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Cellular automata can classify data by inducing trajectory phase coexistence
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We show that cellular automata can classify data by inducing a form of dynamical phase coexistence. We use
Monte Carlo methods to search for general two-dimensional deterministic automata that classify images on the
basis of activity, the number of state changes that occur in a trajectory initiated from the image. When the number
of time steps of the automaton is a trainable parameter, the search scheme identifies automata that generate a
population of dynamical trajectories displaying high or low activity, depending on initial conditions. Automata
of this nature behave as nonlinear activation functions with an output that is effectively binary, resembling an

emergent version of a spiking neuron.
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I. INTRODUCTION

Cellular automata are discrete dynamical systems. They are
widely studied because they are simple to specify and display
considerable complexity, including the ability to do universal
computation [1-6]. Cellular automata have been used to do
computations such as classification, either directly [7,8], or
as a reservoir that enacts a nonlinear transformation prior to
additional calculation [9—11], or in combination with a neural
network [12]. Cellular automata do not currently perform as
well at most machine-learning tasks as deep neural networks,
but they continue to attract attention because discrete au-
tomata specified by integers consume less memory and power
than do real-valued neural nets, a property useful for mobile
devices [13].

In this paper, we search for general two-dimensional cel-
lular automata able to classify images in MNIST [14,15], a
standard data set. While image classification has been done
by automata [11,12], our focus is how automata learn to do
classification, and we describe a mechanism of decision mak-
ing that resembles the phase transitions undergone by physical
systems such as magnets [16,17] or glasses [18].

This connection is enabled by the introduction of activity
as an order parameter for classification. We define activity
as the total number of changes of state of all cells within a
dynamical trajectory. Used in the study of glasses [18,19], it
is a natural candidate for computations such as image classi-
fication because it is invariant to translations and is not biased
toward particular spatial environments. If the number of time
steps of the automaton (we call this the depth of the au-
tomaton) is a trainable parameter, we show that Monte Carlo
search of the automaton rule table identifies rules and depths
that perform classification by enacting a form of dynamical
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phase coexistence. The action of these automata on the set of
MNIST images produces a set of dynamical trajectories of two
distinct types, possessing large or small activity. Automata of
this nature resemble an emergent version of a spiking neuron
[20,21], enacting a temporal calculation before committing to
a state of large or small output. We show that collections or
reservoirs of such automata can be used by a linear model to
classify images with an accuracy comparable to that of fully
connected neural networks that act on the pixels of the original
image.

The automata described here perform classification by
inducing a form of dynamical phase coexistence. Phase transi-
tions and phase coexistence are seen in cellular automata in a
variety of settings. Probabilistic automata such as the Ising
model capture the essence of phase transitions in physical
systems such as fluids or magnets [16,17]. Probabilistic and
deterministic automata modeling traffic flow show the coexis-
tence of spatial patterns [22-25], and they exhibit dynamical
phase transitions as a function of density [25-27]. There is
also evidence of a sharp transition in the space of rules [28,29]
between different classes of deterministic automata [3]. The
phase coexistence seen here occurs for deterministic automata
of finite spatial extent, for sufficiently long trajectories. The
trajectories in question contain a variety of spatial patterns
but are defined by their dynamics, which falls into one of
two classes and is accompanied by a bimodal distribution of
a time-integrated order parameter. This bimodality is simi-
lar to that seen in stochastic models of growth [30] or the
conditioned (atypical) trajectories of atomistic glasses [18].
In the present case, the coexistence emerges in response to
an instruction to do classification. It occurs in a many-body
system in the absence of explicit feedback, and in the typical
(indeed deterministic) trajectory ensemble.

In Sec. II we introduce the model and simulation methods.
In Sec. III we show that a cellular automaton can classify
images by enacting a form of dynamical phase coexistence.
In Sec. IV we discuss the accuracy with which linear models
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FIG. 1. (a) Example of a binarized MNIST digit on a 28x28
lattice. (b) Example of a 3 x3 Moore neighborhood of site i, defining
the 512-entry rule table of the cellular automaton. (c) Schematic
of the Monte Carlo search procedure on the automaton rule table,
designed to maximize ¢, Eq. (4). Blue and white cells indicate states
1 and 0; green borders indicate cells whose states have changed from
the previous time step.

acting on a collection of automata can classify images. We
conclude in Sec. V.

