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Thermalization process in a one-dimensional lattice with two-dimensional motions: The role of
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We study the thermalization process in a one-dimensional lattice with two-dimensional motions. The phonon
modes in such a lattice consist of two branches. Unlike in general nonlinear Hamiltonian systems, for which
the only conserved quantity is the total energy, the total angular momentum J is also conserved in this system.
Consequently, the intra- and interbranch energy transports behave significantly differently. For the intrabranch
transport, all the existing rules for the one-dimensional systems including the Chirikov overlap criterion apply. As
for the interbranch transport, some trivial processes in one-dimensional lattices become nontrivial. During these
processes, all the conservation laws can be satisfied exactly; thus the Chirikov criterion does not apply. These
processes provide some fast channels for the interbranch transport, although the thermalization cannot be reached
through them alone. A system with nonzero-J initial state, however, can never be thermalized to an equipartition
state having zero J . Quite counterintuitively, the corresponding asymptotic mode energy distribution greatly
concentrates to a few lowest-frequency modes in one branch.
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I. INTRODUCTION

An N-degree-of-freedom time-independent Hamiltonian
system is said to be integrable if there exist N independent
conserved quantities. The trajectory of such an integrable sys-
tem in the phase space is restricted to lie on an N-dimensional
torus. Commonly nonlinearity breaks most of the conser-
vations; thus a nonlinear Hamiltonian system is generally
nonintegrable due to insufficient number of conserved quan-
tities [1]. A very special exception is the Toda lattice [2],
which is nonlinear but integrable. For general nonintegrable
systems, e.g., the famous the Fermi-Pasta-Ulam (FPU) lattice
[3], the only remaining conserved quantity is the total energy.
In a high-degree-of-freedom (N � 3) case, since any small
nonlinear perturbation breaks all the rational Kolmogorov-
Arnold-Moser (KAM) tori and the remaining ones are not
able to divide the energy surface, it is commonly assumed that
a trajectory from any initial state (except for some with zero
measurement) will eventually be able to visit the whole energy
surface uniformly; i.e., the system reaches an equipartition
state.

On the other hand, despite the above clear picture, the
detailed thermalization process might be very complicated
and last an extremely long time. The thermalization time may
depend on the magnitude of nonlinearity very sensitively, in
particular in the weakly nonlinear cases. A pioneering study
showed that the equipartition cannot be observed in weakly
nonlinear FPU lattices in an affordable timescale, known as
the FPU paradox [3]. This major step has led to the discovery
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of solitons in nonlinear physics [4]. Very recently, it was
revealed that the scaling exponent of the Lyapunov time is the
same as the thermalization time, which illustrates explicitly
how the thermalization process is related quantitatively to the
intrinsic chaotic property [5].

The energy carriers of various lattice models can be char-
acterized by phonons [6], which were proposed originally to
describe the noninteracting harmonic normal modes in lin-
ear systems. In weakly nonlinear systems, renormalization
phonons which slightly interact with each other are proposed
instead [7–15]. The wave turbulence theory was then proposed
[16–21]. It suggests that in a weakly nonlinear system, the
thermalization process is governed by the nontrivial multi-
wave resonances, e.g., the umklapp phonon scattering process.
Such a theory has been widely applied to FPU-type lattices
[22–29], the perturbed Toda lattice [30], the discrete nonlinear
Klein-Gordon chain [31], waves in the ocean [32], and also
heat conduction in particle lattices [33]. In such a scenario,
for a lattice with finite size and thus with discrete phonon
modes, the so-called Chirikov overlap criterion [34] applies;
i.e., the harmonic modes are broadened by the nonlinearity
and when the broadening is greater than the frequency spac-
ing, i.e., the frequency distance between two adjacent modes,
the conditions for the resonances may be satisfied and thus the
thermalization is fast.

