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Carnot, Stirling, and Ericsson stochastic heat engines: Efficiency at maximum power
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This work uses the low-dissipation strategy to obtain efficiency at maximum power from a stochastic heat
engine performing Carnot-, Stirling- and Ericsson-like cycles at finite time. The heat engine consists of a
colloidal particle trapped by optical tweezers, in contact with two thermal baths at different temperatures, namely
hot (Th) and cold (Tc). The particle dynamics is characterized by a Langevin equation with time-dependent control
parameters bounded to a harmonic potential trap. In a low-dissipation approach, the equilibrium properties of the
system are required, which in our case, can be calculated through a statelike equation for the mean value 〈x2〉eq

coming from a macroscopic expression associated with the Langevin equation.
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I. INTRODUCTION

With the use of nanotechnology, physicists and engineers
attempt to overcome the challenge of building artificial meso-
scopic machines capable of extracting energy from their
environment, and converting it into useful work. The main
characteristic of these micro or nanoengines is that the fluc-
tuations generated by their environment is comparable to the
average flow of energy produced by such engines. Then, the
performance of a mesoscopic engine strongly depends on
the properties of its surroundings. For instance, the so-called
Brownian motors [1–3] are devices capable of rectifying fluc-
tuations to produce useful work; they have a ratchetlike design
in which a spatial anisotropic or asymmetric potential is in-
volved, and an additional ingredient that takes the system out
of equilibrium. As has been shown, an equivalent performance
for these devices can be obtained if the system is coupled to
two thermal baths simultaneously or if an external parameter
is modulated [4,5].

The ratchet model proposed by Feynman has been used
as an inspiration for the study of a significant number of
theoretical and experimental works on Brownian motors and
other devices [1–3,6–16], such as the stochastic heat engines
in the construction of microscopic devices. The first exper-
imental realization of a microscopic heat engine consisting
of a Brownian particle in a time-dependent optical trap was
reported in [17]. In this experiment, the Brownian particle
performs a Stirling-like cycle, in which the particle and the
trapping potential replace the working fluid, and the piston
of its macroscopic counterpart. The technique of trapping
particles using optical tweezers has been shown to provide a

precise control over the confinement and temperature of the
colloidal particle [18,19], wherein isothermal and nonisother-
mal processes are following in this cycle [19–22].

The two fundamental quantities used to characterize the
thermodynamic properties of macroscopic and microscopic
heat engines are both power and efficiency. The main differ-
ence between both engines is that in the latter the stochastic
fluctuations play a fundamental role. Nowadays, stochas-
tic thermodynamics has been the appropriate theoretical
framework to characterize the energetics of microscopic
heat engines in which the concepts of work, heat, inter-
nal energy, etc., have been defined along a single stochastic
trajectory [23].

It is well known that for macroscopic heat engines, the
Carnot efficiency can be achieved when the cyclic process
is quasistatic, which also means a large cycle time and zero
power output. The so-called finite-time thermodynamics is
related to the study of the efficiency of heat engines when
the cyclic process is performed at finite-time. It seems that
the pioneering work related to the efficiency at maximum
power of an endoreversible engine operating at finitetime was
reported by Novikov [24]. However, the paper by Curzon and
Ahlborn [25] is more cited in literature, in which the efficiency
at maximum power is shown to satisfy ηCA = 1 − √

Tc/Th,
which is less than the Carnot efficiency ηCA < ηC , for an
engine operating between two heat baths at temperatures Th

and Tc (Tc < Th). Since then, a significant number of papers
related to Finite-Time Thermodynamics have been reported
in literature [26–29], and all references therein.

In this context, it is worth highlighting the paper by Es-
posito et al. [30], related to the efficiency at maximum power
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for macroscopic heat engines performing finite-time Carnot
cycles, and operating under low dissipation conditions. Ac-
cording to the authors, the starting point of low-dissipation
approach is a Carnot engine which operates under reversible
conditions while the system always remains close to equilib-
rium, and the cycle time becomes very large. If the cyclic
processes are no longer reversible, but irreversible at finite-
time, then the dissipative processes play an important role, the
low-dissipation limit being an interesting theoretical approach
to characterize them. This approach establishes that if τc (τh)
is the time in which the system is in contact with the cold (hot)
reservoir along a cycle, then the entropy production along the
cold (hot) part of the cycle is proposed to behave as �c/τc

(�h/τh), where � contains information about the irreversibil-
ities present at isothermal branches. Therefore, the amounts
of heat per cycle incoming to the system from the cold
(hot) reservoir are given by Qc = Tc(−�S − �c/τc + · · · )
and Qh = Th(�S − �h/τh + · · · ), being Qc

∞ = −Tc�S and
Qh

∞ = Th�S, the heat exchanged with the cold (hot) reservoir
under reversible conditions. Whereas, the adiabatic processes
are considered as instantaneous, therefore the irreversible
effects are only taken into account in the two isothermal
processes.

