of materials but also to forecast large earthquakes,
volcanic eruptions, landslides, and other catastrophic events
such as financial crashes, and even human birth [14–16].

From a statistical physics perspective, the complex compo-
sition and disorder of natural and manmade materials makes
brittle failure more similar to a continuous or second-order
phase transition: A continuous failure that is preceded by
precursory activity, rather than a first-order phase transition
as in the classical frameworks [8,9]. This is supported, for
example, by recent experimental work that examined the rela-
tionship between precursory activity, time-to-failure forecast,
and material heterogeneity of glass samples of varying poros-
ity [17]. There it was found that an increase in glass porosity,
which also caused an increase in heterogeneity, resulted in
a drastic increase in precursory activity and a decrease in
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the time-to-failure forecast error. Further support comes from
experiments on triaxial compression of virtually crack free
and thermally stressed Ailsa Craig microgranite [18]. In terms
of disorder, the virtually crack free granite has a homogeneous
microstructure, while the thermally stressed granite exhibits a
heterogeneous fracture network. There, the precursory behav-
ior examined was the temporal evolution of the correlation
length (CL) of cracks, where CL is defined as the distance of
influence a local perturbation has, which is approximately the
size of the largest fracture. It was observed that the temporal
evolution of CL of the homogeneous sample followed more
closely an exponential divergence strongly suggesting that
failure corresponds to a first-order phase transition. On the
contrary, for the thermally stressed and, hence, heterogeneous
sample CL followed more closely a power-law behavior in
line with a continuous phase transition.

These results highlight that measures of characteristic
scales, such as CL, can change with time to failure and in the
case of a continuous phase transition they diverge according to
a power law at the failure point, which hence is a critical point
in the language of statistical physics. It is often assumed that
the acceleration of seismic moment release, dE

dt ∝ (t − t f )−α ,
and/or the acceleration in the rates of seismic events when
approaching failure at time t f is the result or even a fingerprint
of such critical failure.

In a recent study [19], the uniaxial compressive failure of
concrete samples with differing levels of microstructural dis-
order was examined using acoustic emissions (AE). Despite
differences in aggregate sizes and porosity, failure for each
concrete sample was preceded by an acceleration of the total
AE energy as well as AE numbers and a divergence of char-
acteristic scales, while the power-law exponent ε of the AE
size distribution remained constant and close to mean-field
depinning values. These results suggest that brittle failure of
heterogeneous material is indeed a critical phenomenon. On
the other hand, in another AE experiment [20], the failure of
three uniaxially compressed nanoporous materials was pre-
ceded by accelerated seismic release, despite no divergence of
characteristic scales, i.e., in the absence of criticality, suggest-
ing accelerated seismic release is more general than critical
failure. In terms of predicting compressive failure, accelerated
seismic release by itself would be restricted to a single in-
dependent quantity, whereas the divergence of characteristic
scales associated with critical failure, by definition, offers
a larger set of observables that can be used to monitor the
progression towards failure.

As evident from the experimental work, there are many
different outcomes of brittle failure in materials depending
on the degree of their heterogeneity and potentially other
characteristics. This also includes an apparent dependence
of the power-law exponent of the AE energy distribution,
P(E ) ∼ E−ε , on the heterogeneity of the material: Under
slow uniaxial compression, more heterogeneous samples of
coal exhibit ε ∼ 5/3 = 1.667, while more homogeneous coal
samples have ε ∼ 1.4 [21]. Similarly, frictional heterogeneity
in stick-slip experiments can influence ε [22]. In the context of
statistical physics, the observation of distinct values of ε can
be interpreted as evidence of different, discrete universality
classes. This is fundamentally different from the observation
of accelerated seismic release accompanied by a continuous

decrease in ε before failure, which has been observed under
a variety of conditions and in various materials including
different types of granite [23–27]. From a statistical physics
perspective, such a continuous variation in critical exponents
can be interpreted as a Griffiths phase, as first introduced by
Griffiths [28–31], which means that the singular critical point
is replaced by an extended critical region. In general, such
a Griffiths phase stems from the presence of strong disor-
der, which would correspond to microstructural heterogeneity
here.

This highly complex and variable nature of brittle failure
begs the fundamental question of what the underlying mech-
anisms for the emergent behavior are and whether there are
specific indicators that allow one to determine the specific
characteristics of brittle failure ahead of time. This is par-
ticularly crucial for assessing risk and safety associated with
brittle failure in rock, such as volcanic eruption, landslides,
cliff collapse, and mine collapse [32–35]. Recent theoretical
work [36] suggests that the absence of critical failure might
be intimately related to the presence of triggered events or af-
tershocks during loading, AE events that are triggered by pre-
vious AE events due to changes in the stress field, for example
[37,38], which often arise due to viscoelastic effects [36,39].

