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We develop a perturbative technique for solving Markovian quantum dissipative dynamics, with the per-
turbation parameter being a small gap in the eigenspectrum. As an example, we apply the technique and
straightforwardly obtain analytically the dynamics of a three-level system with quasidegenerate excited states,
where quantum coherences persist for very long times, proportional to the inverse of the energy splitting
squared. We then show how to bypass this long-lived coherent dynamics and accelerate the relaxation to
thermal equilibration in a hyper-exponential manner, a Markovian quantum-assisted Mpemba-like effect. This
hyperacceleration of the equilibration process manifests if the initial state is carefully prepared, such that its
coherences precisely store the amount of population relaxing from the initial condition to the equilibrium state.
Our analytical method for solving quantum dissipative dynamics readily provides equilibration timescales, and
as such it reveals how coherent and incoherent effects interlace in the dynamics. It further advises on how to
accelerate relaxation processes, which is desirable when long-lived quantum coherences stagnate dynamics.
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I. INTRODUCTION

The survival, manifestation, and control of quantum effects
in noisy environments is a foundational problem in quantum
dynamics [1] with applications ranging from biology, e.g.,
in the processes of vision [2,3] and photosynthesis [4–9],
to quantum technologies including quantum computing [10],
sensing [11], metrology [12], and quantum thermodynamics
[13–26]. These references are only examples of an exten-
sive literature. From a theoretical standpoint, manifolds with
quasidegenerate levels, such as the V and the � models, are
archetypal in the ongoing efforts to understand the impact of
quantum coherences on dissipative dynamics. This owes to
their simple yet rich physics, and to the fact that such level
schemes show up as limiting configurations in natural sys-
tems, e.g., in atoms with hyperfine levels, such as Rubidium
[27–29], Cesium [30], and Sodium vapor [31]. Furthermore,
such level schemes also serve as building blocks to more
elaborate systems including those supporting photosynthetic
energy transfer [15] and multilevel quantum thermal machines
[12,32].

The behavior of quantum coherences in quasidegenerate
level schemes have been extensively studied in the frame-
work of quantum optics [12,27,33–43] and quantum biology
[44–50], with varying conclusions on whether coherences are
advantageous to performance, or otherwise. Notably, Tscher-
bul and Brumer [49] showed that in the V model the lifetime
of coherent dynamics scales inversely to the level degeneracy
squared, an effect elaborated on in Refs. [45,48,49,51–54].
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In recent studies, it was further demonstrated that quantum
coherences can be deleterious to steady state heat transport
[32,55]. In such applications, long-lived coherent dynamics
are not desirable. Accordingly, a method to bypass slow dy-
namics en route to equilibrium is desired for the optimal
design of quantum devices.

The Mpemba effect is a phenomenon by which, under
otherwise identical external conditions, a system starting far-
ther from equilibrium reaches it sooner than a system that
starts closer to equilibrium. Anomalous cooling of water is
a classical example, reported as early as the third century B.C.
by Aristotle [56], but analogous phenomena had also been ob-
served in spin glasses [57], granular gases [58–61], nanotube
resonators [62], clathrate hydrates [63], colloids [64], ultra-
cold atoms [65], polylactide (PLA) [66], and magnetic alloys
[67]. Nonetheless, even for anomalous relaxation of water,
the fundamental mechanism underlying the Mpemba effect is
still not fully resolved—proposals range from supercooling
[68], minute impurities [69,70], convection [71], evaporation
[72,73], and dissolved gases [74], to peculiar properties of
hydrogen bonds [66,75–77].

Recently, the Mpemba effect has been theoretically in-
vestigated using the framework of classical and quantum
dynamics [78–84], demonstrating that neither memory nor
non-Markovianity are necessary conditions for the effect. A
generic mechanism underlying anomalous relaxation (cooling
or heating) was proposed in Ref. [79], and later verified in a
set of carefully-controlled experiments [64,85,86]: Expressing
the dynamics with a linear combination of eigenmodes, the
Mpemba effect of anomalous cooling occurs if the initial,
high-temperature state of the system has a smaller amplitude
of its slowest-decaying mode than a state prepared at a lower
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temperature. An analogous explanation leads to the “inverse
Mpemba effect” of anomalous heating.

The focus of our study are open quantum systems, for
which the Mpemba effect offers a mean to modify and control
equilibration dynamics by cutting short long-lived coherent
dynamics [80]. The objectives of this paper are twofold. First,
we devise and exemplify a perturbative method for solv-
ing Markovian quantum dissipative dynamics when a small
energy splitting in the spectrum can be identified as the per-
turbative parameter. Particularly, the method perfectly fits to
solve the recently developed Unified quantum master equa-
tion (QME) [87,88], where the generator of the dynamics
is partitioned into two terms, a zeroth order term that aver-
ages over small energy splittings, and a term accounting for
those close-to-degeneracy contributions. Our second objective
is to show how to bypass slow dynamics in systems with
long-lived coherences via a Mpemba-like quantum effect. We
demonstrate this process analytically with our perturbative
method: By preparing initial conditions that are orthogonal to
the slowest decaying mode, we hyperaccelerate the relaxation
dynamics toward equilibrium and avoid long-lived, stagnat-
ing transients. We find that these Mpemba initial conditions
should have coherences that (i) lie within a certain range
and (ii) precisely compensate the difference between the final
(equilibrium) and initial-level populations. The mechanism
of the Mpemba effect in quantum systems is analogous to
the classical one [79,86]. However, in quasidegenerate levels
the Mpemba effect is considerably more dramatic than under
classical dynamics due to interlacing unitary and dissipative
effects.

This work is organized as follows. In Sec. II A we present
the Liouvillian eigenvalue estimation technique underpinning
the derivation of analytical results. We describe the V model
and its equations of motion, and solve the dynamics analyt-
ically in Sec. II B with some technical details delegated to
Appendix A. We apply the method to investigate the quantum
Mpemba effect in Sec. III. We provide a perspective of our
results in the Discussion Section IV, along with presenting
extensions to the � model (Appendix B) and the solution to
the corresponding classical Mpemba effect (Appendix C). We
conclude in Sec. V.

II. LIOUVILLIAN EIGENVALUES PERTURBATIVE
ESTIMATION (LEPE) TECHNIQUE

A. Presentation of Method

In this section, we introduce our method for approximating
the eigenvalues of the Liouvillian superoperator responsible
for the Markovian dynamics of an open quantum system. We
refer to the method as the Liouvillian eigenvalues perturba-
tive estimation (LEPE) technique. We consider a system’s
Hamiltonian with an energy spectrum containing some nonde-
generate levels, as well as nearly-degenerate levels with gaps
characterized by the energy parameter �. Here, � is small
compared to any other level splitting, as well as to temperature
and the inverse of relaxation time of the system [89], thus
serving as the perturbative parameter of the problem.

Several recent studies had developed perturbative treat-
ments for solving the dynamics and steady state of open

quantum systems, yet to the best of our knowledge, none had
targeted the questions and the type of perturbation examined
here: Ref. [90] focused on the spectral properties of the Liou-
villian, as we do, yet with the perturbative parameter being the
inverse dissipation rate constant. References [91,92] describe
in rigor a general perturbative approach, applied to build, in
a perturbative fashion, the steady state density matrix. In our
study, however, given the type of perturbation that we employ,
the steady state is in fact trivial (canonical equilibrium), while
the perturbative approach serves us to construct the relaxation
timescales, which are nontrivial, displaying long-lived coher-
ent dynamics.