In this paper, we study the thermalization process in a
one-dimensional lattice, in which the motion of each parti-
cle is in two transverse dimensions. In contrast to a general
nonlinear Hamiltonian system, in which the only conserved
quantity is the total energy, the total angular momentum J is
also conserved. This extra conservation changes the dynamics
of the system largely and thus provides a lot of new physical
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pictures. The rest of the paper is organized as follows. The
model is introduced in Sec. II. In Sec. III, the normalized
phonon modes in such a lattice and then the quantitative
measure of equipartition are introduced. In Sec. IV we show
that due to the total angular momentum conservation, a system
with nonzero J can never reach an equipartition state. An
asymptotic state in such a case will be analytically worked
out. The quite different approaches of intra- and interbranch
energy transports are presented in Sec. V. The thermalization
process from zero angular momentum initial conditions thus
ends at an equipartition state, which is studied in Sec. VI. The
nonlinearity-induced mode frequency shift and broadening
will be calculated. Finally, a summary and discussion are
provided in Sec. VII.

II. MODEL

The model we study is a one-dimensional (1D) lattice with
two-dimensional (2D) motions, whose Hamiltonian reads

H =
N∑

j=1

1

2
| �p j |2 + V (| �q j+1 − �q j |), (1)

where N denotes the total number of particles and all
the masses have been set to unity. �q j ≡ x j �ex + y j�ey and
�p j ≡ vx j�ex + vy j�ey. Hereafter, we call it a quasi-2D lattice.
Fixed boundary conditions are applied, i.e., x0 = y0 = xN+1 =
yN+1 = 0. The interaction potential V takes a FPU-β type,

V (r) = K

2
r2 + λ

4
r4. (2)

Then Hamiltonian (1) can be written as

H =
N∑

j=1

[
1

2

(
v2

x j + v2
y j

) + K

2

(
�x2

j + �y2
j

)

+ λ

4

(
�x4

j + 2�x2
j �y2

j + �y4
j

)]
, (3)

where �x j ≡ x j+1 − x j and �y j ≡ y j+1 − y j . Unless other-
wise stated, K and λ are always fixed to unity throughout this
paper.

The total angular momentum

J ≡
N∑

j=1

(vx jy j − vy jx j ). (4)

It is easily confirmed that its Poisson bracket with H ,

{J, H} ≡
N∑

j=1

[
∂J

∂x j

∂H

∂vx j
− ∂J

∂vx j

∂H

∂x j
+ ∂J

∂y j

∂H

∂vy j
− ∂J

∂vy j

∂H

∂y j

]
,

(5)

equals zero for any kind of V (r), harmonic or anharmonic;
thus J is always conserved. Unlike the momentum conser-
vation, this conservation will not be broken by the fixed
boundaries. We will see that this extra conserved quantity
plays a very important role in the dynamics of this system.
If the cross term 2�x2

j �y2
j in Eq. (3) is omitted, the sys-

tem reduces to two independent 1D lattices [35] and this
conservation is broken. In some previous studies, stochastic

momentum exchanges are applied [36], which will also break
this conservation.

III. NORMALIZED MODES AND MEASURE OF
EQUIPARTITION

A. Harmonic phonon modes

The dynamics that corresponds to the linearized
Hamiltonian follows

dvx j = (�x j − �x j−1)dt, (6)

dvy j = (�y j − �y j−1)dt . (7)

The elements of the harmonic matrix reads � jk = ∂2H
∂ρ j∂ρk

,
where ρ denotes any one of x or y. The matrix takes the form

� ≡
(

�1D 0
0 �1D

)
, (8)

where �1D is the harmonic matrix of the corresponding 1D
linear lattice. For the fixed boundary conditions that we ap-
plied, it is a tridiagonal matrix with the nonzero elements
�1D j j = 2 and �1D j, j−1 = �1D j−1, j = −1.