The study of the efficiency at maximum power has
also been extended to stochastic heat engines, as can be
corroborated in recent literature [17,31–34]. Due to the afore-
mentioned features of a stochastic heat engine, the theoretical
model used for its description is the Langevin equation in
which the optical trap is represented by a harmonic potential.
The model also considers the engine (the particle) in con-
tact with two thermal baths at different temperatures Th (hot)
and Tc (cold), with Th > Tc, and the internal noise intensity
changes in time from the hot to cold values. The stochastic
efficiency is also defined as the ratio of the extracted work
and the heat transferred from the hot bath to the particle in
a cycle [19]. In a work by Blickle [17], it was shown that
at thermodynamic level the mean efficiency 〈η(τ )〉 is less
than the Carnot efficiency ηC = 1 − Tc/Th, that is 〈η(τ )〉 =
〈W (τ )〉/〈Q(τ )〉 < ηC , where τ is the cycle time, 〈W (τ )〉 the
average work, and 〈Q(τ )〉 the average heat flux. Also, the
experiments [17,19] show that for shorter cycle times,
the dissipation effects become important, and the mean work
per cycle can be written as 〈W 〉 = 〈W 〉∞ + 〈W 〉dis, where
〈W 〉∞ is the mean quasistatic work for longer cycle times
and 〈W 〉dis the mean dissipated work per cycle. The latter is
proposed to first order as 〈W 〉dis = �/τ , where � is a pa-
rameter which contains information about the irreversibilities
present in the cycle, or in other words, it accounts for an
amount of energy dissipated in a cycle. In [17] it has also been
commented that, in the experiment at small scales it is very
difficult to keep hot and cold reservoirs thermally isolated,
so rather than coupling the colloidal particle periodically to
different heat baths, the temperature of the surrounding liquid
is suddenly changed.

The purpose of the present contribution is to apply the
low-dissipation considerations to obtain the efficiency at max-
imum power of a Brownian heat engine, which can operate
in three finite-time irreversible cycles between a hot and a
cold reservoir at temperatures Th and Tc, respectively. Three
different cycles, namely Carnot-, Stirling-, and Ericsson-like,

are considered. The theoretical analysis is formulated in the
context of a Langevin approach for a Brownian particle in a
harmonic trap with time-dependent stiffness κ (t ). The strat-
egy is as follows: first, the Langevin equation is transformed
into a macroscopic one for the average value 〈x2(t )〉, in
which the time-dependent temperature T (t ) is also taken into
account (both the stiffness and temperature are externally con-
trolled [35]). Instead of solving the macroscopic deterministic
equation for specific protocols, κ (t ) and T (t ), the advantage
from the system equilibrium thermodynamic properties is
taken into account by means of the statelike equation asso-
ciated with the average value 〈x2〉eq. This allows obtaining the
work, heat, and efficiency under quasistatic conditions, and
all the irreversible effects are taken into account through the
dissipation parameter � [17]. Once this is done, the efficiency
at maximum power characterized by finite-time cycles can be
obtained using the low-dissipation approach.

This work is organized as follows. Section II obtains the
macroscopic equation for the average value 〈x2(t )〉, coming
from the overdamped harmonic oscillator Langevin equation.
The law of energy balance according to Sekimoto is presented
to get the average of the total energy. In Sec. III the equilib-
rium thermodynamic properties for the Carnot-, Stirling-, and
Ericsson-like cycles are calculated by means of a statelike
equation coming from the macroscopic equation associated
with 〈x2〉. Section IV focuses on the study of low-dissipation
approach to calculate the efficiency at maximum power of
each heat engine, and the theoretical results are compared
with other reported results. The conclusions and comments
are given in Sec. V.

II. STOCHASTIC HEAT ENGINE

Usually the mathematical model proposed to describe the
dynamics of a Brownian heat engine in contact with a heat
bath of temperature T is given by a Langevin equation asso-
ciated with a Brownian particle in a harmonic potential trap
with stiffness κ , U (x) = 1

2κx2. The Langevin equation can be
written as

m
d2x

dt2
= −γ

dx

dt
− κx + ξ (t ), (1)

where the noise term ξ (t ) is Gaussian with zero mean value
and correlation function 〈ξ (t )ξ (t ′)〉 = γ kB T δ(t − t ′), with kB

the Boltzmann constant, m the particle mass, γ = 6πζa the
friction coefficient, ζ the fluid viscosity, and a the radius of
the particle assumed to be a sphere. In the overdamped regime
it becomes

γ
dx

dt
= −κx + ξ (t ). (2)

This equation can easily be transformed into a macroscopic
one for the average value 〈x2〉, that is

γ
d〈x2〉

dt
= −2κ〈x2〉 + 2〈xξ (t )〉. (3)

With the solution of Eq. (2) together with the noise correlation
function it can be shown that 〈xξ (t )〉 = kB T , and thus, the
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macroscopic equation now reads

γ
d〈x2〉

dt
= −2κ〈x2〉 + 2kB T . (4)

It is also clear that in the long time limit, this process reaches
its equilibrium stationary state, and therefore 〈x2〉eq = kB T/κ .