In our model, the system’s Hamiltonian ĤS of rank N is
coupled to a heat bath maintained in a thermal-canonical state.
We assume that the equation of motion (EOM) for the reduced
density matrix of the system, σ (t ), follows a time-local quan-
tum master equation of the form

σ̇ (t ) = −i[ĤS, σ (t )] + D[σ (t )]. (1)

Here, D is the superoperator responsible for dissipative dy-
namics. Such a QME arises, e.g., under the Born-Markov
approximation when the system is weakly coupled to a fast
heat bath. Moreover, this form also appears in situations
beyond the weak coupling limit: The polaron-transformed
QME can be also made local in time [93,94], as well
as the reaction-coordinate QME [95]. Both methods ac-
count for system-bath couplings beyond the weak (Born)
approximation; the reaction-coordinate QME further includes
non-Markovian effects [96].

It is possible to recast Eq. (1) in the form of a matrix
equation by vectorizing the reduced density matrix, putting all
components of σ (t ) into a vector, �x(t ) = (σ11(t ), σ12(t ), . . .).
In principle, the vector has N2 elements and we can de-
scribe the method as such. However, for convenience of later
discussion we use the population normalization condition∑

i σii(t ) = 1, and thus reduce the number of elements by one.
Doing so we obtain an inhomogeneous EOM,

�̇x(t ) = L�x(t ) + �d. (2)

The Liouvillian matrix L contains contributions from both the
unitary and dissipative parts of the master equation. The vec-
tor �d emerges due to the normalization condition employed.
The main difference of Eq. (2) from the classical counterpart
is that in classical systems, �x would be the population (or
probability) vector, see Appendix C for the classical case. In
contrast, here �x accounts also for coherences. We now make
an eigenvalue expansion ansatz for each component of this
equation in the form

xi(t ) = x∞,i +
N2−1∑
n=1

cn,ie
λnt , (3)

where x∞,i is the long-time limit of xi(t ), obtained from the
steady state solution of Eq. (2),

�x∞ = −L−1 �d . (4)

Back to Eq. (3), we proceed to (i) approximate the eigenvalues
λn and (ii) relate the expansion coefficients of the ith element,
cn,i, to the initial conditions.
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1. Approximating the eigenvalues of L

λn is the nth eigenvalue of L, determined from the charac-
teristic equation

f (λ) ≡ det |λI − L| = 0, (5)

with I as the identity matrix. We note that depending on the
symmetry of the system’s Hamiltonian and how the system
couples to the bath, one can further reduce the complexity of
the problem by working with a vector �x of reduced dimen-
sionality, smaller than N2 − 1. For example, for a three-level
system there are in general eight elements in �x [we exclude
say σ11(t ) through the conservation of population condition].
However, in the V model presented in Sec. II B, based on
symmetries specific to the model, we manage to reduce the
dimensionality of �x to three.

The eigenvalues of L are generally difficult to obtain an-
alytically exactly. We now invoke our working assumption,
that the spectrum of ĤS possesses discrete levels, as well
as a manifold of nearly-degenerate levels. We then define
a simpler problem as follows. The matrix L is partitioned,
L = L(0) + L(1), with L(0) describing the dynamics of
the fully-degenerate system and L(1) comprising small
degeneracy-breaking perturbations, typically arising from the
unitary part of the dynamics. To zeroth order in the small
energy parameter �, the eigenvalues λ of L are given by the
eigenvalues λ(0) of L(0), which we find from the characteristic
equation

g(λ(0) ) ≡ det |λ(0)I − L(0)| = 0. (6)

It is typically easier to diagonalize L(0), compared to the
full L since it does not depend on small energy splittings.
This is particularly true if we adopt the Unified QME [87], a
completely positive and trace preserving (CPTP) map, which
is also consistent in a thermodynamical sense [88]. In that
case, L(0) includes only the dissipative (classical-like) com-
ponent of the Liouvillian, which was analyzed analytically
in different models, e.g., in the context of random walks
[97]. The contribution of L(1) may, however, be crucial to
the dynamics; we now assume that the eigenvalues of L, to
lowest order in the small energy splitting �, are given by
λn ≈ λ(0)

n + δn [98], where δn are small corrections to the
eigenvalues of L(0), |δn| � |λ(0)

n |. These corrections are ob-
tained by solving Eq. (5) under the ansatz

f
(
λ(0)

n + δn
) = 0, (7)

while keeping only leading order � terms in δ. Note that
because we reduced the dimensionality of the Liouvillian by
enforcing the normalization condition in Eq. (2), the real part
of all the eigenvalues λn is negative. We exemplify this process
in Sec. II B on the V model. There, instead of tackling a cubic
equation to resolve the eigenvalues of L, we end up solving a
simpler, quadratic equation for L(0). Assuming small correc-
tions, we find the roots of Eq. (7) with algebraic manipulations
and build the eigenvalues of L.

2. Approximating the expansion coefficients

Our next task is to express the coefficients cn,i in terms of
the initial conditions. Recall that n indicates the mode and i
identifies the element of the reduced density matrix. First, we

note that from the ansatz, Eq. (3), we get

dk

dtk
xi(t )

∣∣∣∣
t=0

=
N2−1∑
n=1

cn,iλ
k
n, k > 1, (8)

which we reformulate as a matrix-vector operation,
⎡
⎢⎢⎣

xi(0)
ẋi(0)
ẍi(0)

...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 ...

λ1 λ2 λ3 ...

λ2
1 λ2

2 λ2
3 ...

...
...

...
. . .

⎤
⎥⎥⎦

︸ ︷︷ ︸
�

⎡
⎢⎢⎣

c1,i

c2,i

c3,i
...

⎤
⎥⎥⎦

︸ ︷︷ ︸
�c(i)

+

⎡
⎢⎢⎣

x∞,i

0
0
...

⎤
⎥⎥⎦

︸ ︷︷ ︸
�x(i)
∞

. (9)

The derivatives of xi(t ) at time zero (left hand side of the
above expression) can also be expressed in terms of the initial
conditions �x(0). Specifically, we write down the sequence of
relations,

�x(0) = �x(0), (10)

�̇x(0) = L�x(0) + �d, (11)

�̈x(0) = L2�x(0) + L �d, (12)

˙̇�̇x (0) = L3�x(0) + L2 �d, (13)

and so on, allowing us to express the left hand side of
Eq. (9) as a matrix operation B(i) on �x(0), in addition to
a constant contribution. Explicitly, the first row of B(i) is
made of zero elements, except a single “1” in the ith place
[(Eq. (10)]. The second row of B(i) is constructed from the
ith row in the relation L�x(0) [Eq. (11)]; the third row is
constructed from the ith row of L2�x(0) [(Eq. (12)], and so
on. Similarly, we collect constant terms and build the vector
�v(i) = (0, �di, (L �d )i, (L2 �d )i, . . .)T , where �di refers to the ith
element in the vector �d . These relations are obtained by taking
the nth derivative of Eq. (2) at time zero and iteratively sub-
stituting occurrences of �̇x(t ) again with Eq. (2). Appendix A
demonstrates this process for the V model. Altogether we
establish a linear relationship between initial conditions on the
density matrix and the coefficients of the different modes,

B(i)�x(0) + �v(i) = ��c(i) + �x(i)
∞ . (14)

Note that the matrix B(i), as well as the vectors �x(i)
∞ and �v(i)

are, in general, distinct for each element of the reduced density
matrix, xi(t ). To be consistent with the lowest-order expansion
in �, one should solve Eq. (14) in the � → 0 limit, which
further simplifies the problem.