�1D can be diagonalized by a unitary transformation ma-
trix U, i.e.,

U†�1DU = �2. (9)

Each column of U represents a normal mode �uk of the 1D
lattice and � is a diagonal matrix with the nonzero elements
�kk = ωk , where

u jk =
√

2

N + 1
sin

jkπ

N + 1
, (10)

ωk = 2 sin
kπ

2(N + 1)
. (11)

For the quasi-2D lattice, there are 2N normal modes. We
choose

Pk± = PY k ∓ ωkQXk, (12)

Qk± = PXk ± ωkQY k, (13)

where

PXk =
N∑

j=1

vx ju jk, PY k =
N∑

j=1

vy ju jk, (14)

QXk =
N∑

j=1

x ju jk, QY k =
N∑

j=1

y ju jk . (15)

The canonical equations are satisfied for the new canonical
variables Qk± and Pk±, and the linearized Hamiltonian can be
written as

H =
N∑

k=1

(Ek+ + Ek−) =
N∑

k=1

(ωk+|ak+|2 + ωk−|ak−|2), (16)

where the complex normal variables read

ak± = iPk± ± Qk±
2
√

ωk±
. (17)
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Apparently, ωk+ = ωk− = ωk . The normal modes are then
divided into two branches, a positive branch and a negative
branch. Hereafter, we call a phonon in the positive or negative
branch a positive phonon (PP) or a negative phonon (NP),
respectively.

Based on the reversed transforms of Eqs. (12)–(15), the
total angular momentum J can be written as

J =
N∑

j=1

N∑
k=1

N∑
k′=1

(PXkQY k′ − PY k′QXk )u jku jk′

=
N∑

k=1

N∑
k′=1

(PXkQY k′ − PY k′QXk )δkk′

=
N∑

k=1

(|ak+|2 − |ak−|2) =
N∑

k=1

(Jk+ + Jk−), (18)

where δkk′ denotes the Kronecker delta function and

Jk± ≡ ±|ak±|2 = ±Ek±
ωk

(19)

denotes the angular momentum in each mode. It is quite
interesting that a PP (NP) always takes one unit of positive
(negative) angular momentum, regardless of its wave vector
k. A direct consequence is that in any possible phonon scat-
tering, the net number of PPs, i.e., the number of PPs minus
the number of NPs, must be conserved.

It is worth mentioning that, due to the degeneracy of the
system, the choice of the normal modes Pk±, Qk±, and con-
sequently the normal variables ak±, may vary. Our choice,
Eqs. (12) and (13), guarantees that the total angular mo-
mentum can be written as the summation of the angular
momentum in each mode. This provides not only clear phys-
ical pictures but great convenience for later analyses as well.
Furthermore, Eqs. (18) and (19) are always exact, no matter
whether the interaction potential V (r) is harmonic or anhar-
monic, although in the latter case the total mode energy is no
longer conserved.

B. Mode energy distribution and spectral entropy

To quantitatively measure the degree of equipartition, a
normalized quantity ξ is defined as [37–39]

ξ (t ) ≡ e
S(t )
2N , (20)

where the rescaled spectral entropy

S(t ) ≡ −
N∑

k=1

[ fk+(t ) ln fk+(t ) + fk−(t ) ln fk−(t )], (21)

and the rescaled mode energy distribution

fk±(t ) ≡ 2NEk±(t )∑N
k=1[Ek+(t ) + Ek−(t )]

. (22)

In the equipartition states, such defined fk± = 1, ∀k and ξ

approaches its maximum value of 1. The equipartition time
teq is defined as the time when ξ (teq ) = 1

2 .
In the following, thermalization processes from various

initial states, with nonzero and zero J , will be studied.

FIG. 1. The rescaled mode energy distribution fk±(t ) for various
times t . The energy is initially put into the positive branch uniformly.
The average mode energy ε = 0.01. N = 256. Each average is taken
over about 4500 independent realizations. The two curves denote
the analytically expected asymptotic distributions fk±, which are
described in Eq. (27). Inset: The normalized quantity ξ versus time t .
It approaches asymptotically the value determined by Eqs. (37) and
(38). It can never reach the equipartition value of 1.