To investigate the possible connection between the pres-
ence of such triggered events and the absence of critical failure
further, we examine here the effects of macroscopic hetero-
geneities induced by saw-cut notches on failure in Westerly
granite samples. Our focus is on the temporal AE character-
istics during the approach to failure, including changes in the
power-law exponent ε, in the AE event rates, AE energy rates,
as well as the divergence of characteristic scales.

We find that the failure of intact samples, which show ba-
sically no sign of triggered events during loading, is preceded
by a temporal change in the shape of the relative AE energy
distribution causing a continuous decrease in ε suggesting
a Griffiths phase. In contrast, the failure of notched sam-
ples, which exhibit pronounced event-event triggering during
loading, is preceded by a stationary AE energy distribution
resulting in a constant ε and a constant average energy per AE
event, showing no evidence of criticality. Yet, it still exhibits
an acceleration of the rate of radiated seismic energy released
and the AE activity rate.

II. EXPERIMENTS

For this study, seven Westerly granite rock samples were
triaxially compressed at a constant displacement rate of
20 μm/min (see Sec. II A for more details). Each sample
was compressed at room temperature and in dry conditions.
All samples are cylindrical in shape and have a diameter of
∼40–50 mm and a height of ∼100–120 mm. From the seven
selected Westerly granite samples, two were intact samples
(Wg01 and Wgr02), and the remaining samples (WgrN04,
WgrN05, WgrN07, WgrN08, and WgN19) had notches of
various lengths (15–25 mm) oriented at 30◦ to the loading axis
[40] that aimed to localize the future fracture preferably with
respect to the stress field. The notches introduced strong stress
heterogeneity due to the stress concentration close to their tips
since the very beginning of the loading-procedure, guiding the
behavior of AE activity and AE interactions [38].
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(a)

(b)

FIG. 1. Examples of stress (black solid line), cumulative AE
radiated energy (orange line marked with squares), and cumulative
number of AE events (blue line marked with circles) plotted as
a function of time for (a) notched sample WgrN05 and (b) in-
tact sample Wgr02. Shortly after reaching peak stress, σc (black
dashed line), there is a large drop in the stress indicating macro-
scopic fracture. The time period bound between the occurrence of
the first AE event with an energy above the energy of complete-
ness, EAE > Eth = 104.7 (see Fig. 3), and peak stress is indicated by
the grey dash-dotted vertical lines and marks the data used in our
analysis.

A. Triaxial compression

For all samples, the triaxial (σ2 = σ3 < σ1) fracture exper-
iments have been performed at constant confining pressure
(Pc = σ2 = σ3 = 75 MPa). The axial loading has been ap-
plied to the longer axis of the sample at constant displacement
rate, u̇ = 20 μm/min. In addition, for the intact samples an
AE feedback control was used to slow down the loading rate
close to the peak stress based on the AE event rates, which
typically occurred at or beyond peak stress [41] and, hence,
is not relevant for our analysis. As shown, for example, in
Fig. 1, the axial stress first increases linearly (elastic sample
deformation), and then it begins to rollover towards a peak
stress (nonelastic deformation, localization phase), which we
call the failure point, σc. After the failure point, a macroscopic
fracture starts to form, terminating with sample failure and
significant stress release.

(a) (b)

(c) (d)

FIG. 2. AE epicenters and hypocenters (left and right columns,
respectively) for notched sample WgrN05 and intact sample Wgr02
(top and bottom row, respectively).

B. Acoustic emission monitoring

To monitor microfracturing processes, 16 acoustic emis-
sion (AE) sensors with resonant frequency of 1 MHz were
placed on the rock sample surface [42]. Full waveform data
have been recorded using a transient acquisition system
(DAXBOX, PROKEL, Germany) at 10 MHz sampling rate
operating in triggered mode. The first P-wave AE events
were picked from events’ waveforms automatically using the
Akaike information criterion (AIC) [43]. AE hypocenters
were determined by optimizing travel time residuals using a
combination of grid search and simplex optimization tech-
niques. To model the travel times, we used a time-dependent
quasianisotropic velocity model derived from active ultrasonic
transmission measurements performed every 30 s during the
experiment. Specifically, a series of P-wave velocity mea-
surements were performed using ultrasonic transmission that
provided a time-dependent quasianisotropic velocity model
composed of five or six equally spaced horizontal layers and
one vertical layer. The velocity model was updated every 30 s
throughout the experiment and used to determine hypocen-
ter locations considering differences between vertical and
horizontal velocities in the travel time estimations. Typical
hypocentral uncertainty estimates are between 1 and 3 mm
based on travel time residuals and active source locations,
with an average location accuracy of ±2 mm. See, for in-
stance, Ref. [44] for more details and Fig. 2 for an example.
The AE event energy has been estimated following