II. MODEL AND SIMULATION DETAILS

We consider the MNIST data set, a collection of 28 x28-
pixel grayscale images of 70 000 handwritten digits of class
a=0,1,...,9 [14,15]. We binarized images by setting to
0 or 1 any pixel whose value is less than or greater than
1/4 of the maximum possible intensity, respectively. One
of these images is shown in Fig. 1(a). These binary images
serve as the initial conditions for simulations, which take
place on a square lattice of size N = 28x28 with periodic
boundary conditions. On each site i € [1, N] of the lattice
lives a binary cell S; = 0, 1, indicated white (0) or blue (1)
in images. We evolve the lattice in time using a discrete-time
deterministic cellular automaton. The automaton is a table of
rules S;(t + 1) = R(s;(¢)) that specifies the state of cell i at
time ¢ + 1 given the state s;(#) of its environment {S;(¢)} at
time ¢. The table R(s), where s € [0, 511], consists of 512
integers 0 or 1, and is defined as follows.

The environment of cell i is the nine-neighbor-square
(Moore) construction [31] shown in Fig. 1(b), denoted {S;} =
(Si(o), Si(l), R Si(S)). Cells in this environment are indicated
Si(m), the m™ neighbor of the central site i, where m =
0,1,2,...,8. As indicated in the figure, we define m = 0 as
the bottom-left site, and increment m by moving left to right,
row by row (note that sW = S;). The state of the environment

l
of cell i at time ¢ is indicated by the integer

8

sit) =y 2" @), M

m=0

where Si('")(t) =0,1 is the spin state of neighbor m at
time t. For example, the state of the environment with
all cells zero (white) is s; = 0, and the state of the en-
vironment with all cells unity (blue) is s5; =2° — 1 = 511.
The state of the environment shown in Fig. 1(b) is
si=21 423425427 = 170.

The table R(s) thus has 512 entries, indicating the state
Si(t +1) of cell i at time ¢ 4 1 given the state s;(¢) of its
environment at time ¢. Each entry in the table is O or 1,
and so there are 2512 ~ 10!% possible rules [31]. We start
with the identity rule table, for which S;(f + 1) = S;(¢). One
application of the table to each cell on the lattice constitutes
one step of the automaton. The total number of steps T we
call the depth of the automaton.

To search for automata able to classify images, we selected
a subset (a minibatch) of M = 5000 images from the MNIST
training set, and we did a zero-temperature Metropolis Monte
Carlo search [32] on the rule table. This procedure, shown
schematically in Fig. 1(c), proceeds as follows [33]. Starting
from the identity rule table and an automaton of depth T,
we calculate an order parameter ¢ (described shortly) for the
minibatch. We then propose a change of the 512-entry rule
table R in k positions. We alternate, every Monte Carlo step,
between the choices k = 1 and k a uniform random number
on [1,10]; in Fig. 1(c), we show a change to a single entry
of the rule table. Using this new rule table, we calculate the
new value of ¢, called ¢'. If ¢’ > ¢, then the change to R
is accepted: the proposed rule table becomes the current rule
table, and ¢ is set equal to ¢’. Otherwise, the original rule
table and value of ¢ are retained.

We trained automata in two modes: fixed-depth mode, with
T fixed to 10, and variable-depth mode. In the latter, we set
T = 2 initially, and we propose a change T — T £ 1 (with
equal likelihood) every 10 Monte Carlo steps. When propos-
ing a change of T, no change is made to the rule table. In
variable-depth mode, both the automaton rule table R and its
depth T are trainable parameters.