IV. ASYMPTOTIC MODE ENERGY DISTRIBUTION FOR
SYSTEMS WITH NONZERO TOTAL ANGULAR

MOMENTUM

We have shown in Eq. (5) that, in contrast to many
widely studied nonlinear Hamiltonian systems, for which the
only conserved quantity is the total energy, the total angu-
lar momentum J is also conserved in this system. Due to
the symmetry, J in the equilibrium state with equipartition
must be zero. Therefore, such an equilibrium state can never
be reached from those initial states with nonzero J . Here
we emphasize that one is able to remove the nonzero total
momentum of a momentum-conserving system by taking a
center-of-mass coordinate. The similar operation, however,
does not apply to remove the nonzero angular momentum,
because, unlike the total mass, the total rotary inertia of this
system is not a constant.

To study the thermalization process from those nonzero-J
states, we put the energy initially into the positive branch uni-
formly, i.e., fk+(0) = 2 and fk−(0) = 0, ∀k. Since the angular
momentum in each mode in this branch is positive, the total
angular momentum J must be largely positive. The rescaled
mode energy distributions for various times t are plotted in
Fig. 1. An energy concentration to a few low-frequency modes
in the positive branch can be clearly observed. Such an energy
concentration can be easily understood. Intuitively speaking,
compared with the flat initial distribution, some energy moved
to the negative branch. This part of the energy contributes
negative angular momentum. Therefore, in order to hold the
total angular momentum conservation, the positive branch has
to contribute more positive angular momentum with, however,
less energy. As a result, the energy has to concentrate to
the low-frequency modes, because according to Eq. (19), the
lower the frequency the more efficiently angular momentum
is created.
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To quantitatively determine the detailed asymptotic distri-
bution, suppose that such a distribution still maximizes the
rescaled spectral entropy S, however, under the conditions of
not only the energy conservation,

g1 ≡
N∑

k=1

( fk+ + fk−) − 2N = 0, (23)

but also the angular momentum conservation,

g2 ≡
N∑

k=1

fk+ − fk−
ωk

− 2NA = 0, (24)

where A ≡ J
E denotes the rescaled total angular momentum.

To find such a distribution, let the Lagrange function be

G = S + μ1g1 + μ2g2, (25)

where μ1 and μ2 denote the two Lagrange multipliers. The
following partial differential equations are satisfied when G
reaches its extremum:

∂G

∂ fk±
= − ln fk± − 1 + μ1 ± μ2

ωk
= 0. (26)

The solution reads

fk± = e−1+μ1± μ2
ωk , (27)

and consequently the two Lagrange multipliers can be deter-
mined by solving the following equation group:

N∑
k=1

(e−1+μ1+ μ2
ωk + e−1+μ1− μ2

ωk ) = 2N, (28)

N∑
k=1

e−1+μ1+ μ2
ωk − e−1+μ1− μ2

ωk

ωk
= 2NA. (29)

For small enough A, applying the first-order approximation,
i.e., ex ∼ 1 + x, to Eqs. (28) and (29) yields

N∑
k=1

(
μ1 + μ2

ωk
+ μ1 − μ2

ωk

)
= 2Nμ1 = 2N, (30)

N∑
k=1

μ1 + μ2

ωk
− μ1 + μ2

ωk

ωk
= 2μ2

N∑
k=1

1

ω2
k

= 2NA. (31)

Thus the first-order approximations of μ1 and μ2 read

μ1 = 1, (32)

μ2 = NA∑N
k=1

1
ω2

k

N→∞−→ 6A

(N + 1)
. (33)

Substituting the value of μ2 into Eq. (28) and taking the
second-order approximation ex ∼ 1 + x + 1

2 x2, we have

N∑
k=1

e−1+μ1+ μ2
ωk + e−1+μ1− μ2

ωk ∼ e−1+μ1

N∑
k=1

(
2 + μ2

2

ω2
k

)