EAE = 1

N

N∑
j=1

(AjDj )
2. (1)

Here, Aj and Dj is first P-wave amplitude and hypocentral
distance to sensor j, respectively, and N � 8 is the number
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of AE sensors with valid amplitude readouts. We note that
the AE event energies reveal relative energy differences be-
tween AE events, but they are not directly calibrated to the
physical radiated energy (i.e., in joules).

The kinematics of AEs were derived following the average
polarity coefficient [25]

p = 1

N

N∑
j=1

sign(Aj ) (2)

by calculating the average polarity of the available N first P-
wave arrivals of amplitude Aj . The AE events whose P-wave
polarities are primarily negative are tensile events, primar-
ily positive polarities correspond to compaction events, and
polarities that are a good mix between positive and nega-
tive polarities are shear events (note the polarity convention
is reversed with respect to the one used in seismology).
As a consequence, AE events are classified into either
tensile (−1 � p < −0.25), shear (−0.25 � p � 0.25), or
compaction (0.25 < p � 1) events. Note that this classifica-
tion of event types is generally consistent with other, more
sophisticated approaches, such as that based on the full mo-
ment tensor inversion [38,45].

III. APPROACH-TO-FAILURE METHODOLOGY

To calculate the temporal evolution towards failure of
each sample, each catalog of AE events above the energy of
completeness, Eth, (see Sec. III A) was split into consecutive
subcatalogs containing the same constant number of events,
while allowing for a 10% overlap of AE events between subse-
quent subcatalogs. Each experiment, however, had a different
constant number of events ranging from 150–1000 AE events,
depending on the total number of AE events in the respective
entire catalog. To each subcatalog, we assigned a differential
stress, σ , corresponding to the average over the time span
of the subcatalog. This can then be turned into a distance to
failure measure by comparing σ to the peak differential stress,
σc, of a corresponding fracture experiment by

� = σc − σ

σc
= 1 − σ

σc
. (3)

Using the distance to failure, five key features and their
evolution were calculated: (i) the exponent of the AE energy
distribution, ε, (ii) the average AE energy, 〈EAE〉, (iii) the
rate of the AE energy, dE/dt , (iv) the AE event rate, dN/dt ,
and (v) the polarities. The former four features are directly
linked to the notion of accelerated seismic release and critical
failure [20].

A. AE energy distribution

The probability density function (PDF) of the AE energy
typically has the general form

P(EAE)dEAE = E−ε
AE f

(
EAE

Ec

)
dEAE, (4)

such that it follows a power law with exponent ε up to a
characteristic energy Ec and then decays as determined by a
scaling function f ( EAE

Ec
). The scaling function is constant for

arguments significantly smaller than 1 and decays rapidly to

zero for arguments significantly larger than 1. This implies
that AE energies larger than Ec are typically not observed.
Three different brittle failure scenarios can be captured by
Eq. (4) as follows: (i) For critical failure, ε is constant and Ec

diverges for � → 0 as Ec ∝ �−γ . (ii) For noncritical failure,
both ε and Ec remain constant for � → 0. (iii) For a Griffiths
phase, ε varies with � (it typically decreases with decreasing
�), while Ec is in principle infinite (in the ensemble sense).
Yet, for any finite number of AE events Ec is effectively
controlled by extreme value statistics (see Appendix A for an
extended discussion).