The fixed-depth search scheme provides a comparison for
the variable-depth search scheme. The results of the latter
show the emergence of trajectory phase coexistence when
the depth 7' becomes sufficiently large. We did not anticipate
the existence of this phase coexistence, nor do we know in
advance, for a given image class and given realization of
the Monte Carlo search scheme, how large 7 must be to
allow this behavior. Knowing the existence of this behavior,
we can attempt to reproduce it by training at various large
fixed depths, but the variable-depth scheme removes the need
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for such guesswork. It also emphasizes that the action of an
automaton is a function of both its rule table and its depth.

To classify images, we need a suitable order parameter
¢. One possibility is to consider the state of a given cell
[34] or to count types of local environment, but these break
translational invariance and are biased toward certain image
types, respectively. An alternative, borrowed from studies of
glasses, is activity, the total number of changes of state of
all cells in the course of a simulation. Activity is a simple
measure that does not affect translational invariance and is not
biased toward any particular spatial pattern. If S;(¢) is the state
of cell i at time ¢, then we define activity

T-1 N

AT =YY (1= Bsms041) ©)

t=0 i=1

as the total number of changes of state of all cells under the
action of the automaton. Here §,, is the Kronecker delta,
equal to 1 if x = y and O otherwise. We further define A;(T") as
the value of (2) upon starting from image j, i.e., upon setting
Si(0) = B; ; for all i, where B; ; is the binary pixel pattern of
image j [shown for one image in Fig. 1(a)]. Let

aj(T) = A0 €[0,1] 3)

T ONT ’

be the scaled counterpart of A;(7"). We then define the order
parameter

1 1
¢ = 7 Z aj(T)_V Z a;(T), “4)

¢ Cj)#a ¢ C(j)=a

where the first sum runs over all My = M — M,, images not
of class « in the minibatch, and the second sum runs all M,
images of class  [C(j) returns the class of image j]. Note that
¢ is a property of the minibatch, not of individual automaton
trajectories, and it has a range [—1, 1] in principle and [0,1] in
practice, given the initial conditions and acceptance criterion
of the search scheme. The instruction to maximize (4) is the
instruction to find an automaton whose dynamics is inactive
if initiated from an image of class «, and as active as possible
otherwise.

We note that the model and simulation algorithm are trans-
lationally invariant, but not rotationally invariant (by design,
because the class of a number is not invariant to rotation).
Rotational invariance (and other symmetries) could be im-
posed during the search scheme, by limiting the search to
automaton rules that respect those symmetries. Here we carry
out a general search, with no restrictions.

III. CLASSIFICATION BY DYNAMICAL
PHASE COEXISTENCE

In Fig. 2 we show results of two instances of the Monte
Carlo search scheme for image class o = 0; these are typical
of results for other image classes. The fixed-depth automaton
learns to increase the value of ¢, shown in panel (a), with
Monte Carlo step number n. The associated histograms of
activity for 60 000 binarized MNIST digits not seen during
training are shown in panel (b), top. Symbols indicate nonzero
values in windows of width 1/50, while lines are a guide
to the eye. The sum of symbol values for each histogram
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FIG. 2. (a) Monte Carlo search of the automaton rule table to
maximize ¢, Eq. (4), for digit class « = 0. The two panels show ¢
and automaton depth 7" as a function of Monte Carlo step number 7,
for simulations carried out in fixed-depth mode (7 = 10; gray) and
variable-depth mode (blue). (b) Histograms of activity, Eq. (3), for
60 000 MNIST digits, unseen during training, of class 0 (blue) and
otherwise (gray). The automaton produced by training in variable-
depth mode induces a bimodal distribution of dynamical activities
for each digit class.

is unity. The distribution of activity for each digit class is
unimodal, and class O (blue lines and symbols) is on average
less active than the others (gray lines and symbols; image class
o # 0 is denoted by gray polygons with « + 3 sides). There
is considerable overlap between classes.