On the other hand, according to Sekimoto [23], the law of
energy balance along a single stochastic trajectory is related
to the amount of work and heat exchanged by a Brownian
particle with its surroundings (heat bath). In the overdamped
regime, Sekimoto shows (in Sec. 4.1.3.2 of his book [23]) that
the average of heat d ′Q over stochastic processes between t
and t + dt for a particular harmonic potential is given by

〈d ′Q〉 =
[
−κ2

γ
〈x2〉 + κ2

γ
kB T

]
dt . (5)

Substituting the solution of Eq. (4), it is easy to show that the
average of the total heat exchanged with the surroundings be-
comes 〈Q〉 = 1

2 kB T . Hence, even in the overdamped regime,
the total energy is E = U + 1

2 kB T .
Returning to Brownian heat engines, it is worth men-

tioning that the construction of Brownian heat engines is
already possible, as can be corroborated in Refs. [17,19,20].
The main characteristic of such heat engines is the external
time-dependent control of both the stiffness of the harmonic
potential trap and heat bath temperature. This fact allows that
the single Brownian particle can perform a nonequilibrium
cyclic process during a finite time, which is the case of the
stochastic Stirling-like [17] and Carnot-like cycles [20].

In recent papers [13,33,34,36,37], the amount of work,
the exchange of heat with the thermal bath, as well as
the efficiency at maximum power performed by a Brown-
ian heat engine during a cycle are calculated along a single
stochastic trajectory, taking into account a specific form of
the time-dependent protocol κ (t ) and temperature T (t ) using
the Langevin and Fokker-Planck theoretical approach. Our
present contribution calculates the efficiency at maximum
power of three stochastic heat engines using an alterna-
tive strategy related only to the Langevin dynamics, and
low-dissipation approach. For this purpose the following is
considered when both the stiffness of the optical trap, as
well as the temperature are time-dependent parameters; the
overdamped Langevin equation is written as

γ
dx

dt
= −κ (t )x + ξ (t ), (6)

and the noise correlation function is assumed to satisfy
〈ξ (t )ξ (t ′)〉 = γ kB T (t )δ(t − t ′). Next, the associated macro-
scopic equation is constructed which becomes

γ
d〈x2〉

dt
= −2κ (t ) 〈x2〉 + 2〈xξ (t )〉. (7)

Also, with the solution of Eq. (6) along with the previous noise
correlation function, Eq. (7) is now given by

γ
d〈x2〉

dt
= −2κ (t )〈x2〉 + 2kB T (t ). (8)

In principle, given some specific protocol for κ (t ) and T (t ),
the nonequilibrium thermodynamic quantities, as the average
work 〈W (τ )〉, average heat 〈Q(τ )〉, etc., during a finite time

τ , can be calculated through the solution of Eq. (8). How-
ever, instead of doing this, the advantage from low-dissipation
strategy [30] is considered to calculate such nonequilibrium
quantities around the equilibrium state. As far as is known, the
low-dissipation method reported in [30] has not yet been con-
sidered in the study of stochastic heat engines. The proposal
allows us to first calculate all the equilibrium thermodynamic
properties of the system through the statelike equation coming
from Eq. (8).

III. QUASISTATIC DESCRIPTION OF BROWNIAN
HEAT ENGINES

The thermodynamic properties of the Brownian heat en-
gine, can be calculated by means of the statelike equation in
a similar way as in the case of an ideal gas in classical
thermodynamics. It can be seen that in the equilibrium state
the stiffness, as well as the temperature proposed in Eq. (8),
become constants and the equation of statelike is given by
〈x2〉eq = kB T/κ . Therefore, a statepoint is characterized by
(〈x2〉, κ, T ) as thermodynamic variables. In what follows con-
siders 〈x2〉eq ≡ 〈x2〉, the average of the total energy 〈E〉 ≡ E ,
the average of work 〈W 〉 ≡ W, and heat 〈Q〉 ≡ Q are the same
as the thermodynamic quantities. On the other hand, it has
been shown above that the total energy E can also be written
as

E = 1
2κ〈x2〉 + 1

2 kB T, (9)

and thus, E = kB T . Once the energy available by the sys-
tem is defined, different thermodynamiclike processes can be
explored, whereas the Brownian particle is in contact with
two thermal baths at different temperatures, hot Th and cold
Tc [17,20,38,39]. To calculate the efficiency at quasistatic con-
ditions for the three aforementioned stochastic heat engines,
the following proceeds: the first lawlike of thermodynamics
along a stochastic trajectory reads in the overdamped regime
as dE = d ′Q + d ′W , where d ′W = ∂U