A standard procedure to estimate ε is by using a maxi-
mum likelihood estimate (MLE) method [20]. We take this
approach here and examine different fitting ranges, [EL, ER],
determined by some lower AE energy, EL, and higher AE en-
ergy, ER, giving a set of MLE ε values, as well as p values. A
high p value indicates that the null hypothesis of a power law
cannot be rejected at a high confidence level. For this analysis,
ER was taken to be the maximum AE energy, say max(EAE),
of a (sub)catalog. EL was typically chosen to equal the AE
energy of completeness, Eth, i.e., the lowest AE energy for
which almost all AE events are detected, which is determined
by the sensitivity of the experimental setup. Consequently,
for AE energies below Eth, deviations from the power-law
behavior in Eq. (4) occur. This can be observed, for example,
in Fig. 3(a), where the complementary cumulative distribution
function (CCDF) is shown, defined as

P(>EAE) =
∫ ∞

EAE

P(E ′
AE)dE ′

AE. (5)

As a result, we first need to determine Eth. To do so, we utilize
the fitting range [EL, max(EAE)] by varying EL producing a
set of ε values as in Fig. 3(b). The AE energy of completeness
then corresponds to the onset of the constant, within statistical
error, region of ε. In Fig. 3(a), we can see that this fit is
accurate over a wide range up to the cutoff at the largest AE
energy as expected based on the scaling function in Eq. (4).
Once Eth is found, ε for a subcatalog is calculated using MLE
in the range [Eth, max(EAE)].

B. Divergence of characteristic scales

As mentioned above, for critical failure, ε is constant and
Ec diverges as Ec ∝ �−γ in Eq. (4), a prime example of the
divergence of a characteristic scale. This divergence in Ec

directly implies that the average energy of AE events also
diverges for ε < 2:

lim
�→0

[〈EAE〉] ∼ E2−ε
c ∝ �γ (ε−2), (6)

such that the divergence of these two characteristic scales
is intimately coupled in this case. Somewhat similar, for a
Griffiths phase, a decrease in ε leads to an increase in 〈EAE〉.
For a constant AE event rate, Eq. (6) for critical failure would
directly imply that the rate of total AE energy over time also
diverges in the same way, dEAE

dt ∝ �γ (ε−2), indicating acceler-
ated seismic release (ASR). In general, ASR corresponds to
the case when

dEAE

dt
∝ �−m. (7)
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(a)

(b)

FIG. 3. AE energy distribution and maximum likelihood esti-
mate (MLE) analysis for WgrN05: (a) the complementary cumu-
lative distribution function (blue circles) and the MLE fit above
the energy of completeness (red dashed line) giving ε − 1 = 0.699
(orange dash-dotted line). (b) Variations in ε (blue circles) and
goodness-of-fit p-values (green line marked with squares) when
varying EL of the MLE fitting range, [EL, max(EAE )]. High p values
indicate that the null hypothesis of a power-law behavior cannot
be rejected. Both ε and p indicate that above log10(EL ) = 4.7 the
distribution of AE energies is indeed well-characterized by Eq. (4)
with a unique value of ε such that Eth = 104.7

Yet as mentioned before, a cornerstone of failure in het-
erogeneous materials is the acceleration and divergence of the
AE event rate itself for � → 0, which can occur even in the
absence of critical failure [20]:

dN

dt
∝ �−n. (8)

Thus, the total released AE energy over time generally be-
haves as

dEAE

dt
= dEAE

dN

dN

dt
= 〈EAE〉dN

dt
, (9)

and ASR can be the result of the divergence of the aver-
age AE event energy or the divergence of the event rate or
a mix of both. The distinguishing features for noncritical
failure compared to critical failure or a Griffiths phase for
the cases we consider here are that dEAE

dt ∝ dN
dt and, equiv-

alently, 〈EAE〉 is constant. This is what we will test in the
following.

(a)

(b)

FIG. 4. The temporal evolution of ε for each AE subcatalog for
(a) intact and (b) notched samples, together with a corresponding
best fit of the form ε(�) ∝ δ̂ log10(�) and the mean value for ε, 〈ε̂〉,
respectively, with 90% confidence intervals indicated by the regions
in between the thick gray lines. The error bars in ε correspond to
the standard deviation in the maximum likelihood estimator, the
error bars in the distance to failure are 90% bootstrap confidence
intervals.

IV. RESULTS

Here, we present the results of the temporal evolution of ε,
the average AE energy, the AE energy rate, and AE event rate
for (i) the intact Westerly granite samples and (ii) the notched
Westerly granite samples.

A. Temporal evolution of the AE exponent ε

Figure 4(a) shows that for the intact samples, there is a
clear decrease in ε while approaching peak differential stress.
This result agrees with earlier observations for intact Westerly
granite [24]. Such a continuous variation in ε is indicative
of a Griffiths phase. In contrast, Fig. 4(b) shows that for all
notched samples, there is no significant decrease or change in
ε. The ε averaged over all samples is 〈ε̂〉 = 1.70(5), which is
consistent with the estimated exponents over the full catalogs
given in Table I. To emphasize the differences between the
intact and notched samples, rescaled PDFs for all different
values of � are shown in Appendix B (see Fig. 9 in particular,
which is the basis for Fig. 4).
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TABLE I. Estimated exponents for the full catalogs of the dif-
ferent experiments. The uncertainties are the maximum likelihood
standard errors.