∼ μ1(2N + 6A2) = 2N. (34)

Therefore, the second-order approximation of μ1 reads

μ1 ∼ 1 − 3A2

N
. (35)

Finally, we have

fk± =e− 3A2

N ± 6A
(N+1)ωk , (36)

and the rescaled spectral entropy

S = −
N∑

k=1

[(
−1 + μ1 + μ2

ωk

)
e−1+μ1+ μ2

ωk

+
(

−1 + μ1 − μ2

ωk

)
e−1+μ1− μ2

ωk

]

= 2N (1 − μ1 − Aμ2) = −6A2 � 0. (37)

In the special case that A = 0, fk± = 1, ∀k, and S = 0. The
equipartition is recovered.

Under the above-mentioned one-branch initial condition,
the rescaled total angular momentum is

A = 1

2N

N∑
k=1

fk+ − fk−
ωk

= 1

N

N∑
k=1

1

ωk

= 1

N

N∑
k=1

1

2 sin kπ
2(N+1)

∼ ln N + 1

π
. (38)

In Fig. 1, the corresponding analytical expectations for the
asymptotic distribution fk± are plotted as curves for reference.
This well explains the observed energy concentration in the
low-frequency positive modes.

V. INTRA- AND INTERBRANCH ENERGY TRANSPORTS

Due to the total angular momentum conservation, the intra-
and interbranch energy transports may behave quite differ-
ently. For the intrabranch energy transport, all the existing
rules for 1D lattices remain valid. The only difference is that
the number of incoming phonons must equal the number of
outgoing ones. For example, the scattering process of “three
incoming phonons and one outgoing phonon” is strictly for-
bidden, no matter how strong the nonlinearity is. The Chirikov
overlap criterion also applies. This will be discussed in de-
tail in the next section. For the interbranch energy transport,
there exist some nontrivial processes which are trivial in
the 1D cases or the intrabranch cases. As an example, the
process k1 + k1 + k2 → k1 + k1 + k2 means nothing in a 1D
case since the incoming and outgoing phonons are completely
identical. For the interbranch transport in the quasi-2D lattice,
however, the process

k1+ + k1− + k2− → k1− + k1− + k2+ (39)

is nontrivial. The net effect is that two phonons with opposite
signs exchange their signs. Apparently, in such a process, the
quasimomentum conservation∑

in

k
N=

∑
out

k (40)

holds, and more importantly, since ωk+ = ωk− = ωk , ∀k, the
energy conservation∑

in

ωk −
∑
out

ωk = 0 (41)
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FIG. 2. Tests of the process described in Eq. (42) (left column) and its simplified version described in Eq. (43). Each average is taken over
about 1000 independent realizations. [(a), (b)] The energy distributions for the former process at times t = 0 and 106, respectively. [(d), (e)]
The energy distributions for the latter process at times t = 0 and 106, respectively. [(c), (f)] Mode energies E137+ and E56− versus time t for the
two processes.

is always satisfied exactly. Here the subscripts “in” and
“out” denote the summations over the incoming and outgoing

phonons, respectively;
N= means equal modulus N [22,24].

Therefore, no nonlinearity-induced frequency broadening is
required and thus the Chirikov criterion does not apply. Such
interbranch scatterings are always possible, no matter how
weak the nonlinearity is. However, given the facts that (1)
during this type of process the angular momenta in the two
branches are conserved separately, i.e., there is no interbranch
angular momentum transport, and (2) the total mode energy
of any k, i.e., Ek+ + Ek−, is conserved, it is easily understood
that the equipartition cannot be reached via these processes
alone. They only provide some fast channels in the network
involving all the normal modes. To form the whole network,
the Chirikov-criterion-obeyed processes are still necessary.