We summarize the relationship (14) as follows.
(i) This algebraic equation displays the relation between

the initial condition on the reduced density matrix �x(0) and
the expansion coefficients of the different eigenmodes of the
dynamics �c(i). In a conventional approach to dynamics, one
prepares the reduced density matrix, typically finding that all
expansion coefficients are nonzero. However, as we discuss in
Sec. II B, an acceleration of the dynamics can be realized by
engineering an initial condition in which the coefficient of the
slowest mode is null, or sufficiently small, thus resulting in
Mpemba-like anomalous relaxation dynamics.
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(ii) The dimension of the matrix � [and B(i)] is equal to the
number of eigenvalues that one needs to solve for; that is, the
dimension of L.

(iii) The LEPE method is general, but it is particularly
useful for solving the dynamics of systems with nearly-
degenerate levels.

In what follows, we exemplify the LEPE approach and
study the dynamics of population and coherences in the V
model. An extension of the method to treat systems with
multiple manifolds of quasidegenerate levels is straightfor-
ward. Additionally, consecutive applications of this protocol
can be performed to account for multiple small perturbative
parameters.

B. Example: The V model

1. Hamiltonian and equations of motion

Long-lived environmentally-induced quantum coherences
are best exemplified with the V model: The excited states
of the V model are quasidegenerate, and they are both ac-
cessible through bath-induced transitions from the ground
state. Analytical solutions for the dynamics of the V
model were presented by Brumer and coworkers, see, e.g.,
Refs. [48,49,51]. It was shown that the lifetime of coherent
dynamics scales inversely with the level degeneracy squared.
Here, we show that the LEPE method of Sec. II A accurately
and without difficulty solves this problem by going around the
need to solve a cubic equation.

The Hamiltonian of the V system is given by

ĤS = (ν − �)|2〉〈2| + ν|3〉〈3|. (15)

We adopt here natural units, h̄ ≡ 1, kB ≡ 1, and further work
in the limit of � � ν; thus, levels |2〉 and |3〉 are nearly de-
generate while the energy of level |1〉 is set to zero. Transitions
between ground and excited states of the system are enacted
by a heat bath at temperature T , given by the Hamiltonian,

ĤB =
∑

j

ω j b̂
†
j b̂ j . (16)

Here, b̂†
j (b̂ j) is the creation (annihilation) bosonic operator of

a mode j of frequency ω j . The system-bath interaction Hamil-
tonian is given in a bipartite form, with a system operator Ŝ
coupled to a bath operator B̂,

ĤSB = Ŝ ⊗ B̂; B̂ =
∑

j

g j (b̂
†
j + b̂ j ). (17)

g j describes the system-bath coupling energy between mode
j in the bath and the system. The bath excites the following
transitions:

Ŝ = |1〉〈2| + |1〉〈3| + H.c. (18)

Here, H.c. is a hermitian conjugate. Overall, the total Hamil-
tonian is given by Ĥ = ĤS + ĤB + ĤSB, and our objective is
to study the reduced dynamics of the V system.

We adopt the Unified QME approach, a simplified Redfield
treatment that is a CPTP map [87], and further satisfies the
fluctuation symmetry [88]. In this approach, quasidegenerate
levels are clustered into the same value when evaluating the

dissipative dynamics; the coherent part of the evolution ac-
counts for small energy splitting. For the V model, we receive
the following EOM [55],

σ̇32(t ) = −i�σ32(t ) − kσ32(t )

− 1
2 k[σ22(t ) + σ33(t )] + ke−βνσ11(t ), (19)

σ̇22(t ) = −kσ22(t ) + ke−βνσ11(t ) − kσ R
32(t ), (20)

σ̇33(t ) = −kσ33(t ) + ke−βνσ11(t ) − kσ R
32(t ), (21)

along with the population conservation condition,∑
i σii(t ) = 1. Here and to follow, σ R

32(t ) ≡ Reσ32(t ) and
σ I

32(t ) ≡ Imσ32(t ). Note that in the V model with the
coupling operator Eq. (18), the elements σ13(t ) and σ12(t )
are exactly decoupled from this dynamics at the level of the
Redfield QME; we did not invoke the secular approximation
here. Furthermore, in the Unified QME approach, which
builds on the Redfield formalism, rate constants between
either excited levels and the ground state are assumed equal,
k3→1 ≈ k2→1 ≡ k. This is because once � � ν, we cluster
levels in each quasidegenerate levels manifold to a single
value [87,88], as the lowest-order contribution of energy
differences become negligible.

For the bosonic-bath model with ĤSB as presented above,
the rate constants are given by a product of the spectral den-
sity function J (ω) ≡ ∑

j πg2
jδ(ω − ω j ) and the Bose Einstein

distribution function, nB(ν) = (eβν − 1)−1,

k(ω) = 2J (ω)[nB(ω) + 1]. (22)

However, motivated by the physical setup and under the Uni-
fied QME we evaluate transition rates from the excited states
to the ground state at the frequency ν, k = 2J (ν)[nB(ν) + 1].
Furthermore, the analytic solution presented next is general
for other bath models, possibly with different forms for k.

Before proceeding to solve the dynamics, we first notice
a symmetry that can be exploited to reduce the dimensional-
ity of the problem: We define P(t ) = 1

2 (σ22(t ) + σ33(t )) and
obtain the new set of equations,

Ṗ(t ) = −kσ R
32(t ) − φP(t ) + φ − k

2
, (23)

σ̇ R
32(t ) = −kσ R

32(t ) − φP(t ) + �σ I
32(t ) + φ − k

2
, (24)

σ̇ I
32(t ) = −kσ I

32(t ) − �σ R
32(t ). (25)

Here, for convenience, we define the rate constant

φ ≡ (1 + 2e−βν )k, (26)

and used the normalization condition to eliminate σ11(t ) from
the EOM.

2. Analytical solution for the dynamics with the LEPE method

We solve here the dynamics of the V model, Eqs. (23)–
(25), using the LEPE technique. We make the ansatz that
the solution for each component of the vector �x(t ) =
(P(t ), σ R

32(t ), σ I
32(t ))T takes the form of Eq. (3). There, λn are

the eigenvalues of the coefficient matrix, which is organized
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from Eqs. (23)–(25),

L =
⎡
⎣−φ −k 0

−φ −k 0
0 0 −k

⎤
⎦

︸ ︷︷ ︸
L(0)

+�

⎡
⎣0 0 0

0 0 1
0 −1 0

⎤
⎦

︸ ︷︷ ︸
L(1)

. (27)

The other vector in Eq. (2) is �d = ( φ−k
2 ,

φ−k
2 , 0)T .

We also note that in the long-time limit, identified here
by the ∞ symbol, σ R

∞,32 = σ I
∞,32 = 0 and P∞ = φ−k

2φ
; this is

exactly the Gibbs state at the bath’s temperature T . We thus
put together the steady state vector �x∞ = ( φ−k

2φ
, 0, 0)T . While

the system eventually equilibrates to the canonical state, its
transient coherent dynamics can be very longlived for nearly
degenerate systems since (as we now show), λ1 ∝ �2. We
shall readily uncover this behavior with the LEPE method.

