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Symmetries of many-body systems imply distance-dependent potentials
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Considering an interatomic potential U (q), where q = [q1, q2, . . . , qN ] ∈ R3N is a vector describing positions
qi ∈ R3, it is shown that U can be defined as a function of the interatomic distance variables ri j = |qi − q j |
provided the potential U satisfies some symmetry assumptions. Moreover, the potential U can be defined as a
function of a proper subset of the distance variables ri j , provided N > 5, with the number of distance variables
used scaling linearly with the number of atoms N .
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I. INTRODUCTION

The theory of classical interatomic potentials has been
developed for decades; a review of this research area is pro-
vided by Murrell et al. [1] and more recently by Ackland [2].
The basis of molecular modeling is dependent on creating a
suitable potential energy function that defines the free-energy
surface and dynamics of the system accurately while also
balancing computational feasibility. One must compromise by
reducing the degrees of freedom with some method of coarse
graining [3]. A key way to do this is by explicitly constructing
a potential energy function that reduces the complexity of
the system. Many such function choices can naturally arise
for a given system [4]. Pair potentials are commonly used
to approximate potential energy contributions, though caution
must be taken to use these appropriately [5]. Despite this,
effective pair potentials in many classical circumstances have
had fair degrees of success for decades in simulations of
liquids [6–11].

To obtain more accurate results from thermodynamic cal-
culations, many-body contributions are considered in the
potential energy function [12,13]. An example potential
incorporating two-body and three-body terms is the Stillinger-
Weber potential [14], which accurately incorporates the
geometry of silicon, meaning that, not only do the pairwise
bonds between the silicon atoms matter, but so do the trian-
gular substructures connecting neighboring atoms [15]. The
embedded-atom-method potentials [16] incorporate an effec-
tive pairwise potential and a density-dependent contribution
without explicitly using the geometric features. Progressing
from pair potentials to those incorporating three-body terms
and four-body terms, the most general interatomic potential
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considered is a sum of all of these contributions, which can
also include the single-body terms that arise when an external
field is present. The n-body terms are explicitly evaluated
given the coordinates of the N atoms, which can be thought
of as vertices of a polygon (if coplanar) or a polyhedron.
These n-body terms in the potential are then thought of as con-
tributions arising from the n-gon substructures of the shape
formed by the vertices. This forms the basis of fragmentation
methods used in ab initio quantum chemistry; a summary
and a closed-form expression for energy were presented by
Richard et al. [17]. Tandem to this, cluster descriptions of
many-body configurations [18] can also be used in conjunc-
tion with n-body expansions of the many-body potential [19],
which differs from the previous method as this relies on the
ordering of vertices as opposed to their position.

Nonreciprocal interactions, where pairwise forces do not
obey Newton’s third law [20], are applicable to colloidal
physics [21], plasma physics [22,23], and active transport
[24]. The statistical mechanics framework used to analyze
such a system that exhibits nonreciprocity relies on defining
an interatomic potential; Ivlev et al. [25] provided some pi-
oneering analysis in this area. A question that has not been
answered is characterizing when a general interatomic po-
tential displays nonreciprocal interactions. For example, if
the potential depends purely on pairwise distances, then reci-
procity is a consequence; so one possible way to approach
this problem is to study under what symmetries can we con-
clude that a general position-dependent potential function can
be written as a function that depends purely on distances.
Separately, this is a fundamental question that underpins clas-
sical potential theory and it is addressed in this paper in
Theorems 1 and 2. We should note that thought into sym-
metries of a potential was undertaken by Kinghorn and
Adamowicz [26]. It was used to analyze a specific functional
form of potential developed, while in Sec. II we consider a
general potential with the goal of understanding when dis-
tances are appropriate variables used to describe the potential
function. The potential function U considered in this paper has
translational, rotational, and reflectional symmetries as for-
mulated in Definition 1, where we study systems of identical
particles (atoms or, more generally, coarse-grained particles).
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We present proofs of Theorems 1 and 2 in Sec. III, where
we also show that we require only a relatively small subset
of distances to uniquely determine the potential as stated in
Theorem 2. Limitations of this description are discussed in
Sec. IV, where we also present some generalizations of Theo-
rems 1 and 2 to mixtures of atoms of different types.