Automata trained by the variable-depth search scheme be-
have differently. About one-third of these adopted a depth of
1, but in a majority of cases we observed behavior of the kind
shown in the figure. The order parameter soon exceeds that
of the fixed-depth scheme, and the depth of the automaton
grows steadily, exceeding 500 time steps within the period
allotted to training [Fig. 2(a)]. The activity distributions also
differ from those of the fixed-depth scheme, being bimodal
for each class [Fig. 2(b)]. Zeros are considerably more likely
to give rise to inactive trajectories than active ones, while the
opposite is true of the other classes, although exceptions are
numerous (we will return to the effectiveness of these rules
as classifiers). The inset shows histograms generated using
the same automaton run for 3000 time steps, revealing that
long trajectories begun from the MNIST digits display either
high-activity or low-activity dynamics.

In Fig. 3(a) we show 100 trajectories of the automaton
discovered by variable-depth search when presented with 100
images. 50 images are of class O (blue lines) and 50 are
of other classes (gray lines). The top panel shows the time-
integrated scaled activity of each trajectory, Eq. (3), as a
function of the number of automaton time steps. Two distinct
populations of trajectories are apparent, with the majority
of zeros belonging to the low-activity population. The bot-
tom panel shows, for the same trajectories, the instantaneous
activity

AA;(t)=A;j(t) —Aj(t — 1) (5)

accrued at time step 7. This format shows that trajectories
tend, after about 250 time steps, to persistently inactive or
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FIG. 3. (a) Time-integrated activity (top), Eq. (3), and its instantaneous counterpart (bottom), Eq. (5), as a function of time, for the
automaton discovered by the variable-depth search of Fig. 2. Shown are 100 of the 60 000 trajectories comprising the histogram of the bottom
panel of Fig. 2(b). Trajectories begun from digits of class O are blue. (b) Time-ordered snapshots generated by the automaton when presented
with four different images. Cells with green boundaries have changed state from the preceding time step. (c) Time-ordered snapshots (left)
and instantaneous activity as a function of time (right) for four automata. Each was trained in variable-depth mode to propagate an inactive
trajectory when presented with a digit of the indicated class, and an active trajectory otherwise. Each is presented with the same digit, a 7

(shown left).

active solutions. In the inset to the bottom figure, we show
some of the low-activity trajectories on a larger scale. Some
of the solutions adopted are absorbing states, having zero
activity, some have persistent small values of activity, and
some solutions are periodic, moving between configurations
that generate slightly different values of activity. Trajectories
thus show a range of behavior, and they do not all correspond
to the same values of activity, but nonetheless divide naturally
into two populations or “phases” whose order-parameter val-
ues are tightly distributed and well separated from each other.
The time-integrated order parameter shown in the top panel
of Fig. 3(a) will, in the limit of infinite time, adopt the value
consistent with the limiting form of the instantaneous order
parameter AA shown in the bottom panel.

The bimodal dynamical behavior shown in Fig. 3(a) is sim-
ilar to that seen in systems with explicit feedback or memory
[30,35], and it resembles an emergent version of a spiking
neuron [20,21]. Spiking neurons are time-dependent models
of biological neurons, often modeled by differential equa-
tions, whose outputs can vary sharply with time in response
to a stimulus. Here the spiking results from the many-body
dynamics of the automaton: it performs a time-dependent
computation from an initial condition specified by an image,
and (with some error) becomes asymptotically quiescent if it
detects a specified image type and spikes otherwise. Cellular
automata resemble deep neural networks in the sense that they
enact a nonlinear transformation by propagating a dynamics
or a computer program as a function of time or depth [36-38].
However, neural-net weights usually vary with depth, making
a single automaton rule closer in a sense to a recurrent neural
network, or to a single activation function that performs a
time-dependent computation.

In Fig. 3(b) we show time-ordered snapshots of the au-
tomaton dynamics starting from four different images. Blue
and white pixels denote the two automaton cell states. Cells
with a green boundary are active, meaning that their state
in the previous time step was different, while cells not

labeled in this way are inactive, having the same state as in
the previous time step. The top panel shows the automaton
identifying a zero by propagating a low-activity trajectory. It
performs what is in effect a local computation, causing the
image to become increasingly compact until it adopts a state
in which only one cell on the periphery of the image remains
persistently active, changing state every time step. The second
row shows the automaton identifying a different zero by prop-
agating an asymptotically inactive trajectory, but in this case
the computation is carried out across the whole lattice, and
involves a long transient. One part of the image gives rise to
an active pattern and another to an inactive pattern, and these
coexist for some time before the inactive pattern consumes the
lattice. The bottom two rows show the automaton identifying
images that are not zeros, by propagating active trajectories.
In both cases, parts of the images serve as nucleation sites for
active patterns, which, after some time, consume the inactive
portions of the lattice. A similar dynamics is seen when the
automaton misclassifies an image: in those cases, the compe-
tition between active and inactive portions of the lattice is won
by the “wrong” phase.