∂a ◦ da (Stratonovich
type calculus). In our case a = κ , and thus U (x, κ ) = 1

2κ x2

and d ′W = 1
2 x2dκ . However, according to Eq. (9) it can be

shown that d ′Q = 1
2κd〈x2〉 + 1

2 kB dT .
The total work W and exchange heat Q with the sur-

roundings along a quasistatic trajectory, from a one state A
to another state B, are respectively given by

WAB = 1

2

∫ B

A
〈x2〉 dκ, (10)

QAB = 1

2

∫ B

A
κd〈x2〉 + 1

2
kB (TB − TA). (11)

Moreover, the Brownian particle free energy can be obtained
from the partition function given by Z (κ, T ) = √

2πkB T/κ ,
hence F (κ, T ) = −kB T ln

√
2πkB T/κ . In analogy to the dif-

ferential form of the thermodynamic potential for an ideal gas
dF = −SdT − pdV, there is a correspondence with ensem-
bles of a single-confined colloidal particle in the form dF =
−SdT + 
dκ , where the entropy S reads S = −( ∂F

∂T )κ =
(kB/2)[ln(2πkB T/κ ) + 1], and the auxiliary conjugate ther-
modynamic variable 
 also satisfies the statelike equation

 = ( ∂F

∂κ
)T = kB T

2κ
= 〈x2〉

2 . In this equation the trap stiffness

014123-3



O. CONTRERAS-VERGARA et al. PHYSICAL REVIEW E 108, 014123 (2023)

κ

φ

κκκκ1 2 3 4

A

B

C

D
T

T

h

c

FIG. 1. 
-κ thermodynamic diagram of a Carnot-like cycle with
(i) an isothermal expansion (A-B path), (ii) an adiabatic expansion
(B-C path), (iii) an isothermal compression (C-D path), and (iv) an
adiabatic compression (D-A path).

plays the role of an effective volume in the state equation of
an ideal gas p ∼ T/V , while the intensive variable 
 can
be seen as a kind of effective macroscopic pressure. The
theoretical study is complemented with the calculation of
the adiabaticlike equation associated with the system, which
is easily obtained from the condition d ′Q = 0, yielding to
κ = const T 2 consistent with the one previously reported
in [19,40].

In analogy with real-macroscopic heat engines, the energy
conversion efficiency of thermodynamic protocols with single
particles in suspension is constrained by the second law of
thermodynamics [31,40,41], that is

η ≡ 〈W (τ )〉
〈Qh(τ )〉 � ηC , (12)

where ηC is the Carnot efficiency. In thermal equilibrium con-
ditions, i.e., in the quasistatic limit (τ → ∞), the efficiency
for these types of block-thermodynamic cycle models are
close to ηC ; under this condition the power output is zero.

In optically trapped particle systems immersed in a fluid,
isothermal processes are associated with the so-called breath-
ing optical parabola [42,43]. That is, as the stiffness of the
trap is decreased (increased) space for the particle increases
(decreases). Thus, the free energy change, �F , stands for the
useful reversible work during the expansion and compression
processes at fixed temperatures.

A. Carnot-like cycle

The Carnot cycle represents the paradigm of thermal cy-
cles; it consists of two adiabatic and two isothermal branches,
whose maximum efficiency is ηC = 1 − Tc/Th under re-
versible conditions. The Carnot-like cycle for a Brownian
particle can be implemented, modifying the stiffness κ and
the bath temperature T [19], see Fig. 1. The idealized Carnot
cycle involves two quasistatic isothermal processes where T
is kept constant, but κ also changes quasistatically, and two re-
versible adiabatic processes where T and κ change, but along
the adiabatic path, κ = const ∗ T 2. The energetic description
of this Carnot-like cycle can be summarized as follows.

(i) Isothermal expansion process (A → B): In this process
the stiffness potential trap decreases from κ4 → κ3 (κ3 < κ4)
at Th = const. Besides, (�E )AB = 0 and QAB = −WAB,

WAB = kB Th

2

∫ κ3

κ4

dκ

κ
= kB Th

2
ln

(
κ3

κ4

)
< 0, (13)

QAB = −kB Th

2
ln

(
κ3

κ4

)
= kB Th

2
ln

(
κ4

κ3

)
> 0. (14)

(ii) Adiabatic expansion process (B → C): An amount of
work is performed from κ3 → κ1, (κ1 < κ3), while T changes
from Th→Tc. As QBC=0, then WBC=(�E )BC = kB (Th − Tc).

(iii) Isothermal compression process (C → D): This pro-
cess takes place now for increasing values of κ from κ1 → κ2

(κ2 > κ1), while the system is in contact with a thermal bath
at T = Tc, where QCD = −WCD; therefore,

WCD = kB Tc

2

∫ κ2

κ1

dκ

κ
= kB Tc

2
ln

(
κ2

κ1

)
> 0, (15)

QCD = −kB Tc

2
ln

(
κ2

κ1

)
< 0. (16)

(iv) Adiabatic compression process (D → A): The last
amount of work is extracted from κ2 → κ4 (with κ4 > κ2), in
which QDA = 0, and thus WDA = (�E )DA = kB (Th − Tc).