Here we present an example for such a process. We simu-
late a lattice with N = 256, and choose k1 = 56 and k2 = 137;
thus the process reads

56+ + 56− + 137− → 56− + 56− + 137+. (42)

Those two wave vectors can be chosen arbitrarily and the
results will be basically the same. Initially, a quite low value of
energy, 10−3, is put into each of the modes 56+ and 137−, i.e.,
the 56th mode in the positive branch and the 137th mode in the
negative branch. Besides, an even much lower energy, 10−5,
is put into mode 56− as a seed. All other modes are empty

[see Fig. 2(a)]. We observe the resulting energy distribution
versus time t and find that the energy in the modes 56−
and 137+ increases basically exponentially [see Fig. 2(c)].
As expected, due to the angular momentum conservation,
E56−/E137+ = ω56/ω137 ≈ 0.4518. At the time t = 106, the
energy has largely moved from the modes 56+ and 137− to
56− and 137+ [see Fig. 2(b)]. This timescale is much shorter
than the thermalization time teq for the average mode energy
10−3. It is worth mentioning that the energy is shared only
among the modes for k = 56 and 137. To move energy to
other values of k, Chirikov-criterion-obeyed processes are
necessary. However, the energy 10−3 is too low to meet the
criterion.

Interestingly, the above-mentioned seed is necessary for
the scattering; i.e., the simplified process

56+ + 137− → 56− + 137+ (43)

does not work. To confirm it, we remove the seed in mode
56−; i.e., initially E56+ = E137− = 10−3 and all other modes
are empty [see Fig. 2(d)]. The evolution of the system be-
comes quite different. We see that for the same long time,
no change of the energy distribution can be detected [see
Fig. 2(f)]. E56− and E137+ remain zero [see Fig. 2(e)]. Note
that the scale in the Y axis of Fig. 2(f) is more than five orders
of magnitude lower than that of Fig. 2(c). Further studies are
necessary to understand this finding.
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FIG. 3. (a) The rescaled mode energy distribution fk± for various
times t . The energy is initially put into the lowest 1/8 frequency
modes of both the two branches uniformly. The particle number
N = 256, and the average mode energy ε = 0.01. Inset: The nor-
malized quantity ξ versus time t . It approaches asymptotically the
equipartition value 1. (b) The thermalization time teq versus ε. Each
average is taken over more than 2000 independent realizations.

VI. THERMALIZATION PROCESS FROM ZERO
ANGULAR MOMENTUM INITIAL CONDITIONS

Finally, we study the thermalization processes that end
at true equipartition states. To guarantee it, the total angular
momentum J of the initial states must be zero. The simplest
choice might be that the initial energy is symmetrically shared
by the positive and negative branches, i.e., Ek+ = Ek−, ∀k
[40]. In such a case, due to the symmetry, fk+(t ) and fk−(t )
should be always statistically identical. Therefore, to reduce
the fluctuation, we plot [ fk+(t ) + fk−(t )]/2. Since the inter-
branch energy exchange is not displayed, we may concentrate
on the intrabranch energy transport.

In Fig. 3, the rescaled mode energy distribution for various
times t is plotted. The energy is initially put into the lowest
1/8 frequency modes of both the two branches. In contrast to
the nonzero J cases, the equipartition process can be clearly
observed. The distribution becomes more and more even and
ξ approaches 1.

The thermalization time teq versus the average mode energy
ε is plotted in Fig. 3(b). teq increases rapidly as energy density

ε decreases. Like the case in the 1D FPU-β lattice [25], double
scalings in the low- and high-ε limits are clearly observed.
teq ∼ ε−1 is observed in the high-ε limit. In the low-ε case,
we expect that the power exponent would approach asymptot-
ically −4, which has been observed in the 1D FPU-β lattice
for the irreversible six-wave interactions [22,25,27]. However,
a noticeable discrepancy appears. In a quite wide regime of ε,
teq follows not ε−4 but ε−3.5 very well. We naturally attribute it
to the finite ε effect and expect that the power exponent would
approach finally −4, but in an even much lower ε regime.
Due to computational difficulties, we are not able to confirm
it numerically.