Wg01 Wgr02 WgrN04 WgrN05 WgrN07 WgrN08 WgN19

ε 1.83(5) 1.84(4) 1.61(4) 1.66(2) 1.67(1) 1.61(5) 1.70(8)

B. Temporal evolution of the average AE energy, AE energy
rate, and AE event rate

Following the same general approach, we now examine
the temporal evolution of the remaining quantities, the aver-
age AE energy 〈EAE〉, the AE energy rate dEAE/dt , and the
AE event rate dN/dt . To begin, we have the intact samples,
whose results are summarized in the top row of Fig. 5. The
average AE energy shows a general increase as the distance
to failure is approached, following a power law with expo-
nent β = 0.46(4) to a good approximation [see Fig. 5(a)].
This indicates a divergence of the average AE energy and,
implicitly, a divergence in the effective cutoff energy (see
also Appendix A for the implications of a Griffiths phase
for the effective Ec and 〈EAE〉), which, in addition to the
continuously decreasing ε in Fig. 4(a), is in line with scenario
(iii) from Eq. (4). Therefore, our results support the hypothesis
of a Griffiths phase for the intact samples. Further, the intact

samples also exhibit ASR as described by Eq. (7) with an
exponent m = 1.37(7) [see Fig. 5(b)]. Similarly, the AE event
rate follows Eq. (8) with n = 0.96(6) [see Fig. 5(c)]. The fact
that β + n = 0.46 + 0.96 = 1.42 = m within the statistical
uncertainties indicates that ASR in the intact samples is a
result of both the divergence of the average energy and the
AE event rate.

The temporal evolution of the average AE energy, AE
energy rate, and AE event rate for the notched samples are
summarized in the bottom row of Fig. 5. Unlike the intact
samples, the notched samples have a stationary average en-
ergy [see Fig. 5(d)]. This means there is no divergence in the
cutoff energy and, due to this lack of divergence of charac-
teristic scales, the notched samples exhibit noncritical failure.
Nevertheless, ASR as described by Eq. (7) is present in the
notched samples with an exponent m ≈ 0.84 [see Fig. 5(e)].
This is solely a consequence of the divergence of the AE event
rate [see Fig. 5(f)], since the power-law exponents for the AE
energy rate, m, and AE event rate, n, are equivalent to within
uncertainty, n = 0.85 ≈ 0.84 = m. This implies that ASR is
more general than critical failure, as reported in Ref. [20].

C. Temporal evolution of polarity

The differences in the type of failure between notched and
intact samples are accompanied by a significantly different

(a) (b) (c)

(d) (e) (f)

FIG. 5. Temporal evolution of intact samples (top) and notched samples (bottom) of the average AE energy (left), AE energy rate (middle),
and AE event rate (right). The error bars for all panels show 90% bootstrap confidence intervals. In all panels, the data is fit with a power law
of the form log10(y) = α̃ log10(x), where the power-law exponent α̃ corresponds to β for the average AE energy (left), m for the AE energy
rate (middle) [see Eq. (7)], and n for the AE event rate (right) [see Eq. (8)]. The 90% confidence interval for lines of best fit are regions in
between the thick gray lines.
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(a)

(b)

FIG. 6. The temporal evolution of AE types characterized by
Eq. (3) as the sample approaches the failure point. Shear is the dark
blue (dark gray) markers, tensile is the cyan (light gray) markers, and
compact is the blue (gray) markers. (a) shows the intact samples’
AE-type evolution and (b) shows the notched samples’ AE-type
evolution.