The total work performed by this block-thermodynamic
cycle becomes Wtot = WAB + WBC + WCD + WDA, and ac-
cording to Eq. (12) the efficiency reads

η = Wtot

Qin
=

kB
2

[
Th ln

(
κ4
κ3

) − Tc ln
(

κ2
κ1

)]
kB
2 Th ln

(
κ4
κ3

) , (17)

where Qin = QAB. However, from the adiabatic equation and
according to Fig. (1), it gives

κ3

T 2
h

= κ1

T 2
c

κ4

T 2
h

= κ2

T 2
c

, thus
κ3

κ1
= κ4

κ2
, (18)

and therefore the Carnot-like efficiency becomes

ηC = Th − Tc

Th
= 1 − Tc

Th
, (19)

which is an expected result. As in the thermodynamic case,
the efficiency only depends on the temperatures of the thermal
baths.

B. Stirling-like Cycle

In this subsection the analysis of a Stirling-type cycle is
presented. The first reported experimental micro-size heat
engine was built inspired in this cycle [17]. Analogously to
the macroscopic case, this cycle is composed of two isother-
mal processes linked through two isochoric processes (κ =
const.), as shown in Fig. 2. Each path is swept in a quasistatic
way going between two equilibrium states. For a Brownian
particle in a harmonic trap, the process is carried out under
certain conditions of stiffness and temperature. The energetics
in each trajectory can be stated as follows:
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FIG. 2. 
-κ thermodynamic diagram of a Stirling-like cycle (i)
an isothermal expansion (A-B path), (ii) an isocoric cooling process
(B-C path), (iii) an isothermal compression(C-D path), and (iv) an
isocoric heating process (D-A path).

(i) Isothermal expansion process (A → B): During this pro-
cess the stiffness of the trap changes from κ2 to κ1 (κ1 < κ2)
and Th = const. Besides, �EAB = 0 and QAB = −WAB, with

WAB = kB Th

2
ln

(
κ1

κ2

)
. (20)

(ii) Isochoric process (B → C): In this case the stiffness
remains constant (κ1 = const.) and the potential does not
change: the work vanishes WBC = 0, and the heat is QBC =
(�E )BC, such that

QBC = kB (Tc − Th) < 0. (21)

(iii) Isothermal compression process (C → D): During this
process the stiffness of the trap changes from κ1 to κ2 and
Tc = const, the colder temperature. In this case, (�E )CD = 0
and QCD = −WCD, where

WCD = kB Tc

2
ln

(
κ2

κ1

)
. (22)

(iv) Isochoric process (D → A): Similarly to the second
branch, the stiffness remains constant (κ2 = const) and the
potential does not change: the work vanishes WDA = 0 and
the heat is QDA = (�E )DA, such that

QDA = kB (Th − Tc) > 0. (23)

The efficiency of this cycle is given by

η = Wtot

Qin
=

kB
2

[
Th ln

(
κ1
κ2

) − Tc ln
(

κ1
κ2

)]
kB
2 Th

[
ln

(
κ1
κ2

) + 2(1 − ρS )
(
1 − Tc

Th

)]
=

(
1 − Tc

Th

)
ln

(
κ1
κ2

)
ln

(
κ1
κ2

) + 2(1 − ρS )
(
1 − Tc

Th

) (24)

with Qin = QAB + (1 − ρS )kB (Th − Tc); the parameter ρS con-
siders a possible regeneration mechanism, when ρS = 1 there
is a perfect regeneration and ρS = 0 implies nonregeneration.

κ

φ

κκκκ1 2 3 4

A

BC

D

T
T

h

c

FIG. 3. 
-κ thermodynamic diagram of an Ericcson-like cycle
where (i) an isothermal expansion (A-B path), (ii) an isobaric expan-
sion process (B-C path), (iii) an isothermal compression (C-D path),
and (iv) an isobaric compression process (D-A path).

As in the macroscopic model, for an ideal regeneration pro-
cess, the Carnot efficiency is recovered, otherwise, η < ηC .

C. Ericsson-like Cycle

Another cycle that can be constructed using a pair of
isotherms is one that includes a pair of isobaric processes,
so-called an Ericsson cycle. For the system that concerns
us in this work, an Ericsson-like cycle can be implemented
as indicated in Fig. 3. There are two quasistatic isothermal
processes, where κ changes but T remains constant, and two
quasistatic isobaric processes where both κ and T change
simultaneously. The four stages of the Ericsson cycle can be
stated as follows:

(i) Isothermal expansion process (A → B): The optical
trap is heated at Th = const, changing from κ4 → κ3 (κ3 <

κ4). Besides, (�E )AB = 0 and QAB = −WAB, see Eqs. (13)
and (14).