The characteristic polynomial of L is given by

f (λ) = �2(φ + λ) + λ(k + λ)(k + φ + λ) = 0, (28)

with the solutions λn. However, this is a cubic equation. Even
though it is possible to solve this equation exactly with, e.g.,
Cardano’s Formula, in general this is a difficult task. In con-
trast, the eigenvalues of L(0), λ(0)

n are readily available due to
its block diagonal form, resulting in

λ
(0)
1 = 0, λ

(0)
2 = −φ − k, λ

(0)
3 = −k. (29)

In the limit � → 0, we now make the ansatz λn ≈ λ(0)
n + δn,

with δn as small corrections to λ(0)
n . This ansatz holds as long

as |δn| � |k|, |φ|. Starting with the first eigenvalue, n = 1, we
substitute λ

(0)
1 + δ1 into the characteristic polynomial Eq. (28)

and extract δn,

λ1 = δ1 = − φ�2

k(k + φ)
+ O(�3). (30)

This process is repeated to find δ2 and δ3,

δ2 = �2 φ − k

φk
+ O(�3), (31)

δ3 = −�2 φ − k

φ(k + φ)
+ O(�3). (32)

The latter two corrections are manifestly small compared to
λ

(0)
2 , λ

(0)
3 , and thus they are ignored. Overall, we obtained the

eigenvalues for L (assuming nearly-degenerate excited states)
as

λ1 ≈ − φ�2

k(k + φ)
, λ2 ≈ −φ − k, λ3 ≈ −k, (33)

where we only keep the leading terms in the expansion. Notice
that the matrix L is singular precisely when � = 0, resulting
in steady-states solutions that depend on initial conditions.
Here, we always operate in the regime where � is small, but
never identically zero. To provide physical insights, we ex-
press the eigenvalues in terms of the temperature substituting
φ by (1 + 2e−βν )k,

λ1 ≈ −�2(1 + 2e−βν )

2k(1 + e−βν )
, λ2 ≈ −2k(1 + e−βν ), λ3 ≈ −k.

(34)

Recall that the relaxation rate constant k can further depend
on temperature [see Eq. (22)], yet this dependence is weak.

Reflecting on our results: The eigenvalues of the Liouvil-
lian dictate the timescale for equilibration, and we resolved
them in Eq. (33) with minimal effort. The first eigenvalue
is significantly smaller than the other two, thus it dictates
the long-time decay to equilibrium, which stretches as the
inverse of �2. Significantly, this slow decay dynamics is ro-
bust against temperature with λ1 ≈ −�2

2k at zero temperature,

βν � 1; and λ1 ≈ − 3�2

4k at high temperatures, βν → 0.
We proceed and relate the initial conditions for the density

matrix elements to the coefficients cn,i using the process de-
scribed in Eqs. (9)–(14). Practically, one needs to prepare the
matrices and vectors in Eq. (14) for each element of the re-
duced density matrix. This process is detailed in Appendix A.

As an example, we start the dynamics from the ground
state, with no initial coherence, σ R

32(0) = 0, σ I
32(0) = 0,

P(t = 0) = 0. Solving Eq. (14) in the limit � → 0 we retrieve
the coefficients cn,i from matrix inversion. Putting together
these results into Eq. (3), we get

σ R
32(t ) = φ − k

2(φ + k)

[
e− φ�2

k(k+φ) t − e−(φ+k)t
]
. (35)

This solution is valid for an arbitrary temperature. As such, it
is distinct from that of Ref. [52]; the expressions agree once
we take the limit T → 0.

It is significant to note that we arrived at Eq. (35) with min-
imal effort by simple algebraic manipulations. Since we work
in the limit where � → 0, this result immediately reveals the
existence of two separate timescales in the problem: a short
timescale τ2 = 1/(k + φ) that dictates the time necessary to
build coherences in the system from the initial condition, and
a long timescale, over which the quasistationary coherences
survive, τ1 = k(k+φ)

φ�2 , before equilibration. A quasiequilib-
rium state exists at intermediate times, with quasistationary
coherences

σ R
23(τ2 � t � τ1) = φ − k

2(φ + k)
= e−βν

2(1 + e−βν )
. (36)

Notably, contrary to common intuition, coherences in this
case are maximized in the high temperature limit (β → 0),
reaching the value of 1/4. To explain this finding, recall that
Eq. (36) was derived assuming that the system initially occu-
pies only the ground state, with unoccupied excited states and
no coherences, see text above Eq. (35). Coherences between
excited levels are then generated due to bath-induced excita-
tions, and this process is enhanced when the temperature is
increased.

Note that a third timescale τ3 = λ−1
3 does not show up in

the (approximate) dynamical solution, which only reflects the
slowest timescale τ1 = λ−1

1 and the next-faster one, τ2 = λ−1
2 .

In other models, the dynamics may reflect other faster pro-
cesses as well.

We point out that it is appropriate to refer to this long-
lived solution during τ2 � t � τ1 as a quasiequilibrium state,
or a prethermalized state. This is because the coherences
[and similarly the population, Eq. (38)], depend only on the
temperature and the system’s energetics, and not on the relax-
ation rates k, similarly to a true equilibrium solution, which
does not reveal the timescale it took to reach it. However,
the quasiequilibrium solution (36) implicitly depends on the
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FIG. 1. Dynamics of the excited state population P(t ) ≡ 1
2 [σ22(t ) + σ33(t )] and real part of coherences, σ R

32(t ) in the V model using the
LEPE method with the analytical solutions, Eqs. (35)–(37) (symbols). We compare these results to the numerical solution of the Redfield
QME. The system is prepared in its ground state. Parameters are T = 2, γ = 0.005; � is varied between the panels. Parameters are given
relative to ν = 1.

initial condition. That is, different preparations lead to differ-
ent values for these quasistationary coherences.

Interestingly, the quasidegenerate V model thus realizes
ideas discussed in the prethermalization literature, see, e.g.,
[99–102], but in the setting of a weakly-coupled open quan-
tum system where quantum coherences build up and sustain.
While in our work the perturbation lifts levels’ degeneracy,
in prethermalization models it is typically a driving parameter
that is responsible for the intermediate dynamics.

The procedure (14) is repeated to solve for P(t ), see
Appendix A, and we find that the excited state population is

P(t ) = φ − k

2φ
− φ − k

2(φ + k)

[
k

φ
e− φ�2

k(k+φ) t + e−(φ+k)t

]
, (37)

starting the evolution from zero population in the excited
states. The quasiequilibrium population is given by

P(τ2 � t � τ1) = φ − k

2(φ + k)
= e−βν

2(1 + e−βν )
, (38)

which is smaller than the equilibrium population by a factor
φ/(φ + k). Interestingly, for the ground-state initial condi-
tion, the “prethermalized” population equals coherences, see
Eq. (36). As for the imaginary part of the reduced density
matrix, the three coefficients cn,3 are order of � and therefore
we neglect them, and henceforth focus on the dynamics of the
population and the real part of coherences only.

3. Simulations

Until this point, the properties of the thermal bath were
not used in calculations: The solution to the dynamics is the
same whether the bath is fermionic or bosonic, harmonic or
anharmonic [see Eq. (16)], and what particularly the operator
B̂ in Eq. (17) is.

To perform simulations, we need to specify the rate
in Eq. (22). We assume that the bath is harmonic and
that B̂ is proportional to the displacements of the bath’s
modes. The spectral density of the bath is assumed ohmic
J (ω) = γωe−ω/ωc with a very high frequency cutoff ωc. The
dimensionless prefactor γ controls the strength of the system-
bath coupling, and it should be made small, γ � 1, for

ensuring the dynamics is consistent with the underlying weak-
coupling approximation. Note that in the weak coupling limit,
the functional form of the spectral density function carries
little impact, since rate constants are calculated at the specific
transition frequency. Furthermore, to be able to exercise the
LEPE approach we assume that J (ω) changes slowly enough
with frequency around ν such that J (ν) 
 J (ν − �). This
assumption holds for generic spectral functions, as long as
they do not support sharp peaks (with peak width order of
or smaller than �) around the gap frequency ν.