II. RESULTS

The configuration of a system of N atoms at positions qi,
i = 1, 2, . . . , N , is defined as a 3N-dimensional vector q =
(q1, q2, . . . , qN ) ∈ R3N . We note that these can provisionally
be thought of as vertices of an N-gon, or an N-polyhedron,
assuming that qi �= q j for i �= j. The lengths of edges are
distances between atoms, which we define as

ri j = |q j − qi| for i, j = 1, 2, . . . , N. (1)

In this paper we study potential functions U : R3N → R
called central potential functions, which satisfy certain sym-
metries as specified in Definition 1. These symmetries are
(i) translational invariance, (ii) rotational invariance, (iii) re-
flectional invariance, and (iv) parity for i and j identical
atoms. An example of potential satisfying the assumptions in
Definition 1 is

U (q) =
N∑

i< j

�2(ri j ) +
N∑

i< j<k

�3(ri j, rik, r jk ), (2)

where �2 : [0,∞) → R and �3 : [0,∞)3 → R are two-body
and three-body potentials which depend on distances between
atoms.

Definition 1. A function U :R3N −→ R ∪ {±∞} is called a
central potential function provided it takes finite values on the
subset

� = {q ∈ R3N | q = {q1, q2, . . . , qN } with qi �= q j for i �= j}
and for any q ∈ � it satisfies

(i) U (q1 + c, q2 + c, . . . , qN + c) = U (q1, q2, . . . , qN )
for all translations c ∈ R3,

(ii) U (R q1, R q2, . . . , R qN ) = U (q1, q2, . . . , qN ) for all
rotations R ∈ SO(3),

(iii) U (Q q1, Q q2, . . . , Q qN ) = U (q1, q2, . . . , qN ) for
all reflections Q satisfying that all points qi, i = 1, 2, . . . , N ,
lie on one side of the plane of reflection,

(iv) U (q1, . . . , qi, . . . , q j, . . . , qN ) = U (q1, . . . , q j, . . . ,

qi, . . . , qN ) for any i, j = 1, 2, . . . , N .

The symmetries considered in Definition 1 are satisfied
by other generalizations of the example potential (2), which
include n-body terms depending only on the distances (1)
between atoms. In fact, the symmetries (i)–(iv) imply that
the potential U :R3N → R can be written as a function of
distances. We have the following theorem, which we prove
in Sec. III.

Theorem 1. A central potential function U : R3N −→ R can
be written as

φ : [0,∞)N (N−1)/2 −→ R,

where the N (N − 1)/2 inputs are interpreted as the set of all
pairwise distances (1) between atoms.

Considering N = 2, Theorem 1 states that a central poten-
tial function U of six variables can be written as a function φ

of one variable r12. Consequently, Theorem 1 reduces the di-
mensionality of the potential U for any N < 7. If N = 7 then
we have 3N = N (N − 1)/2 = 21 and the 21-dimensional
state space R3N corresponds to the 21 distance variables (1).
Since the dimension of the state space scales as O(N ) and
the number of distances scales as O(N2), Theorem 1 can be
further improved by considering only a subset of the distance
variables (1). In Sec. III we also prove the following result.

Theorem 2. Let N � 4. Then a central potential function
U : R3N −→ R can be written as

φ : [0,∞)4N−10 −→ R,

where the 4N − 10 inputs are a subset of the set of all pairwise
distances (1).