(ii) Isobaric expansion process (B → C): The expanded
space for a Brownian particle changes from κ3 → κ1, (κ1 <

κ3) and picks up heat at a high constant-
u value from Th →
Tc. Then, from Eqs. (10) and (11),

WBC = 
u

∫ κ1

κ3

dκ = 
u(κ1 − κ3) = kB

2
(Tc − Th) < 0,

(25)

QBC = kB

2

∫ Tc

Th

dT = kB

2
(Tc − Th) < 0, (26)

where the equationlike state 2
 = 〈x2〉 has been used to ob-
tain Eq. (26).

(iii) Isothermal compression process (C → D): The com-
pression space for the colloidal particle is cooled at Tc =
const, modifying κ from κ1 → κ2 (κ2 > κ1), as well as QCD =
−WCD, see Eqs. (15) and (16).

(iv) Isobaric compression process (D → A): The com-
pressed space of the optical trap κ2 → κ4 (κ4 > κ2) is carried
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out by decreasing the thermal environment at low constant-

l value from Tc → Th. Thus,

WDA = 
l

∫ κ4

κ2

dκ = 
l (κ4 − κ2) = kB

2
(Th − Tc) > 0, (27)

QDA = kB

2

∫ Th

Tc

dT = kB

2
(Th − Tc) > 0. (28)

For this cycle, the total work performed is: Wtot = WAB +
WBC + WCD + WDA. The total heat input to the cycle is Qin =
QAB + 1

2 kB(Th − Tc), the one absorbed in the hot isotherm and
in the isobaric branch in this case, as in the Stirling cycle,
a possible heat regeneration mechanism can be proposed in
such a way that Qin = QAB + 1

2 (1 − ρE )kB(Th − Tc), where ρE

is associated with the efficiency of the regenerator between
isobaric branches. Thus, the expression for the efficiency for
this Ericsson-like cycle reads

η = Wtot

Qin
=

kB
2

[
Th ln

(
κ1
κ2

) − Tc ln
(

κ4
κ3

)]
kB
2 Th

[
ln

(
κ1
κ2

) + (1 − ρE )
(
1 − Tc

Th

)]
=

(
1 − Tc

Th

)
ln

(
κ1
κ2

)
ln

(
κ1
κ2

) + (1 − ρE )
(
1 − Tc

Th

) , (29)

since κ1 = (T 2
c /T 2

h )κ3 and κ2 = (T 2
c /T 2

h )κ4. Additionally,
as in the Stirling cycle, 0 � ρE � 1, where ρE = 1 would
emulate an ideal regeneration, while ρE = 0 implies null re-
generation at the isobaric processes.

IV. LOW-DISSIPATION METHODOLOGY

Once the equilibrium properties of the above three cycles
are obtained from Eq. (8), the efficiency at maximum power
for each irreversible heat engine will be calculated. The opti-
cal trapping techniques use pressure radiation and a focused
beam of light to hold in place, or move small-scale objects
inside low-density thermal environments [44–47]. In this case,
the irreversible average work and irreversible average heat are
given respectively by 〈W 〉 ≈ 〈W 〉∞ + �

τ
and 〈Q〉 ≈ 〈Q〉∞ −

T �
τ

, where 〈W 〉∞ and 〈Q〉∞ are the average work and av-
erage heat, respectively, under equilibrium conditions. Here,
the parameter � takes into account all information coming
from any irreversibility sources, including the time-dependent
protocols.

It is important to highlight that within the low-dissipation
approach, the adiabatic processes in a macroscopic Carnot
heat engine are considered instantaneous, and the irreversible
effects are present only in two isothermal processes. In a
similar way, the cases of the stochastic Carnot-, Stirling-,
and Ericsson-like cycles, consider respectively the isothermic,
isochoric, and isobaric processes as instantaneous ones. This
means that the relaxation time (time to reach the equilibrium
state) of Brownian particles is much faster with respect to the
quenching time of the temperature.

A. Performance of an irreversible Carnot-like cycle

In the model of the Carnot cycle, the heat exchanges with
the thermal baths only take place in the isothermal branches.

Thus, by following the idea of Esposito et al. [30], an en-
semble of colloidal particles in contact with thermal baths is
now considered. However, each particle is in contact with both
reservoirs, the time τ1 is related to the hot branch, while τ2 to
the cold branch, with τ1 and τ2 being finite times. Under this
scheme, there is an entropy production per cycle given by

�̇ = �1

τ1
+ �2

τ2
. (30)

The quasistatic regime is reached when τ1 → ∞ as well as
τ2 → ∞. That is, there is total exchanged heat due to an
amount of dissipated energy for each process. Thus,

Q1 = Tc

(
−�S − �1

τ1

)
,

Q2 = Th

(
�S − �2

τ2

)
. (31)

In this weak dissipation approximation, �1 and �2 are as-
sociated with the increase of dissipated energy when the
isothermal processes are carried out at finite time. Then, from
Eqs. (14) and (16), the power output for this Brownian Carnot-
like cycle is given by