The teq ∼ ε−1 type of fast thermalization is possible if the
Chirikov overlap criterion [34] is satisfied. The idea is that the
phonon modes in a finite system are discrete and thus the left-
hand side of Eq. (41) is commonly not exactly zero. However,
the nonlinearity of the system broadens the mode frequencies.
When such a broadening is large enough to cover the above-
mentioned nonzero value, i.e.,∑

in

ω̃k −
∑
out

ω̃k � �ω, (44)

fast thermalization happens [41,42]. Apparently, when the
broadening is greater than the frequency distance between
two adjacent modes, this condition will be easily satis-
fied. To study this, two factors need to be considered, i.e.,
the nonlinearity-induced frequency shift, which enlarges the
frequency distance, and the nonlinearity-induced frequency
broadening.

A. Nonlinearity-induced frequency shift

According to the effective phonon theory, the canonical
normalized phonon modes are determined by the harmonic
part of the Hamiltonian, and when a weak nonlinearity is
applied, those modes remain but their frequencies are slightly
enlarged. To determine those renormalized frequencies, a
harmonic Hamiltonian with renormalization coefficient η is
introduced to replace the original anharmonic Hamiltonian
[8,12,43], i.e.,

HR =
N∑

j=1

1

2
| �p j |2 + η2

2
| �q j+1 − �q j |2. (45)

The partition function for the renormalized lattice reads

ZR =
∫

e− 1
T HR d �qd �p =

(
2πT

η

)2N

. (46)

The Boltzmann constant kB is set to unity here and after. The
Helmholtz free energy reads

FR = −T ln ZR = −2NT ln
2πT

η
. (47)

The free energy F of the anharmonic lattice satisfies

F � FR + 〈H − HR〉R, (48)
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where 〈·〉R denotes the ensemble average with respect to the
canonical measure e− 1

T HR .

〈H − HR〉R =
∫∫

(H − HR)e− 1
T HR d �qd �p

ZR

=
N∑

j=1

K − η2

2

〈
�x2

j + �y2
j

〉
R + λ

4

〈
�x4

j

+ 2�x2
j �y2

j + �y4
j

〉
R

= NT

η4
(−η4 + Kη2 + 2λT ). (49)

To find the value of η that minimizes the upper bound of F ,
i.e., the right-hand side of Eq. (49), let

∂ (FR + 〈H − HR〉R)

∂η2
= NT

η6
(η4 − Kη2 − 4λT ) = 0. (50)

The physically relevant root reads

η =
√

K + √
K2 + 16λT

2
, (51)

which is slightly larger than that of the corresponding 1D

FPU-β lattice [8,12,44], η1D =
√

K+√
K2+12λT

2 . Note that η is
mode independent due to the Gibbs measure [24,45]; thus all
the phonon frequencies are enlarged by the same factor η, i.e.,

ω̃k = ηωk . (52)

The left-hand side of Eq. (44) and the frequency spacing
will also be enlarged by the same coefficient η, which is ε

independent and grows as ε
1
4 in the low- and high-ε limits, re-

spectively. Therefore, in the low-ε cases the shift is negligible.
ω̃k can be numerically determined by the location of the

peak of |âk (ω)|2, where âk (ω) denotes the Fourier trans-
form of the complex normal variable ak (t ) that is defined
in Eq. (17). In Fig. 4(a), |âk (ω)|2 for various average mode
energies ε in an equilibrium state for N = 256 and k = 256
is plotted. Both the nonlinearity-induced shift and broadening
can be observed clearly. ω̃k , i.e., where the peak of |âk (ω)|2 is
located, versus ε is plotted in Fig. 4(b). The analytical expec-
tation in Eq. (51) is also plotted as the curve. The agreement
is quite good. Not surprisingly, like the cases in the 1D FPU-β
lattice [8] and the 2D FPU-β scalar lattice [43], there exists a
very slight overestimation.