Considering N = 4 and N = 5, we have 4N − 10 = 6 and
4N − 10 = 10, respectively. In particular, Theorems 1 and 2
state the same conclusion for N = 4 and N = 5. Theorem 2
improves the result of Theorem 1 for N > 5. We will prove
Theorems 1 and 2 together in Sec. III by considering the cases
N = 2, N = 3, N = 4, N = 5, and N > 5.

Applying Theorem 2 to our example potential (2), we
observe that it reduces the number of independent variables
for N > 5. In particular, while the function φ constructed in
the proof of Theorem 2 depends only on distances (1), it is not
given in the form (2).

In addition to central potential functions satisfying condi-
tions in Definition 1, there are potentials to which Theorems 1
and 2 are not applicable. For example, if the potential U
corresponds to an external nonuniform field �1, then we have

U (q) =
N∑

i=1

�1(qi )

and U will not satisfy the conditions in Definition 1 nor will
it be possible to write as a function of pairwise distances (1).
Assuming that there is no external field present and that we
have a system of N identical atoms interacting [i.e., U satisfies
condition (iv) in Definition 1], then we can formally write it
as a sum of the n-body interactions for 2 � n � N in the form

U (q) =
N∑

i< j

U2(qi, q j ) +
N∑

i< j<k

U3(qi, q j, qk ) + · · ·

+ UN (q1, . . . , qN ), (3)

where we can naturally think about n polyhedrons of atoms as
the input to the potential function, but these are fixed in space
and a natural assumption is that given this input, it should not
matter where we fix this polyhedron [leading to translational
invariance (i)] or how we orient this polyhedron [rotational in-
variance (ii)]. One slightly more subtle assumption is that we
should be allowed to reflect our polyhedron in any plane that
keeps the polyhedron on one side [reflectional symmetry (iii)].

One difference between symmetries (i) and (ii) and
symmetries (iii) and (iv) is that the former are continu-
ous symmetries whereas the reflection invariance (iii) and
parity (iv) are not. Noether’s theorem [27] states that each
continuous symmetry gives rise to a corresponding conserved
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quantity (in a closed system). In particular, translational in-
variance (i) leads to conserved linear momentum (which is
a consequence of reciprocity of forces) and rotational in-
variance (ii) gives rise to conserved angular momentum. In
the next section we provide a proof that functions obeying
symmetries (i)–(iv) should only rely on distances and we also
show that a proper subset of pairwise distances for N > 5 can
be used to describe the potential function U .

III. PROOFS OF THEOREMS 1 AND 2

We prove Theorems 1 and 2 together by considering the
cases N = 2, N = 3, N = 4, and N = 5, followed by an in-
ductive argument for N > 5. We define displacement vectors
by

�i j = q j − qi for i, j = 1, 2, . . . , N, (4)

i.e., we have ri j = |�i j |.

A. Case N = 2

We define the function φ : [0,∞) → R by

φ(s) = U (0, sk̂) = U (0, 0, 0, 0, 0, s), (5)

where k̂ is a unit vector in the direction of the positive z
axis and 0 = [0, 0, 0]. Given atom positions q1, q2 ∈ R3, we
translate the configuration to position atom 1 at the origin.
Using symmetry (i) in Definition 1, we have U (q1, q2) =
U (0,�12). We then rotate the axes using rotation R1 ∈ SO(3)
such that the displacement vector connecting the two atoms is
aligned with the positive z axis, giving R1�12 = r12k̂, while
maintaining R10 = 0. Using symmetry (ii) in Definition 1, we
have

U (q1, q2) = U (0,�12) = U (0, r12k̂) = φ(r12),

where the last equality follows from our definition (5). This
concludes the proof of Theorem 1 for N = 2.

B. Case N = 3

Given atom positions q1, q2, q3 ∈ R3, we consider the
function U (q1, q2, q3). Using symmetry (i) in Definition 1,
we translate the configuration to position atom 1 at the origin
and consequently we have

U (q1, q2, q3) = U (0,�12,�13).