In Fig. 3(c) we show time-ordered snapshots of four
different automata [39]. Each automaton was trained, in
variable-depth mode, to generate an inactive trajectory when
presented with an image of the indicated class, and an active
trajectory otherwise. In each case the depths identified by
the training process were several hundred time steps. All are
presented with the same digit, a 7. The plot at right shows
the activity accrued at each time step, Eq. (5). The 0- and
1-automata generate active trajectories, while the 7-automaton
generates an inactive one. The 2-automaton illustrates a mi-
nority behavior seen in some of the automata, which display a
bimodal activity distribution peaked at high and low values but
with some small fraction of trajectories having intermediate
values. This example falls in the latter category. The automa-
ton produces an ambiguous answer in which, at long times,
high- and low-activity patterns coexist in a spatial sense,
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FIG. 4. Action on three images (left) of 50 automata k (squares)
trained to recognize image class C(k). The presence of a blue square
indicates that the automaton recognizes the image by propagating a
trajectory belonging to its low-activity dynamical phase.

similar to behavior seen in automata such as models of traffic
[22-25] or the Ising model [16,17].

In Appendix we provide the rule tables for three automata
trained to recognize different digit classes.

IV. RESERVOIR COMPUTING WITH AUTOMATA

A single automaton has a modest ability to classify im-
ages: for instance, the automaton obtained by variable-depth
training in Fig. 2 classifies zeros with about 2/3 accuracy. In
addition, distinct automata trained using the same procedure
can identify specific digits differently, as shown in Fig. 4.
There we show the action of 50 trained automata, 5 per class,
on 3 MNIST digits. A blue square indicates that the automaton
propagates an inactive trajectory [defined as a;(T) < 1/4]
when presented with the digit j shown at left, and so it rec-
ognizes it as a member of the class it is trained to identify.
A gray square indicates the opposite. In these examples, all
the automata that should recognize the digit as a member of
their own classes do so, but false positives are common. For
example, the 4-automata all identify the 1 as a 4, and the 0
is incorrectly recognized as a member of their own class by
automata of 6 other classes.

Acting in concert, automata are considerably more accu-
rate. To illustrate this fact, we adopt the approach of reservoir
computing, in which a nonlinear system or reservoir—which
can be a neural network, a cellular automaton, or even a physi-
cal system such as a bucket of water—enacts a transformation
on a set of data, before a final layer, usually a linear model,
is trained in order to do computation [9-11,40]. In reservoir
computing, the reservoir is not usually trained, obviating the
need for doing gradient descent on a complex nonlinear sys-
tem. Here we use as a reservoir a set of cellular automata, each
trained by Monte Carlo search, and we pass their output to a
final layer that is subsequently trained.

We proceed as follows. We construct Ny cellular automata
using the variable-depth search algorithm described in the
previous section. We considered the original order parameter
¢, Eq. (4), and five others, described below. Automata were
trained on 5000 digits of the MNIST training set, and training
was terminated after 5 CPU hours. Any automaton whose
depth was unity after 500 Monte Carlo steps was reset (to

the identity rule table and depth 2). The automata produced
in this way are heterogeneous, some exhibiting the phase
coexistence-like behavior discussed previously, and some re-
maining relatively shallow and exhibiting unimodal activity
distributions.

Once trained, we pass all 70,000 MNIST digits through
all Ny automata. For each digit, we consider the N; values
of activity that result to comprise an N;-dimensional feature
vector. We train a final layer, using these feature vectors, on
the 60 000 digits of the MNIST training set. With this trained
layer we calculate A, its classification accuracy on the 10,000
digits of the MNIST test set.