We exemplify the dynamics of the V model in Fig. 1
by presenting the real part of the coherences and the levels’
population. We find that Eqs. (35) and (37) provide excellent
analytical approximations to the dynamics, obtained numeri-
cally from the Redfield QME. The agreement holds from short
time to equilibrium—so long as we work in the appropriate
limit of � � k and � � ν, underlying the Unified QME, and
the LEPE method.

First, in Fig. 1(a) we display the coherences and pop-
ulations for �/ν = 10−4, which is well within the range
of validity of the LEPE method. Indeed, we obtain a per-
fect agreement between the numerical Redfield solution and
analytical expressions provided by LEPE. Both coherences
and the population show long transient dynamics correspond-
ing to the smallest eigenvalue λ1. In Fig. 1(b), we test the
case �/ν = 10−2. Here, the numerical Redfield dynamics is
mostly in agreement with our analytic expressions, with minor
deviations showing up in the transient regime. As expected,
coherences exist for a shorter duration, in accordance with
Eq. (33). Finally, in Fig. 1(c), � is made even bigger, resulting
in both quantitative and qualitative deviations of the analytical
expressions from the numerical solutions. This is due to both
the Unified QME becoming less accurate, as well as the LEPE
method breaking down.

III. MPEMBA EFFECT IN QUANTUM
DISSIPATIVE DYNAMICS

A. Principles of anomalous dynamics

The ansatz for the dynamics of an open Markovian quan-
tum system with quasidegenerate levels, Eq. (3), along with
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the LEPE approach to find the corresponding eigenvalues
and expansion coefficients, provide a natural platform to dis-
cuss relaxation toward equilibrium. In the weak system-bath
coupling regime an open quantum system thermalizes to the
Gibbs state in the long time limit. In Eq. (3), the x∞,i terms
are the values predicted by the Gibbs state, while the other
terms in the expansion may be referred to as the decay chan-
nels, responsible for deviations from the equilibrium state
in the transient regime. While each mode decays at its own
timescale, τn = 1

|λn| , the timescale to thermalize is determined
by the mode with the smallest eigenvalue in magnitude. We
order our eigenvalues in increasing order, |λn| < |λn+1|; the
slowest mode is denoted by τ1 = 1

|λ1| .
The expansion in Eq. (3) for each element xi is given

in terms of the set of coefficients cn,i, related to the initial
conditions as prescribed by Eq. (14). In the standard approach
to dynamics, which we exercised in Sec. II B, we assumed
an initial condition for the reduced density matrix, then re-
solved the cn,i prefactors. However, we may also approach
the problem differently, enforce c1,i = 0, ∀i and translate this
constraint to initial conditions on the elements of the reduced
density matrix. By excluding all the c1,i from the dynamics,
we accelerate the equilibration process since its timescale is
now dictated by τ2 = 1

|λ2| < τ1. Given this control over the
equilibration process, it becomes possible to observe a quan-
tum analog of the Mpemba effect: We can initialize the system
in separate initial states, but the one starting further away from
equilibrium can reach the equilibrium Gibbs state before the
other that begins closer, due to the former missing the small
(thus longlived) λ1 decaying mode.

B. Mathematical analysis

We return to the V model, Sec. II B 2, and exemplify
the Markovian Mpemba effect as the system relaxes toward
equilibrium. Using Eq. (A2), rather than dictating initial con-
ditions for the elements of the reduced density matrix, we
suppress the slow dynamics of the real part of the coherences
by setting c1,2 = 0. Recall that the first index (n) identifies
the eigenvalue; the second index i selects the element of the
reduced density matrix, which are organized here as �x(t ) =
(P(t ), σ R

32(t ), σ I
32(t ))T . This condition is equivalent to prepar-

ing an initial state, and thus a subsequent evolution, which is
orthogonal to the mode n = 1. We refer to such solutions as
“Mpemba states.”

Under this condition, we solve the linear problem (A2) and
get

σ R
32(0) = c2,2 + c3,2,

P(0) = φ − k

2φ
+ c2,2 + c3,2k

k − φ
− �2(c2,2 + c3,2)

(k − φ)φ︸ ︷︷ ︸
→0

,

σ I
32(0) = c3,2kφ

�(k − φ)
− �

c2,2 + c3,2

k − φ︸ ︷︷ ︸
→0

. (39)

To be consistent with the approximation � → 0, the regular-
ity of the term c3,2kφ

�(k−φ) enforces c3,2 to be on the order of O(�)
or less. For simplicity, henceforth we set c3,2 to zero.

We observe an interesting relationship between the initial
coherences and populations,

σ R
32(0) = P(0) − φ − k

2φ︸ ︷︷ ︸
P∞

−�σ I
32(0)

k︸ ︷︷ ︸
→0

. (40)

According to this expression, the initial coherences in
Mpemba states exactly match the difference between the ini-
tial and final populations. Pictorially, coherences thus serve as
a “storage” space for the equilibrium state, and from there it
can quickly take over the initial conditions.

Repeating the calculation of Eq. (A2) for the populations
of the V model, we find that c3,1 ≈ 0 and that c2,1 = c2,2,
referred to from now on as c2. Altogether, we construct the
Mpemba (M) initial state as

σM (0) =

⎡
⎢⎣

1 − 2
(

φ−k
2φ

+ c2
)

0 0

0 φ−k
2φ

+ c2 c2

0 c2
φ−k
2φ

+ c2

⎤
⎥⎦.

(41)

This reduced density matrix is written in the original |1〉,
|2〉, |3〉 basis of the V model. The single free coefficient
c2 must be chosen such that the reduced density matrix is
physical, obeying the normalization, positivity, and purity
conditions. These additional constraints are distilled into the
bounds

3k − φ − √
(5φ − 3k)(φ + k)

8φ
� c2 � k

2φ
, (42)

corresponding to taking −0.2431 � c2 � 0.226 with the pa-
rameters we use in this work (T = 2, γ = 0.005, ν = 1).
Evolving from this initial condition, the dynamics satisfies

σ R
M,32(t ) = c2e−(φ+k)t , σ I

M,32(t ) = 0,

PM (t ) = c2e−(φ+k)t + φ − k

2φ
. (43)

The M subscript highlights that these expressions evolve from
a Mpemba initial state, missing the slowest eigenmode.

C. Simulations

Figure 2 contrasts the dynamics of a V system initially
prepared in a Mpemba state, σM (0), to the dynamics evolving
from the ground state, σG(0) = |1〉〈1|. We observe a dramatic
difference in relaxation times under these two initial states, ex-
tending five orders of magnitude: The equilibration timescale
is roughly ντ2 ≈ 20 for the Mpemba state in Fig. 2(a) and
ντ1 ≈ 3 × 106 for the ground state preparation in Fig. 2(b).
A Mpemba state allows an acceleration of the relaxation dy-
namics, here by many order of magnitudes roughly dictated
by the ratio (k/�)2. The Mpemba effect is extreme in the V
model since the slow dynamics is especially long lived due to
the presence of quasidegenerate levels. To quantify the equili-
bration dynamics we employ the following trace distance as a
distance-to-equilibrium measure,

D(σa, σb) = 1
2 Tr

[√
(σa − σb)2

]
. (44)
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FIG. 2. Accelerating equilibration dynamics of the V model.
(a) Quantum dynamics from a Mpemba initial state σM (0), Eq. (41),
with c2 = −0.24. (b) Quantum dynamics from the ground state
σG(0) = |1〉〈1|. Analytical results were obtained directly from
Eqs. (35)–(37) and Eq. (43), which rely on the LEPE method. Nu-
merical simulations were performed using the Born-Markov Redfield
quantum master equation, with no approximations on the decay-
ing eigenvalues. Parameters are T = 2, γ = 0.005, and � = 10−4,
ν = 1.