Given that we have three axes to rotate around, we can always
find a rotation R1 such that R1�12 = r12k̂, as we did in the
N = 2 case. Using symmetry (ii), we have

U (0,�12,�13) = U (0, r12k̂, R1�13).

We note that we can find a rotation R2 about the z axis which
rotates the triangle defined by the transformed atom positions
0, r12k̂, and R1�13 to a planar triangle in the x-z plane, as
demonstrated in Fig. 1. Using symmetry (ii) again, we have

U (q1, q2, q3) = U (0, r12k̂, R2R1�13).

However, the key point is that R2R1�13 is uniquely defined by
the triangle with lengths r12, r13, and r23, the angles of which

FIG. 1. Schematic of the constructive method in aid of the proof
for the case N = 3.

can be calculated using the cosine rule, i.e., R2R1�13 can be
expressed as⎡

⎣
√

r2
13 −

(
r2

13 + r2
12 − r2

23

2r12

)2

, 0,
r2

13 + r2
12 − r2

23

2r12

⎤
⎦. (6)

Therefore, there exists a function φ : [0,∞)3 → R such that
U (q1, q2, q3) = φ(r12, r13, r23) for any q1, q2, and q3, con-
firming Theorem 1 for N = 3.

C. Case N = 4

Given atom positions q1, q2, q3, q4 ∈ R3, these can be
thought of as defining the vertices of a tetrahedron (or if
coplanar a quadrilateral). Following similar steps as in the
case N = 3 in Sec. III B, we translate atom 1 to the origin,
apply rotation R1 to orient the displacement vector �12 with
the positive z axis, and then do a second rotation R2 that fixes
the triangle formed by the vertices of atoms 1, 2, and 3 in the
x − z plane. As in Sec. III B, we have

U (q1, q2, q3, q4) = U (0, r12k̂, R2R1�13, R2R1�14).

Using Eq. (6), we know that R2R1�13 is determined entirely
by distances r12, r13, and r23. All that remains to be shown
is that R2R1�14 is determined by pairwise distances. We note
that the triangle formed by atoms 1, 2, and 3 (denoted by ABC
in the lower part of our illustration of the proof in Fig. 2) is
uniquely determined (after orienting one side with the positive
z axis). Consequently, this fixes the side BC. On the other
hand, the triangle BCD is uniquely determined (as one side BC
is fixed) by distances r23, r24, and r34. These can be thought
of as two triangles which can rotate around a hinge BC, so
to determine the vector R2R1�14 we necessarily need the final
distance r14 that gives the angle between the planes containing
triangles ABC and BCD (two configurations are illustrated in
Fig. 2). If triangles ABC and BCD are coplanar, the set of all
pairwise distances, with this orientation, will give a unique
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FIG. 2. Schematic of the constructive method in aid of the proof
for N = 4. For clarity we have highlighted only the additional three
displacement vectors, though the triangle formed by vertices {1, 2, 3}
lying in the x-z plane is the same as in Fig. 1.

description of R2R1�14. If these triangles are not coplanar, this
final distance gives two possible vectors for R2R1�14. These
correspond to a unique R2R1�14 and the copy obtained by
reflection in the plane containing triangle ABC. However, by
property (iii) we know that if we reflect in the plane containing
ABC with a matrix denoted by Q, then

U (0, r12k̂, R2R1�13, R2R1�14)

= U (0, r12k̂, R2R1�13, QR2R1�14).

Therefore, there exists a function φ : [0,∞)6 → R such
that U (q1, q2, q3, q4) = φ(r12, r13, r14, r23, r24, r34) for any
q1, q2, q3, and q4, confirming Theorem 1 for N = 4.

D. Case N = 5

To proceed in this case, we note that any N-vertex poly-
hedron can be made by adding a single vertex to an N − 1
polyhedron or polygon (in the case where all other points

are coplanar). The task at hand, as in the case N = 4 in
Sec. III C, is being able to determine the displacement vectors
once we have translated and rotated the configuration such
that R2R1�12 = r12k̂ is aligned with the positive z axis.