temporal evolution of the ratio of the different AE polarity
types as shown in Fig. 6. The intact samples, in Fig. 6(a), show
an initially large proportion of tensile-type AE events. As the
failure point is approached, the tensile events are significantly
reduced and compaction events become dominant with a max-
imum value of around 60%. In contrast, the notched samples
in Fig, 6(b) show a large proportion of compaction events
throughout with very little variation during the final approach
to failure, reaching a proportion of between 60% and 80%
depending on the sample. Tensile and compaction, likewise,
shear AE events are generated by any frictional processes
occurring within granular materials. Even a primarily shear
motion between the surfaces of the crack causes adjacent
tensile and compressing motions in the vicinity. Comminution
of the weaker granular material is likely the primary source of
the compaction-type AE events we observe here. We would
like to point out that all samples were confined at the same
pressure of Pc = 75 MPa. This high confining pressure is ex-
pected to result in a dominance of compaction-type AE events.
We observe this, at least asymptotically, in both the intact

and notched samples, as well as a small fraction of shear AE
events. In the notched samples, the fraction of compaction AE
events is greater than in the intact samples. This distinction
suggests that the notch plays a major role in the internal mech-
anisms, such as the stress field interactions between the AE
events and the notch. Furthermore, similarities of dominating
compaction AE events and small AE shear events suggest that
frictional events due to pure shear stress play a limited, if any,
role in the internal mechanisms.

V. DISCUSSION AND CONCLUSIONS

In previous studies, the type of brittle failure of rock was
shown to be dependent on the degree of heterogeneity. If the
material’s microstructural disorder, including heterogeneous
fracture networks, aggregated sizes, and porosity, was too low,
failure outcome is sudden and catastrophic [17,18]. However,
with sufficient disorder in the material, an acceleration of
localized damage is observable and detectable before reaching
the failure point. In some laboratory fracture experiments this
is expressed in the form of the acceleration of the AE energy
rate dubbed ASR. The acceleration of localized damage has
frequently been considered as a critical phenomena in the
statistcal physics sense. This can be measured in terms of
the temporal evolution of characteristic scales, such as the
correlation length, following a power-law divergence [46]. In
light of this, ASR and critical failure are often marked as being
coexistent [47], but recent experimental work has found that
ASR is more general than critical failure [20], as confirmed
by our study. This implies that the acceleration of localized
damage can occur simply by an increase in the number of
size-limited fracture events until the overall cracked volume
density is sufficiently high resulting in ultimate violent brittle
failure of the material.

To establish the differences in the brittle failure characteris-
tics that occur due to large-scale heterogeneities, we analyzed
the temporal evolution of four AE-derived parameters from a
series of triaxial fracture experiments performed on Westerly
granite samples at constant loading rate and confining pres-
sure. We found that ASR without critical failure is present
for experiments with large structural inhomogeneities in the
form of notches. In all notched sample cases, the temporal
evolution of ε is stationary, yet the system still exhibits a
divergence of total AE energy and, hence, ASR during the
approach to failure as a consequence of the divergence of the
AE event rates. In contrast, the intact samples exhibit ASR in
addition to a decreasing ε consistent with a Griffiths phase.
The combination of these two features leads to a much more
rapid approach to failure as manifested in a larger value of the
ASR exponent m compared to the notched cases. At the same
time, the exponent n is statistically indistinguishable not only
between the two cases but also in comparison to the values
reported for noncritical ASR in nanoporous materials [20].
On the other hand, the values reported for critical ASR in
concrete are significantly smaller (n ≈ 2/3) [19]. This could
be a sign that n is material specific but further studies are
necessary to investigate this. In terms of predictive power,
the increase in average event energy or, more precisely, the
decreasing ε in the lead up to failure in intact samples provides
in principle a second independent way, in addition to ASR,
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(a)

(b)

FIG. 7. Bi test for the intact samples (a) and the notched samples
(b), see Appendix C for a description of the methodology. The con-
fidence intervals were determined via a Kolmogorov-Smirnov test
and indicate the presence of event-event triggering for the notched
samples but not for the intact ones.

to predict compressive failure. Interestingly, the value of ε

at which failure occurs in our intact samples is statistically
indistinguishable from the (stationary) value observed in the
notched cases, ε ≈ 1.7.

As shown previously [37,38], event-event triggering and
aftershocks are typically more prevalent in notched samples
during loading than in intact samples. We have verified this for
all experiments directly by using, for example, the Bi test (see
Appendix C for a description of the methodology) as shown
in Fig. 7. This suggests that there might be a relation between
the prevalence of event-event triggering or aftershocks during
loading and the type of failure. Indeed, recent theoretical work
has shown that transient hardening at the microscale arising
from (visco)elastic elements, a strengthening of the elements
in the sample over a function of time, can lead to both ASR
without critical failure and aftershocks during loading [36].
However, why transient hardening should occur in the notched
samples but not in the intact samples of the same material
(where aftershocks are largely absent and failure resembles
a Griffiths phase) remains unclear and could point towards an

effective hardening due to the microcrack events interacting
with the notch influencing the local stress intensity, and, on
the macroscopic scale, a heterogeneous stress field. Specifi-
cally, friction between crack surfaces [48], consistent with the
more prevalent compaction-type events for notched samples,
and stress corrosion [49] can both lead to effective transient
hardening. Our findings certainly show that the presence of
a notch significantly alters the evolution of AE kinematics
leading to dominant compaction events. Future experimental
work is necessary to test the hypothesis of transient hardening
directly.
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APPENDIX A: GRIFFITHS PHASE: RELATION
BETWEEN ε AND 〈E〉