Here, σa and σb are reduced density matrices. Crucially, this
choice constitutes a physical distance measure: It is a mono-
tonically decreasing function under a CPTP map as the system
relaxes toward equilibrium [84]. Furthermore, the trace dis-
tance is also a metric on the space of density matrices, making
it an appropriate choice to quantify the degree of closeness
between states toward thermal equilibrium.

In Fig. 3 we present the time evolution of the trace distance
from certain initial conditions (we test four) to the equilibrium
state of the V model. The four initial states are: (i) A Mpemba
initial condition, σM (0), which precludes the slowest eigen-
mode; and (ii) σN (0) = σM (0) + (0.001c2|2〉〈3| + H.c.), a
state close to the Mpemba initial state, possessing only a small
deviation in the coherences. We further test two diagonal
initial conditions: (iii) A ground state preparation, σG(0); and
(iv) the maximally mixed state, σE (0) = 1

3 (|1〉〈1| + |2〉〈2| +
|3〉〈3|).

Comparing the relaxation dynamics to the Gibbs state from
the Mpemba state σM (0), to that from the ground state σG(0)
or the maximally-mixed state σE (0), we find that while the
Mpemba state starts further away from thermal equilibrium
than the other two, it reaches it significantly faster. We also
compare the dynamics starting from σM (0) to the dynamics

FIG. 3. Trace distance computed with Eq. (44), between the
equilibrium Gibbs state of the V model, defined by σGibbs =

e−βĤS

Tr[e−βĤS ]
and σA(t ), evolving from a Mpemba initial state σM (0)

with c2 = −0.24 (full); a perturbed Mpemba state, σN (0) = σM (0) +
(0.001c2|2〉〈3| + H.c.) (dotted, yellow); the ground state of the V
system σG(0) = |1〉〈1| (dashed dotted gray); and the maximally-
mixed state σE (0) = 1

3 (|1〉〈1| + |2〉〈2| + |3〉〈3|) (dashed, black).
Panel (b) presents the same results, but on a log-log scale. Parameters
are the same as in Fig. 2.

from σN (0). At short-intermediate times, σN (0) outruns σG(0)
and σE (0). However, it does not decay to equilibrium as
quickly as the Mpemba state, but lingers due to the slowest
decaying mode being (slightly) populated. Nevertheless, we
conclude that one does not need to prepare the Mpemba state
very precisely to attain the hyperacceleration of the relaxation
dynamics to a state very close to equilibrium. As long as the
population of the slow mode is significantly lower than that of
the other modes, a Mpemba effect can be practically realized.

IV. DISCUSSION

Analytical solutions for the dynamics of the V model were
presented in Refs. [48,49,51], and recently for the � model
in Ref. [53]. However, a few important remarks are in order:
(i) Our derivation relies on a simpler, newly-developed Li-
ouvillian eigenvalue estimation technique that can be readily
applied to other models possessing nearly-degenerate states
such as the � model, as we discuss in Appendix B. (ii)
The results presented in the above references are valid at
low temperatures. Our expressions, on the other hand, hold
for a broader temperature range, applicable to, e.g., bio-
logical processes. While, in principle, our expressions are
thermodynamically consistent even at zero temperature, the
Redfield equation is no longer accurate at low temperature
with the breakdown of Markovianity. (iii) Our approach is also
amenable to nonequilibrium conditions (Appendix B).

The generic mechanism underlying the Mpemba effect is
the careful preparation of an initial state which is orthogonal
to the slowest decaying mode. Thus, such states achieve a
factor of |λ2|

|λ1| acceleration to the decay rate, with |λ2| > |λ1|.
This ratio hovers around unity for classical systems where
coherences do not play a role (see Appendix C). However, the
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acceleration of the dynamics arising in a model with quantum
coherences, as presented in this work, is distinct. Since only
the slowest eigenvalue λ1 depends on �, while all other modes
are independent of it, the acceleration factor depends on this
parameter, which can be very small. Thus, once the slow mode
is turned off, the equilibration dynamics is accelerated by
many orders of magnitude. Concretely, while “conventional”
states in the V model decay to equilibrium after a character-
istic timescale τ1 = k(k+φ)

φ�2 , Mpemba states decay faster, after

τ2 = 1
(k+φ) , irrespective of �. The acceleration factor is thus

k(k+φ)2

φ�2 , or roughly (k/�)2.
To contrast the quantum Markovian Mpemba effect, which

is enacted by the control of coherences, to the secular-
incoherent limit, we study the latter case in Appendix C. We
show there that in the classical regime we lack the strong
� tunability underpinning the hyper-acceleration toward
equilibrium.

V. CONCLUSION

We presented a Liouvillian eigenvalue perturbative esti-
mation technique, an analytic approach to feasibly solve the
dissipative dynamics of open Markovian quantum systems
with quasidegenerate levels. This LEPE approach relies on
decomposing the dissipator into the solvable (degenerate) part
and the perturbative part lifting degeneracies. Using the V
model as a case study, we demonstrated that the LEPE method
was accurate when the excited states were close to degeneracy.
Specifically, the LEPE method allows a straightforward iden-
tification of relaxation timescales in the equilibration process.
We further explained how to construct Mpemba-like states in
the V model. These states bypass the slow bath-induced coher-
ent dynamics. We found that in the V model, Mpemba states
should be prepared with quantum coherences between excited
states exactly matching the difference between final and initial
populations of the excited states. With such a preparation,
the system reached equilibrium in a hyperaccelerated time.
Namely, the system bypassed long-lived coherent dynamics
with lifetime O( k

�2 ), and instead relaxed after time that was
independent of �. There are many Mpemba states; in the V
model they lie in the region defined by Eq. (42). Further-
more, even suboptimal Mpemba states with residual weights
in the slow mode display accelerated decay to equilibrium,
compared to standard preparation (Fig. 3).

The LEPE method can be applied to more general Marko-
vian dynamics than examined here, such as when the system
is coupled to multiple heat baths (Appendix B) or when
many quasidegenerate levels exist in the spectrum. While
demonstrated here on the Unified quantum master equation,
which is derived from the Redfield equation but is a CPTP
map and thermodynamically consistent, the LEPE method can
be utilized in other cases, such as when the EOMs include
higher-order system-bath coupling effects as in the polaron-
transformed QME.

Thermal baths can lead to long-lived transient coherences
in a quantum system, with delayed equilibration, which could
impact, e.g., quantum thermometry [103]. One can, however,
bypass this slow dynamics by initializing the system in a way
that cuts off the slow modes. Future work will be focused on

using the LEPE method to uncover the equilibration timescale
of systems experiencing strong couplings to their environment
[13,95].
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APPENDIX A: THE LEPE METHOD ON THE V MODEL:
RESOLVING THE COEFFICIENTS OF THE EIGENMODES

We demonstrate on the V model how to relate initial con-
ditions on the reduced density matrix to the mode coefficient
matrix. We begin with σ R

32(t ), which is the second element in
�x(t ). Explicitly, it evolves as

x2(t ) = x∞,2 + c1,2eλ1t + c2,2eλ2t + c3,2eλ3t . (A1)

Our goal is to express cn,2 in terms of the initial conditions.
The three decay rates λn were already obtained with the LEPE
method, and they are given by Eq. (33).