An N = 5 polyhedron can be constructed from adding a
vertex onto either a preexisting N = 4 polyhedron (at most
three points are coplanar) or an N = 4 polygon (where all
points are coplanar). In the first case, we may take any three
vertices on the preexisting polyhedron; we call these vertices
the transformed positions of atoms 2, 3, and 4 [by property
(iv) in Definition 1]. If we know r25, then this fifth vertex
must lie on a sphere of radius r25, with the transformed
position of atom 2 as the center; we denote this by S2. Sim-
ilarly, we construct S3 and S4 as spheres of radii r35 and
r45, respectively. This is illustrated in Fig. 3(a). The fifth
vertex lies at the intersection of three spheres S2, S3, and
S4, which contains at most two points. If it contains exactly
two points, then we need another distance r15 (which is the
distance from the vertex in the preexisting polyhedron that
was not used as a center of spheres S2, S3, or S4) to determine
which of those two positions is correct [see Fig. 3(b)]. In
this way, four more distances are used to specify all of the
vertices of the N = 5 polyhedron. Therefore, there exists a
function φ : [0,∞)10 → R such that U (q1, q2, q3, q4, q5) =
φ(r12, r13, r14, r15, r23, r24, r25, r34, r35, r45) for any q1, q2, q3,
q4, and q5.

To arrive at this conclusion, we used an assumption that
four points are not coplanar. If this is not the case, then
we need fewer distances for the specific configuration. For
example, if the four preexisting vertices are coplanar, utiliz-
ing the sphere approach for any three of those vertices will
result again in two possible positions for vertex 5; however,
using the pairwise distance between this vertex and the new
vertex gives no information, as the fourth point lies on the
plane of symmetry formed by the spheres. In this case we
use property (iii), considering the reflective symmetry about
this plane to argue that we have determined all displacement
vectors with this orientation uniquely up to a reflection in the
plane containing vertices 1, 2, 3, and 4. In this case, we do

(a)

(b)

FIG. 3. (a) The intersection of three spheres, based on three known centers and radii, is used to position an additional vertex. (b) A fourth
vertex, chosen noncoplanar to the three vertices used to construct the spheres previously, is used to uniquely determine the fourth vertex
position.
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not need the fourth distance mentioned above, and evaluat-
ing U (q1, q2, q3, q4, q5) is possible with the nine pairwise
distances. The tenth distance is also not needed if the inter-
section of spheres S2, S3, and S4 is exactly equal to one point
(when vertices 2, 3, and 4 are collinear). Thus we have proven
Theorems 1 and 2 in the case N = 5.

E. Case N > 5

We inductively prove that a setup similar to that in the
N = 5 case in Sec. III D works by constructing polyhedra
of higher order by the addition of a new vertex, that is, the
N − 1 case requires the set of distances DN−1 to evaluate
U (q1, . . . , qN−1), where |DN−1| = 4(N − 1) − 10, which is
true for the base case of N = 5. The most general case to
consider is when we have an N − 1 polyhedron before we
introduce the new vertex. In this case, any three of the N − 1
vertices can be chosen, say, i, j, and k. The three distances riN ,
r jN , and rkN are used to create three intersecting spheres and
two potential positions for vertex N . We use vertex l , which
is not coplanar to i, j, and k, and distance rlN determines this
position uniquely. Therefore, the required set of distances to
evaluate U (q1, . . . , qN ) is DN = DN−1 ∪ {riN , r jN , rkN , rlN },
i.e., we need 4N − 10 pairwise distances. If there are at least
four coplanar points, then we only need three additional pair-
wise distances (so we would only need 4N − 11 pairwise
distances). Since the inductive step holds for all N and it
works for the base case of N = 5, this concludes our proofs
of Theorems 1 and 2 for all N .