P ≡ −W

τ
= (Th − Tc)�S − ( Tc�1

τ1
+ Th�2

τ2

)
τ1 + τ2

=
kB
2 (Th − Tc) ln

(
κ1
κ2

) − ( Tc�1
τ1

+ Th�2
τ2

)
τ1 + τ2

. (32)

Under these assumptions, a system can achieve the so-called
maximum power output regime when the derivatives of P
with respect to τ1 and τ2 are equal to zero. After substitut-
ing Eqs. (14) and (16) into Eq. (32), the physical attainable
solution for τ1 and τ2 are

τ ∗
1 = 4Tc�1

(Th − Tc)kB ln
(

κ1
κ2

)
⎛
⎝1 +

√
Th�2

Tc�1

⎞
⎠,

τ ∗
2 = 4Th�2

(Th − Tc)kB ln
(

κ1
κ2

)
⎛
⎝1 +

√
Tc�1

Th�2

⎞
⎠. (33)

The same expressions found by Esposito et al. [30] for a
macroscopic heat engine performing finite-time Carnot cy-
cles. By considering Eqs. (31) and (33), as well as the
expression for the efficiency [see Eq. (17)], the efficiency at
maximum power regime is obtained as follows:

ηMP =
(Th − Tc)

(
1 +

√
Tc�1
Th�2

)
Th

(
1 +

√
Tc�1
Th�2

)2 + Tc
(
1 − �1

�2

) . (34)

For a symmetric dissipation case (�1 = �2), the well-known
Curzon-Ahlborn efficiency is recovered:

ηMP = 1 − √
1 − ηC = 1 −

√
Tc

Th
≡ ηCA . (35)

On the other hand, when asymptotic asymmetric cases are
considered, �1/�2 → 0 lead ηMP tends to an upper bound,
namely ηu

MP
= ηC/2−ηC . Likewise, if �1/�2 → ∞, then ηMP
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FIG. 4. Efficiency at maximum power of an irreversible Carnot-
like cycle as a function of θ . The Curzon-Ahlborn efficiency is
denoted by the solid line. Diamond represents the value found
in [20]. The upper and lower bound for the asymmetric cases are
marked by a dot dashed line and a dashed line, respectively.

tends to a lower bound: ηl
MP = ηC/2. Figure 4 shows ηMP as

function of θ (where θ = Tc/Th), and the physically attainable
region for the performance of these Brownian systems within
the weak dissipation approach in the same way as in [48,49].
The experimental value (θ ≈ 0.57, ηMP ≈ 0.25) obtained
for the efficiency at maximum power of the Carnot cycle

developed with a Brownian particle [20] is also shown (dia-
mond), and it is located in the physical attainable region (see
Fig. 4). This shows that considering a low dissipation model,
where all irreversibilities are quantified through the isother-
mal branches and the adibatic branches as instantaneous, is
consistent with the experimental results.

B. Performance of irreversible Stirling and Ericsson-like cycles

The other two symmetric block-thermodynamic cycles
(Stirling and Ericsson) can be also studied within the weak
dissipation approximation. From [17], the experiment for a
stochastic Stirling heat engine has been performed along two
isothermal processes and, due to the difficulties to keep hot
and cold reservoirs thermally isolated, the temperature of
the surrounding liquid is suddenly changed in the isochoric
processes. Therefore, considering the sources of irreversibil-
ities only in the isothermal branches is not an unavailable
assumption and the approach of a low dissipation model can
be considered for this cycle. Similarly, for the Ericsson cycle
it will be assumed that the irreversibilities come from the
isothermal branches, while in the isobaric type the thermal
bath and the potential stiffness are changed simultaneously
and instantaneously. Furthermore, the total ratio of entropy
production per cycle of the protocol evolution is expressed by
Eq. (30).

Due to the symmetry along isochoric and isobaric pro-
cesses, the same expression for the entropy transfer as in the
Brownian-Carnot cycle is recovered, and therefore, the power
output for these Brownian Stirling-like and Ericsson-like cy-
cle models [see Eq. (32)].

For the case of a Brownian Stirling cycle and after sub-
stituting Eqs. (31) and (33) into Eq. (24), the efficiency at
maximum power output reads:

ηS
MP

=
(Th − Tc)

(
1 +

√
Th�2
Tc�1

)
Th

(
1 +

√
Tc�1
Th�2

)2 + Tc
(
1 − �1

�2

) + 4(1 − RS )(Th − Tc)
(
1 +

√
T c�1
Th�2

) , (36)

where (1 − RS ) = (1 − ρS )[ln (κ1/κ2 )]. For the symmetric dissipation case (�1 = �2), the efficiency at maximum power output
of a Stirling-like cycle is

ηSS
MP

= ηCA

1 + 4(1 − RS )ηCA

. (37)

The asymmetric cases for this cycle represent two limits, the first (�1/�2 ) → 0 leads to the upper bound η+S
MP =

ηC/[2(1+2(1−RS )ηC )−ηC ]. Moreover, when (�1/�2 ) → ∞, the lower bound is η−S
MP = ηC/2[1+2(1−RS )ηC ].