We considered two versions of the final layer. The first is a
logistic (generalized linear) model, conventional in reservoir
computing. This has

Nie(Np) = (Ny + DC (6)

real-valued parameters, where C = 10 is the number of digit
classes. For a given digit, its output is a C-dimensional vector
whose entries correspond to its prediction for the class of the
digit. We trained this model using multinomial regression. The
second was a nonlinear model, a single-layer neural network
with 128 hidden neurons, each with tanh nonlinearities. This
model has

Naet(Ny) = (128 + C)N; + 128 + C (7)

real-valued parameters. For a given digit its output is also a C-
dimensional vector whose entries correspond to its prediction
for the class of the digit. We trained this model using the
Adam optimizer [41] in PyTorch [42] (using minibatches of
size 1000 we trained for 200 epochs with a learning rate of
1073).

We carried out this exercise using six different reservoirs,
each trained by Monte Carlo search to maximize one of six
order parameters, in order to understand how important is the
choice of order parameter to the ability of the final layer to do
classification. To introduce these order parameters, we define
the average

1
Ca= 31 Z ) (8)
C(j)=a

the sum running over all M, images of class « in the mini-
batch, and

1
Ca= 3 Z ), 9)
C(j)Fa

the sum running over all Mz = M — M,, images not of class
« in the minibatch. The first order parameter considered is the
original, Eq. (4). The second is its sign-reversed counterpart,

¢2 = (a;(T))o — (a;(T))a: (10)

which is the instruction to maximize the activity of image
class @ and minimize the activity of all other classes.
The third is

¢3 = [(a;(T))a — (a;(T))al, (1)

which encourages separation of the mean activity of class «
from the mean of the other nine image classes, but it does not
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TABLE I. Reservoir computing with trained automata. MNIST
is binarized and passed through N; automata, each trained using
the order parameter ¢;. The resulting activities constitute a set of
N;-dimensional feature vectors on which we train a logistic model
(log) or a fully connected neural network (net). A is the resulting
MNIST test-set accuracy percentage, with parameter memory cost in
kilobytes in brackets.

Scheme N /Features Ajog (Mem) Apee (Mem)
MNIST 784 92.6 (31) 98.0 (433)
binarized MNIST 784 92.1 (31) 97.7 (433)
¢ 500 95.3 (52) 96.3 (309)
b 500 95.4 (52) 96.2 (309)
o3 500 95.3 (52) 96.3 (309)
o 500 96.8 (52) 97.2 (309)
870 97.3 (91) 98.1 (537)
s 500 94.6 (52) 95.3 (309)
s 80 91.9 (8) 95.2 (50)
255 95.7 (27) 96.9 (158)
500 96.7 (52) 97.3 (309)
all 3370 97.7 (350) 98.1 (2076)
untrained 500 88.0 (52) 93.0 (309)

specify whether the activity of class « should be greater than
or less than those of the other classes.

The fourth is the preceding order parameter with
an additional constraint on the standard deviation o, =
V{aj(T)?) e — (a;j(T))2 of the distributions of the chosen
class and its complement:

¢s = ¢3 — 5(0u + Ta). 12)

For each of the order parameters ¢ to ¢4 we constructed
reservoirs in which automata instructed to identify each class
were equally numerous.

The fifth order parameter is a version of ¢, that rewards
separation of all C = 10 classes and the minimization of the
variance of their distributions:

1 I
05 = % @ (T = ta;(Tpl = ;oa, (13)

the first sum running over all P = C(C — 1)/2 = 45 pairs of
classes and the second running over all C = 10 classes.

The final order parameter is the analog of ¢s for two class
types, @ and S,

¢ = aj(T))e — (aj(T))gl — 3(0u +0p).  (14)

When constructing reservoirs using ¢ as an order parame-
ter, we assign each automaton at random to one of the 45
class-pairs («, B). Each used only digits of those two classes
from the 5000-digit minibatch, approximately 1000 digits in
all cases.