For a Griffiths phase, the scaling exponent ε varies with
� as observed for the intact rock samples (Wg01, Wgr02) in
Fig. 6(a). Within the context of Eq. (4), this manifests itself as

P�(EAE)dEAE = A�E−ε(�)
AE f̃

(
EAE

Ec

)
dEAE. (A1)

Note that the normalization term, A�, arises from the scaling
function f ( EAE

Ec
) = A f̃ ( EAE

Ec
), with f̃ ( EAE

Ec
) = 1 for arguments

significantly smaller than 1 and a rapid decay to zero for
arguments significantly larger than 1. As mentioned above,
while Ec is infinite for a Griffiths phase, for any finite number
of AE events (the relevant situation here, where we use a
fixed number of events for each value of �) it is effectively
controlled by extreme value statistics, which follows a Fréchet
distribution in this specific case [50]. For ε > 1 and approxi-
mating f̃ as a step function, integration of Eq. (A1) together
with the normalization condition gives

A� = (ε(�) − 1)E ε(�)−1
0 . (A2)

Here, E0 = 10mc = 104.7 is the minimum energy associated
with the magnitude of completeness.

For the average energy, for ε �= 2 we then obtain

〈EAE〉� = ε(�) − 1

2 − ε(�)
E ε(�)−1

0

[
E2−ε(�)

c − E2−ε(�)
0

]
. (A3)

For ε < 2, this expression diverges for Ec → ∞ such that the
average is not well defined. Such values of ε arise in the case
of our intact rock sample when approaching failure. Yet, due
to the finite event window sizes we use for each value of �

to determine the behavior when approaching failure (for the
intact sample Wg01 it is 138 AE events and for Wgr02 it is
305 AE events), our estimate of 〈EAE〉 is finite and the largest
event size for each � is governed by extreme value statistics.
This is confirmed by Fig. 8, where we compare the observed
maximum EAE for each value of � with the expected range of
values for the given number of AE events based on Eq. (A1)
with Ec = ∞. To obtain the expected extreme value statistics
for each experimental �, we use the corresponding maximum
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FIG. 8. Expected extreme value distributions (red circles with
lines) and observed values for EAE for the intact samples Wg01
(blue diamonds) and Wgr02 (black upside-down triangles). For the
expected extreme value distributions of EAE, the modes are shown
(red circles) together with the 5% and 95% quantiles. Almost all
of the 33 observed values fall within the 90% confidence interval
indicating that the observed values are consistent with the expected
behavior.

likelihood estimate of ε to generate a power-law PDF with
a minimum energy E0 = 10log10(Eth ) = 104.7 and no upper cut-
off. From each respective PDF a sampling was performed with
a sample size equal to the experimental event window sizes
and the maximum value was identified. This was repeated
10000 to obtain the extreme value PDF.

APPENDIX B: AE ENERGY DISTRIBUTIONS

The probability distribution function (PDF) for the acoustic
emission (AE) energies has the form of a truncated power
law with an exponent ε as described by Eq. (4). To verify a
decreasing ε for the intact samples and a stationary ε for the
notched samples, we can plot rescaled PDFs. Such a rescaling
using the mean ε value across samples and distance to peak
differential stress are shown in Figs. 9(a) and 9(b) for the
intact and notched samples, respectively. For a constant ε, all
rescaled PDFs should be flat with the same constant value for
almost any distance to the peak differential stress. While this
is not the case for the intact samples, it is for the notched
samples as Figs. 9(a) and 9(b) show. With this reinforced
stationary ε for the notched samples, a Griffiths phase char-
acterized by a continuously changing power-law exponent,
can be ruled out. This is further confirmed by the comple-
mentary cumulative distribution functions (CCDFs) shown for
all samples marked by their distance to failure for the intact
and notched samples in Figs. 9(c) and 9(d), respectively. Each
CCDF illustrates power-law behavior with an exponent that
varies with distance to failure for the intact samples only. This
is summarized in Fig. 4.