We customize Eq. (14) as

B(2)�x(0) + �v(2) = ��c(2) + �x(2)
∞ . (A2)

The right hand side is defined based on the relation
�sR

32(0) = ��c(2)(0) + �x(2)
∞ , with

�sR
32(0) =

⎡
⎢⎢⎣

σ R
32(0)

σ̇ R
32(0)

σ̈ R
32(0)

⎤
⎥⎥⎦, � =

⎡
⎢⎢⎢⎣

1 1 1

λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

⎤
⎥⎥⎥⎦,

�c(2) =

⎡
⎢⎢⎣

c1,2

c2,2

c3,2

⎤
⎥⎥⎦, �x(2)

∞ =

⎡
⎢⎢⎣

0

0

0

⎤
⎥⎥⎦.

(A3)

The left hand side of Eq. (A2) is constructed from the matrices
and vectors

B(2) =

⎡
⎢⎢⎢⎣

0 1 0

−φ −k �

φ(k + φ) k(k + φ) − �2 −2�k

⎤
⎥⎥⎥⎦,

�x(0) =

⎡
⎢⎢⎢⎣

P(0)

σ R
32(0)

σ I
32(0)

⎤
⎥⎥⎥⎦, �v(2) =

⎡
⎢⎢⎢⎢⎣

0

φ−k
2

k2−φ2

2

⎤
⎥⎥⎥⎥⎦. (A4)

We decide to start the dynamics from the the ground state,
with no initial coherence, σ R

32(0) = 0, σ I
32(0) = 0, P(0) = 0.

Solving Eq. (A2) in the limit of � → 0, we get the
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coefficients cn,2 from matrix inversion:

c1,2 = φ − k

2(φ + k)
, c2,2 = − φ − k

2(φ + k)
,

c3,2 = − �2(φ − k)

2k2(φ + k)
≈ 0.

(A5)

The procedure is repeated to solve for P(t ). In this case,

B(1) =
⎡
⎣ 1 0 0

−φ −k 0
φ(k + φ) k(k + φ) −�k

⎤
⎦,

�v(1) =

⎡
⎢⎣

0
φ−k

2
k2−φ2

2

⎤
⎥⎦, �x(1)

∞ =
⎡
⎣

φ−k
2φ

0
0

⎤
⎦.

(A6)

Based on the specific initial condition of zero initial excited
population and coherences, we find the coefficients

c1,1 = − k(φ − k)

2φ(φ + k)
, c2,1 = − φ − k

2(φ + k)
,

c3,1 = �2(φ − k)

2kφ(φ + k)
≈ 0.

(A7)

As for σ I
32(t ), the analysis results in cn,3 = O(�) for

n = 1, 2, 3, thus the three coefficients are neglected.

APPENDIX B: ANALOGOUS MODELS AND EXTENSIONS

1. The � model

The � model includes one excited level (|3〉) and two
levels of lower energy, |1〉 and |2〉. The Hamiltonian of the
model is

Ĥ�
S = �|2〉〈2| + ν|3〉〈3|, (B1)

and we assume that levels |1〉 and |2〉 are nearly degenerate
with the energy of level |1〉 set to zero and � � ν. The
heat bath allows excitations from the two lowest levels to the
excited state,

Ŝ� = |1〉〈3| + |2〉〈3| + H.c. (B2)

Similarly to the V model, we derive the Unified QME. For the
present model it is given by

σ̇12(t ) = −i�σ12(t ) − ke−βνσ12(t )

− 1
2 ke−βν[σ11(t ) + σ22(t )] + kσ33(t ),

σ̇11(t ) = −ke−βνσ11(t ) + kσ33(t ) − ke−βνσ R
12(t ),

σ̇22(t ) = −ke−βνσ22(t ) + kσ33(t ) − ke−βνσ R
12(t ). (B3)

By replacing k by ke−βν here, and identifying
P(t ) ≡ 1

2 (σ11(t ) + σ22(t )) and φ ≡ (2 + e−βν )k, we recover
Eqs. (23)–(25), with σ23 ↔ σ12. As such, all the results
derived in the paper generalize to the � model.

2. Nonequilibrium models

Consider the equations of motion of the V model, but
coupled to N reservoirs held at different temperatures. Each
bath enacts the same transitions from the ground state |1〉 to

the excited levels,

Ŝ1 = Ŝ2 = ... = ŜN = |1〉〈2| + |1〉〈3| + H.c. (B4)

Otherwise, the same Hamiltonian is used as in the main text.
The equations of motion for the reduced density matrix, re-
sulting directly from the additivity of the Redfield master
equation, are given by the generalization of Eqs. (19)–(21):

σ̇32(t ) = −i�σ32(t ) −
N∑
j

k jσ32(t ) +
N∑
j

k je
−β jνσ11(t )

− 1

2

N∑
j

k j[σ22(t ) + σ33(t )], (B5)

σ̇22(t ) = −
N∑
j

k jσ22(t ) +
N∑
j

k je
−β jνσ11(t ) −

N∑
j

k jσ
R
32(t ),

(B6)

σ̇33(t ) = −
N∑
j

k jσ33(t ) +
N∑
j

k je
−β jνσ11(t ) −

N∑
j

k jσ
R
32(t ).

(B7)

By defining φ ≡ ∑
j φ j and k ≡ ∑

j k j , we recover Eqs. (19)–
(21), which then transform as in the main text to the form of
Eqs. (23)–(25). As such, our results in the paper generalize to
the nonequilibrium multibath case.

3. Asymmetric models

The LEPE approach provides a natural platform to study
the transient dynamics of the modified V model, recently
investigated in Ref. [55]. In this setup, the V system is cou-
pled to two baths held at different temperatures, but in an
asymmetric manner enacted by an additional α parameter, see
Ref. [55] for the explicit definition and full Hamiltonian. The
α parameter controls the interference behavior of the model
affecting the dynamics and the steady state results.

In Ref. [55], our focus has been on the steady state heat
transport trends in this α interference-controlled V model. To
study the dynamics of the model, the procedure of Sec. II B
may be undertaken. Doing so, we conclude that the lifetime of
coherent dynamics (and subsequently the extent of Mpemba
acceleration) is long lived only near α = 1. Details will be
presented in a future publication.