Results are shown in Table 1. For reference, the first two
rows show classification accuracy A of the two versions of
the final layer using the original MNIST feature vectors and

MNIST binarized using the threshold (1/4 of the maximum
pixel intensity) used by the automata. Some small loss of
accuracy is incurred by binarizing MNIST.

We shall focus first on results using the logistic model
as a final layer, shown in the third column of the table.
The order parameters ¢ to ¢3, which encourage automata
to make the dynamics of one digit class more or less active
than the others, perform similarly. Reservoirs of 500 automata
each provide about 3% improvement in logistic-model clas-
sification accuracy over the original MNIST data, indicating
that the nonlinear transformations enacted by the automata
are beneficial, separating classes in phase space in a way
that a logistic model finds easier to process. The three order
parameters provide essentially the same numerical benefit,
emphasizing that activity is an order parameter agnostic to
digit type: it does not matter if automata are instructed to make
certain classes more or less active than others.

Moving from the order parameter ¢3 to ¢4, we see that
some additional numerical improvement is afforded by the
extra terms in ¢4 that encourage automata to produce narrow
distributions of activity. Moreover, more reservoir automata
generally equates to better performance, and it is possible to
construct reservoirs possessing more members than there are
features in MNIST: with 870 features, the logistic-model ac-
curacy exceeds by about 5% the corresponding number using
the original data set.

The order parameter ¢5, which encourages each automaton
to separate activity distributions for all classes, performs less
well than the other order parameters. ¢s is the most difficult
order parameter for an individual automaton to maximize, and
this difficulty results in a reservoir slightly less expressive than
those made using “easier” order parameters.

The order parameter ¢, which encourages separation of
two classes and ignores the rest, performs similarly to ¢y.
We show also that classification accuracy increases with in-
creasing reservoir size. Indeed, the accuracy of the logistic
model increases further if presented with all of the previous
reservoirs combined, shown in the penultimate row of the
table.

As a point of comparison with the trained reservoirs, we
show in the final row of the table the performance of a reser-
voir of 500 automata whose rules were chosen randomly, as
is conventional in reservoir computing. For each, we drew
a random number A uniformly on (0,1], and populated each
entry of its rule table with a 1 with probability A and a 0 other-
wise (A is then the mean fraction of 1’s in the rule table [44]).
We trained the depth of each automaton by starting at 7 = 1
and increasing T by 1 until the order parameter ¢s began to
decrease. This reservoir of randomly chosen rules performs
less well with the linear classifier than does the original data
set, indicating that information has been lost by the reservoir
and highlighting the utility of training the automata.

The performance of the nonlinear final layer, shown in
the fourth column of Table I, is different from that of the
logistic model. With the neural network, the best reservoirs
and the original data set yield similar results. Comparison of
the performance of the two versions of the final layer indicates
that the nonlinear transformations enacted by the reservoir
are unnecessary for the neural network, which is expressive
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enough that it can extract similar information using the origi-
nal data set.

We turn finally to the memory consumption of each
method. We represent real-valued parameters with 32-bit pre-
cision, and binary variables, which specify the automata rule
tables, cost 1 bit. Thus for N; features, the linear classifier
costs 32 bitsxN.(Nf), given by Eq. (6), and the net costs
32 bits X Npet (Nr), given by Eq. (7), while each automaton
costs 1bitx512. The resulting memory cost of the methods
(to the nearest kilobyte; 8 bits = 1 byte) is shown in brackets
in the table. For example, using binarized MNIST, the net
achieves an accuracy of 97.7% at a memory cost of 433 kb; all
the reservoirs connected to a linear classifier achieve 97.7%,
with a memory cost of 350 kb. 8§70 automata trained using
the order parameter ¢4 achieve the slightly lower accuracy
of 97.3%, but at a reduced memory cost of 91 kb. This is
equivalent to about 22,750 real-valued parameters, and we
can assess the accuracy of similarly sized fully connected
networks acting directly on MNIST or binarized MNIST.
22 750 parameters equates to a single-layer fully connected
net of about 28 hidden nodes, which scores 96.4% (MNIST)
or 95.7% (binarized MNIST); or to a two-layer net with about
27 nodes per layer (96.2% or 95.9%); or to a three-layer
net with about 26 nodes per layer (96.1% or 95.6%); or to
a four-layer net with about 25 nodes per layer (96.2% or
95.1%); or to a ten-layer net with about 22 nodes per layer
(94.6% or 93.5%). Thus a linear classifier acting on a set of
automata can achieve comparable accuracy to fully connected
neural networks acting directly on MNIST, with a smaller
memory cost.