B. Nonlinearity-induced frequency broadening

The nonlinearity-induced frequency broadening can also
be measured by âk (ω). In the linear cases, |âk (ω)|2 takes the
form of a δ function that is located at ωk . When nonlinearity
presents, the distribution diffuses. In order to quantitatively
measure the degree of the broadening, we define the broaden-
ing width δωk of the mode k as the width of the central regime,
the power in which equals half of the total value, i.e.,

∫ ω̃k+ δωk
2

ω̃k− δωk
2

|âk (ω)|2dω∫ ∞
0 |âk (ω)|2dω

= 1

2
. (53)

FIG. 4. (a) |âk (ω)|2 for various average mode energy ε. (b) ω̃k

versus ε. The symbols denote the locations of the peaks of |âk (ω)|2
in (a) and the curve denotes the analytical expectation in Eq. (52).
(c) The broadening width δωk versus ε. N = 256 and k = 256. Each
average is taken over about 1600 independent realizations.

In the cases of large fluctuations, this definition is much more
robust in numerical calculation, compared with the standard
deviation and the half-height width of |âk (ω)|2.

The frequency broadening δωk versus ε is plotted in
Fig. 4(c). It is expected that in the low-energy ε cases, the
broadening is proportional to ε [25], while in the large-ε
limit, scaling analysis indicates a ε

1
4 growth for the poten-

tial of Eq. (2) having the highest order of r4. The ε1 and
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ε
1
4 dependence in the small- and large-ε limits, respectively,

are observed clearly. Since the shift and broadening are both
basically system size N independent and the distance between
adjacent modes is inversely proportional to the particle num-
ber N , it is easy to understand that the larger the system size
the easier the Chirikov criterion is satisfied.

VII. SUMMARY

To summarize, we study the thermalization process in
a 1D lattice with 2D motions. Unlike many other widely
studied models, besides the total energy conservation, the
total angular momentum J in this model is also conserved.
Due to this conservation, a system from a nonzero-J ini-
tial state can never reach an equilibrium state, in which
J must be zero. In such cases, energy concentration to a few
low-frequency modes is observed. We suppose the asymp-
totic state maximizes the rescaled spectral entropy under the
conditions of both the energy and angular momentum conser-
vations; the counterintuitive distribution is then analytically
explained.

The phonon modes in this lattice consist of two branches,
positive and negative. Coincidentally, each phonon in the pos-
itive (negative) branch takes one unit of positive (negative)
angular momentum, regardless of its wave vector k. As a con-
sequence, the intra- and interbranch energy transports behave
quite differently. The intrabranch energy transport obeys all
the existing rules for phonon scattering in 1D lattices. The
Chirikov overlap criterion still applies. However, any process
with different numbers of incoming and outgoing phonons is
strictly forbidden.

More importantly, as for the interbranch energy transport,
there exist some nontrivial processes which are trivial in 1D
lattices and intrabranch transport. In these processes, some
phonons in the two branches exchange their signs and the
quasimomentum and energy conservations are always sat-
isfied exactly. Therefore, no nonlinearity-induced frequency
broadening is required; this kind of processes are always
possible no matter how weak the nonlinearity is. They pro-
vide some fast channels for energy exchange between the
two branches. However, since these fast channels are not
able to form a network involving all the normal modes, the
overall thermalization process is still governed mainly by
the Chirikov-criterion-obeyed scatterings. Consequently, like
the cases in 1D lattices [25], double scaling of the equiparti-
tion time teq is still expected. This has been confirmed by our
numerical simulations.

It is well known that the conserved quantities play a key
role in energy transport. For example, heat conduction in 1D
lattices with and without total momentum commonly behaves
entirely differently [46]. The former one is generally anoma-
lous, i.e., the heat conductivity diverges in the thermodynamic
limit, whereas the latter one is commonly finite. It is naturally
expected that the angular momentum conservation in this
model may also play a crucial role in heat conduction and
more in-depth studies are necessary to reveal it.
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