Figs. 5(a) and 5(b) depict the behavior of ηMP as a function of θ . The energetic performance of these Brownian systems is
sketched for two cases. In (a) a low regeneration process (ρS = 0.1) is emulated while in (b) a high regeneration value (ρS =
0.55). Now, the experimental value (θ ≈ 0.82, ηS

MP ≈ 0.075; represented by diamonds) for a Stirling-like cycle was obtained
by [17], and it is in agreement with the physical attainable region for a low regeneration process [Fig. 5(a)].

Likewise, the efficiency at maximum power output regime for an Ericsson-like cycle is obtained from Eqs. (29), (31), and (33):

ηE
MP =

(Th − Tc)
(
1 +

√
Tc�1
Th�2

)
Th

(
1 +

√
Tc�1
Th�2

)2 + Tc
(
1 − �1

�2

) + 2(1 − RE )(Th − Tc)
(
1 +

√
T c�1
Th�2

) , (38)

where (1 − RE ) = (1 − ρE )[ln (κ1/κ2 )]−1. By assuming the symmetric dissipation (�1 = �2), the efficiency ηE
MP is

ηES
MP = ηCA

1 + 2(1 − RE )ηCA
. (39)
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FIG. 5. Efficiency at maximum power of two irreversible cycles [Stirling-like (S) and Ericsson-like (E)] as a function of θ . (a) and (c) with
low regeneration (ρS = ρE = 0.1), while (b) and (d) represent high regeneration (ρS = ρE = 0.55). The efficiency for the symmetric dissipation
case is denoted by the solid line. Likewise, the upper and lower bound for the asymmetric cases are marked by a dot dashed line and a dashed
line, respectively.

Now, the asymmetric cases can also be studied;
the first (�1/�2 ) → 0 leads to the upper bound η+E

MP =
ηC/[2(1+(1−RE )ηC )−ηC ]. On the other hand, when (�1/�2 ) → ∞,
the lower bound is η−E

MP = ηC/2[1+(1−RE )ηC ].
In the same way, Figs. 5(c) and 5(d) also depict the behav-

ior of ηMP as function of θ . The energetic performance for a
proposal of Brownian systems with an Ericsson-like cycle can
be sketched for the same two cases: in (c), a low regeneration
process (ρE = 0.1); in (d), a high regeneration (ρE = 0.55).
Note, the general expressions for the performance of Brown-
ian engines at maximum power [see Eqs.(34), (36), and (38)]
show an energetic hierarchy, namely ηS

MP < ηE
MP < ηMP. The

point (θ ≈ 0.69, ηE
MP ≈ 0.16), denoted by diamonds which

is shown in Figs. 5(c) and 5(d), has been inferred through
a linear interpolation; that is, as η = η(θ ), it is possible to
determine the equation of the line passing through (θS

MP, ηS
MP)

and (θMP, ηMP); therefore, a qualitative (θE
MP, ηE

MP) can be
obtained. Then, by considering the same Brownian system
in [17,20], the guidelines to emulate an Ericsson-like cycle

under analogous thermodynamics conditions to the Carnot-
and Stirling-like ones can be determined.

Thus, Carnot-, Stirling-, and Ericsson-like cycles exhibit
different constrained performance maps (see Fig. 5). These
graphs explicitly show that the contribution of the absorbed
heat by the isochoric and isobaric paths limit the performance
of the Brownian system. Moreover, the existence of a con-
trolled regeneration system would make it possible to compare
the maximum power developed by both cycles with the Carnot
engine.

V. CONCLUSIONS

In this paper, the strategy of low dissipation for macro-
scopic heat engines [30] has been used to calculate the
efficiency at maximum power of three Brownian heat en-
gines. This is possible with the calculation of the equilibrium
thermodynamic properties of the system, around which an
approximated expression for the irreversible work and heat
has been proposed.
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Our proposal shows that in the case of a stochastic Carnot-
like heat engine, the efficiency at maximum power is similar
to the one reported in [30] for macroscopic heat engines.
Also, in the case for which �1 = �2, it recovers the well
known Curzon-Alborn efficiency. While in the asymmetric
case, an efficiency region is delimited (see Figs. 4 and 5),
which in the cases of Stirling- and Ericsson-like cycles depend
on the possible so-called regeneration mechanism (Fig. 5).
It is important to emphasize that the experimental value of
the efficiency, in the Carnot and Stirling cycles, is located
in the physical attainable region according to low-dissipation
approach, as shown in Fig. 4 and Fig. 5(a), respectively.

From the experimental works [17,20], a possible experi-
mental value for the efficiency in an Ericsson cycle can be

proposed. This allows to establish a hierarchy for the effi-
ciencies of the three cycles given by ηS

MP < ηE
MP < ηMP, in a

similar way as in the macroscopic heat engines.
Lastly, for a future work, it can be interesting to apply the

low-dissipation analysis to other systems, such as chemical
systems [50].
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