Convolutional neural networks, whose inputs involve local
kernels that sweep over an entire image [14,15,37,38], are
closer in construction to a cellular automaton than is a fully
connected neural network. To compare the performance of
fully connected and convolutional neural networks, we cal-
culated the accuracy on real-valued (not binarized) MNIST
using convolutional neural networks having a kernel size of
33 pixels. We considered 15 different network architectures,
divided into three groups according to the number of parame-
ters they contain. Networks in these groups have a parameter
memory cost of 29.7, 62.6, and 142.1 kilobytes, respectively,
and yield a mean classification accuracy of 96.8%, 98.1%, and
98.4%. Those numbers (the memory cost and accuracy) can be
compared with the top-right entry of Table I, which shows the
fully connected net to be less accurate per unit memory cost.

V. CONCLUSIONS

We have introduced dynamical activity, an order parameter
with no bias toward any particular environment or spatial posi-
tion, as a metric for image classification by cellular automata.
Zero-temperature Metropolis Monte Carlo search of rules
and depths for general 2D automata has identified algorithms
that classify MNIST images by enacting a form of dynami-
cal phase coexistence, propagating trajectories belonging to
high- or low-activity dynamical phases. Individual automata
achieve this classification with modest accuracy. Collections
or reservoirs of such automata can be used by a linear model
to classify images with comparable accuracy (and smaller

memory cost) than fully connected neural networks that act
on the pixels of the original image.

Conceptually, the automata described here evoke concepts
or display features seen in other studies, but in detail they
are distinct from automata described previously. For example,
several authors have discussed the computational potential
of automaton rules close to phase transitions in rule space
[28,29,43,44]. We can view the transition between the behav-
iors shown in the top and bottom panels of Fig. 2(b) as a phase
transition in rule space, analogous to the transition shown
by the Ising model as its temperature is reduced below the
critical value. However, the defining character of the automata
described here is that they do computation by enacting a form
of dynamical phase coexistence, and so the computation is
enabled by a phase transition taking place in trajectory space,
not rule space.

In addition, automata of this nature display elements of
the four Wolfram classes of cellular automata [3], but they
are not completely described by these rules. For example,
Fig. 3 shows that a single automaton, starting from different
initial conditions, can generate a trajectory similar to that of a
Class 1 automaton (ending in a homogeneous state, i.e., a limit
point), or a Class 2 automaton (generating structures periodic
in time, i.e., limit cycles), and it can generate complex patterns
with long transients. In these respects, it resembles a Class 4
automaton, which can generate both repetitive and complex
patterns, but the defining characteristic of the automaton is
that its dynamical ensemble contains trajectories of two dis-
tinct types, defined by their activity, a concept separate from
those considered in the Wolfram scheme. Indeed, the dynam-
ical phase coexistence seen in these automata resembles that
seen in some stochastic systems [16—18,30], a connection of
the kind anticipated in Question 10 (“What is the correspon-
dence between cellular automata and stochastic systems?”)
of Ref. [45].
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APPENDIX: EXAMPLE AUTOMATA

In this Appendix, we specify three automata that learned,
under variable-depth search, to recognize three different digit
classes via the dynamical phase coexistence mechanism de-
scribed in the text. Entries in the rule table are numbered
sequentially from O to 511, according to Eq. (1) and the
associated description.

(i) Class 0: depth T = 512, rule table R =
00000001101001110111100
0101010011011 0001011100
01001100010001010100010O0
01100111010101100000101
0101111110101 0111111000
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