We also would like to point out that Fig. 9(b) shows that
the distributions for the different subcatalogs of all notched

samples do not show an exponential rollover above some Ec

(as it is often the case in statistical mechanics) but rather
have a sharp cutoff at Ec, typically in the range between
108 and 109. Such a range of values arises due to statistical
fluctuations. It directly affects the distribution over all values
of � shown in Fig. 3(a) leading to an effective and more gentle
rollover.

APPENDIX C: BI TEST

If AE events are independent of one another then their
occurrence in time would follow a Poisson process. Under this
main assumption being our null hypothesis, we can define dif-
ferent measures to statistically determine whether deviations
from Poisson behavior and potentially event-event triggering
and aftershocks are present in our samples. A method looking
into testing the null hypothesis of a Poisson process is the Bi
test [51]. This test does not take into consideration a specified
temporal direction and thus gives a type of time symmetry. In
doing so, the regularity of the time intervals can be measured,
and a temporal correlation can also be measured: To begin, we
take the minimum of two subsequent time intervals, which we
denote as �τi

�τi = min{�ti−1,�ti}. (C1)

Here, �ti = ti − ti−1 is the interevent time between event i and
i − 1. Next, we define a time interval �τ+

i as the subsequent
time interval of �τi, but in the same temporal direction. So,
if �τi = �ti, then �τ+

i = �ti+1, and if �τi = �ti−1, then
�τ+

i = �ti−2. With the pairs {�τi,�τ+
i }, we build up a statis-

tic, H

Hi = �τi

�τi + 1
2�τ+

i

. (C2)

If the process is a Poisson process, then the time intervals,
�τi and �τ+

i are independent and the statistic H is uniformly
distributed in the interval [0,1]. A regular pattern in the time
intervals yields the average, 〈H〉 = 2/3. It can be shown that
the Poisson process gives a complementary cumulative dis-
tribution function (CCDF) of the form F (H ) = 1 − H . To
compare whether the process is a Poisson process, we can use
a Kolomogorov-Smirnov test, where we find the difference
between the exact behavior of the Poisson process, F (H ), and
the experimental data, FN (H ), normalized by the number of
points, N , in our data, with the above-mentioned null hypoth-
esis defined as

√
N[FN (H ) − F (H )]. (C3)

In order to get significance levels for our null hypothesis, the
confidence intervals for a Kolomogorov-Smirnov test can be
determined by the following equation [52]:

c(α) =
√

− log (α/2) ∗ 0.5/
√

N, (C4)

where α is the significance level. For a Poisson process,
the resultant curve should hover around 0. If there is reg-
ularity in the time intervals, then the resultant curve will
look like a rotated 90◦ clockwise S shape [53], since there
is an excess of H values around 1 − 〈H〉 = 1 − 2/3 = 1/3.
When there is an excess of H values around 0 or 1, it
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(a) (b)

(c) (d)

FIG. 9. Left column: Intact samples, right column: Notched samples. (a) and (b) show the rescaled probability distribution function (PDF)
for all samples. In (a) we attempted a rescaling using the mean ε, 〈ε̂〉 = 1.95, for the intact samples, and in (b) a rescaling using the mean ε,
〈ε̂〉 = 1.70. (c) and (d) show the complementary cumulative distribution function (CCDF). For all panels, each curve corresponds to an AE
event subcatalog, where the purple curve is the farthest from failure (� ∼ 1) and the yellow curve is the closest to failure (� ∼ 0).

indicates temporal clustering of the AE events, and the re-
sultant curve will look like a rotated 90◦ clockwise Z shape.
Therefore, if a resultant curve is this Z shape, then, sta-
tistically, it is indicative of triggering being present in the
sample.

In the case of the intact samples in this study, Fig. 7(a)
shows that for the sample Wg01 we cannot reject a null
hypothesis of a Poisson process at the 50% level. While
the sample Wgr02 is different we cannot reject the null
hypothesis of a Poisson process at the 99.95% level. How-
ever, a stark difference is evident for the notched samples

as shown in Fig. 7(b), in which we can reject the null
hypothesis of a Poisson process at a significance level much
greater than the 99.95% level. In addition, a well-defined
Z shape is observable for all notched samples indicative of
temporal clustering. As a result, triggering is indicated in the
notched samples, but not the intact samples. These results
are in good agreement with past observations [38] on triax-
ial compression of intact and notched rock samples, which
have shown evidence of clustering in notched rock samples
and a significant lack of clustering in initially intact rock
samples.
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