APPENDIX C: INCOHERENT MPEMBA
DECAY DYNAMICS

The role of quantum coherences in the V model dynam-
ics, as examined in the main text, is contrasted here to its
classical behavior. This is done by considering the quantum
master equation of the V model, Eqs. (19)–(21), but in its
fully secular limit where we ignore terms coupling coher-
ences and populations. Furthermore, we do not enforce here
the excited levels to be nearly degenerate, thus we maintain
the distinct rates k1→2 and k1→3. Here, k1→3 is the excitation
rate constant from level one to three; k1→2 is the analogous
rate of transitioning from level one to two. The incoherent
master equation for this three-level model Eqs. (15)–(18) is
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FIG. 4. Acceleration toward thermalization in the incoherent
limit of the V model. (a1) The dynamics of the trace distance Eq. (44)
for a state initialized in a Mpemba state σM (0) and the maximally
mixed state σE (0). (a2) Same quantities on a logarithmic scale, high-
lighting the deviations. (b) and (c) The dynamics of the population
given by Eq. (C3) for the Mpemba state and the maximally mixed
state, respectively. The long time values are presented by dotted
lines. Parameters are ν = 1, � = 0.25, T = 2, and γ = 0.005. In
panel (b), c2,2 = −0.2703 and c2,3 = −0.2644 while c1,2 = c1,3 = 0.
In panel (c), we begin with a maximally-mixed state.

written as

ṗ1(t ) = k3→1 p3(t ) + k2→1 p2(t ) − (k1→3 + k1→2)p1(t ),

ṗ2(t ) = −k2→1 p2(t ) + k1→2 p1(t ),

ṗ3(t ) = −k3→1 p3(t ) + k1→3 p1(t ). (C1)

Here, p j (t ) denotes the population of level j. Next, we
make use of the normalization condition of the populations
1 = ∑

j p j (t ) and the detailed balance relation between the
rate constants, k1→3 = k3→1e−νβ and k1→2 = k2→1e−(ν−�)β ,
to transform the equations to a 2 × 2 system:

ṗ2(t ) = −k2→1(1 + e−(ν−�)β )p2(t ) − k2→1e−(ν−�)β p3(t )

+ k2→1e−(ν−�)β,

ṗ3(t ) = −k3→1(1 + e−νβ )p3(t ) − k3→1e−νβ p2(t )

+ k3→1e−νβ . (C2)

We propose a solution of the form

p j (t ) = p∞, j + c1, je
λ1t + c2, je

λ2t , (C3)

where p∞, j is the long-time population of the jth level, obey-
ing classical Boltzmann statistics,

p∞,2 = e−(ν−�)β

1 + e−(ν−�)β + e−νβ
,

p∞,3 = e−νβ

1 + e−(ν−�)β + e−νβ
. (C4)

The Liouvillian is written as,

L =
[−k2→1(1 + e−(ν−�)β ) −k2→1e−(ν−�)β

−k3→1e−νβ −k3→1(1 + e−νβ )

]
. (C5)

Here we are interested in the exact dynamics of the V model
in the incoherent limit, thus we do not invoke any assumption
on �. The eigenvalues λ1 and λ2 of L are given exactly by

2λ1,2 = −[k2→1(1 + e−(ν−�)β ) + k3→1(1 + e−νβ )]

±
√

[k2→1(1 + e−(ν−�)β ) + k3→1(1 + e−νβ )]2 − 4k2→1k3→1[1 + e−(ν−�)β + e−νβ ], (C6)

and we order the eigenvalues such that |λ2| > |λ1|. In the
limit of high temperature, and assuming the decay rates
are similar, we find that λ1 = −k and λ2 = −3k. In
the opposite low temperature limit, λ1 = −k2→1 and
λ2 = −k3→1. While the two eigenvalues are distinct, their
ratio λ2/λ1 is of order one. This is the most notable
difference between the quantum case Eq. (33) and the
incoherent limit: In the classical limit the eigenvalues
are of a similar magnitude while in the quasidegenerate
quantum case the parameter � dictates the slow decay,
and thus it holds an exceptional control over transient
timescales.

We turn now to the four coefficients c1,2, c2,2, c1,3, c2,3

and relate them to the initial level populations.
First,

p j (0) = p∞, j + c1, j + c2, j,

ṗ j (0) = λ1c1, j + λ2c2, j . (C7)

We focus as an example on the j = 2 case. Similarly to the
quantum case, we use the relation (14)

B(2)�x0 + �v(2) = ��c(2) + �x(2)
∞ , (C8)

with the matrices and vectors

B(2) =
[

1 0
−k2→1(1 + e−(ν−�)β ) −k2→1e−(ν−�)β

]
,

�x0 =
[

p2(0)
p3(0)

]
, �v(2) =

[
0

k2→1e−(ν−�)β

]
,

� =
[

1 1
λ1 λ2

]
, �c(2) =

[
c1,2

c2,2

]
, �x(2)

∞ =
[

p∞,2

0

]
. (C9)

With algebraic manipulations we can now express cn,2 in
terms of the initial conditions, or vice versa. To analyze the
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Mpemba effect, we do the latter, obtaining

p2(0) = c1,2 + c2,2 + p∞,2,

p3(0) = −e(ν−�)β

k2→1
{[λ1 + k2→1(1 + e−(ν−�)β )]c1,2 + [λ2 + k2→1(1 + e−(ν−�)β )]c2,2

− k2→1e−(ν−�)β + k2→1(1 + e−(ν−�)β )p∞,2}. (C10)

These initial conditions are not all physical, since any initial condition must satisfy 0 � pj (0) � 1, as well as
p2(0) + p3(0) � 1. Going forward, we identify the “Mpemba” state as those with c1,2 = 0. Using these sets of constraints
we find the following conditions that must be satisfied simultaneously by c2,2 in order for the states to be physical

−p∞,2 � c2,2 � 1 − p∞,2, (C11)

−k2→1[1 + e−(ν−�)β ]p∞,2

λ2 + k2→1[1 + e−(ν−�)β ]
� c2,2 � k2→1[e−(ν−�)β − (1 + e−(ν−�)β )p∞,2]

λ2 + k2→1[1 + e−(ν−�)β ]
, (C12)

c2,2 � − k2→1 p∞,2

λ2 + k2→1
. (C13)

The physical values of c2,2 are given by the intersection of the
above inequalities. We repeat this process of building Eq. (C8)
and solving it for j = 3. We again enforce the slowest mode
to vanish by setting c1,3, and use the physical constraints on
p2(0) and p3(0) to identify valid values for c2,3.

Overall, the solution for the accelerated dynamics, missing
the λ1 eigenvalue, is given by

p2,M (t ) = p∞,2 + c2,2eλ2t , (C14)

p3,M (t ) = p∞,3 + c2,3eλ2t . (C15)

In Fig. 4, we contrast this Mpemba-type dynamics, starting
from σM (0), to the case where the system starts at infinite
temperature with equal population at the three levels, denoted

by σE (0). To quantify the distance from equilibrium, we dis-
play in Fig. 4(a) the trace distance Eq. (44) of these two
dynamics in relation to the thermal equilibrium state, σGibbs,
which is the long-time solution of the dynamics. We find that,
despite starting further from equilibrium, the Mpemba state
preparation fully thermalizes somewhat faster than a system
initialized to σE , due to the Mpemba state missing the slowest
decay mode. However, this effect is subtle in this model and of
no practical ramifications. In Figs. 4(b) and 4(c), we follow the
populations as a function of time for the system initialized in
σM (0) and σE (0), respectively. On this scale it is impossible to
distinguish between the two dynamics. The quantum coherent
case illustrated in Fig. 1, in contrast, displays a hyperaccelera-
tion of the relaxation process for the Mpemba state due to the
participation and control of coherences in the process.
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Kurizki, Multiatom quantum coherences in micromasers as
fuel for thermal and nonthermal machines, Entropy 18, 244
(2016).

[26] H. Tajima and K. Funo, Superconducting-like Heat Current:
Effective Cancellation of Current-Dissipation Trade-Off by
Quantum Coherence, Phys. Rev. Lett. 127, 190604 (2021).

[27] H.-J. Kang and H.-R. Noh, Coherence effects in electromag-
netically induced transparency in V-type systems of 87Rb, Opt.
Express 25, 21762 (2017).
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