IV. DISCUSSION AND CONCLUSIONS

Theorems 1 and 2 show that symmetries of the many-body
system imply that the potential U can be written in a form
which only depends on pairwise distances between atoms.
Since U is a function of the 3N-dimensional state space,
Theorem 1 provides a nonlinear transformation of U from
a function of 3N variables q into a function of N (N − 1)/2
distance variables, which is not optimal, as it is shown in
Theorem 2 where the number of distance variables scales
linearly with N .

Considering the example potential (2), which depends on
all N (N − 1)/2 distance variables, Theorem 2 provides a re-
duction of the number of distance variables to O(N ). However,
if we use the resulting form of the potential φ this does not
directly translate to O(N ) complexity of evaluating φ. To
illustrate this, let us consider our example potential (2) with
�2(ri j ) = 1/ri j and �3 ≡ 0, giving

U (q1, q2, . . . , qN ) =
∑

{i, j}∈S

1

ri j
+

∑
{i, j}�∈S

1

ri j
, (7)

where ri j is defined by (1) and S is the set of pairs of indices
{i, j} corresponding to the subset of distances which is used
to define φ in Theorem 2.

Theorem 2 shows that the number of elements in the set
S scales as O(N ), i.e., the number of terms in the first sum
on the right-hand side of (7) is O(N ), while the number of
terms in the second sum on the right-hand side of (7) scales as

O(N2). Considering {i, j} �∈ S , we can find k ∈ {1, 2, . . . , N}
such that {i, k} ∈ S and { j, k} ∈ S . In particular, the distance
ri j for {i, j} �∈ S can be expressed in terms of distances rik and
r jk using the cosine rule. Therefore, we can find an explicit
form of the potential U as a function of O(N ) distances corre-
sponding to the indices in the set S . However, the second term
in the form (7) will contain summations over O(N2) terms,
that is, Theorem 2 does not reduce the O(N2) complexity of
calculations of φ. It has been included to illustrate that the
number of distance variables needed scales linearly with N in
the same way the dimension of the phase space scales linearly
with N . Theorem 2 provides a nonlinear transformation of U
from a function of 3N variables q into a function φ of 4N − 10
distance variables for N � 4. While it improves the O(N2)
scaling of Theorem 1, this result does not reduce the number
of independent variables for N � 11. If N = 10, then 3N =
4N − 10 and the number of distance variables used to define
φ in Theorem 2 is the same as the number of independent
variables defining U , while Theorem 2 provides a reduction
in dimensionality for N < 10.

Theorem 1 has been formulated as an implication, stating
that symmetries (i)–(iv) of a central potential function in Def-
inition 1 imply that the potential can be written as a function
of pairwise distances (1). However, translations, rotations,
and reflections are Euclidean isometries, preserving pairwise
distances between atoms, so a partial inverse of Theorem 1
also holds, i.e., any potential given as a function of pairwise
distances satisfies symmetry assumptions (i)–(iii). Property
(iv) states that we consider systems of identical particles in
this paper. In particular, symmetries (i)–(iv) are both neces-
sary and sufficient conditions for a potential to be expressed
as a function of pairwise distances for systems of identical
atoms.

We can generalize Theorems 1 and 2 to mixtures of par-
ticles, i.e., for systems when symmetry (iv) in Definition 1
does not hold. Then properties (i)–(iii) of potential U imply
that it can be expressed as a function of pairwise distances.
If we further reduce the number of symmetries the potential
U has, then we can find potential functions which cannot be
expressed as a function of pairwise distances. For example,

U (q) = U (q1, q2, . . . , qN ) = d · (q2 − q1)

for any nonzero constant vector d satisfies the translational
symmetry (i), but not the rotational symmetry (ii). An example
of a potential function satisfying the rotational symmetry (ii)
but not the translational symmetry (i) is U (q) = |q1|. In fact,
symmetries (i)–(iii) are both necessary and sufficient condi-
tions for a potential to be expressed as a function of pairwise
distances (for systems of nonidentical particles).
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