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Universal dynamics of spatiotemporal entrainment with phase symmetry
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We study the entrainment of a localized pattern to an external signal via its coupling to zero modes associated
with broken symmetries. We show that when the pattern breaks internal symmetries, entrainment is governed
by a multiple degrees-of-freedom dynamical system that has a universal structure, defined by the symmetry
group and its breaking. We derive explicitly the universal locking dynamics for entrainment of patterns breaking
internal phase symmetry, and calculate the locking domains and the stability and bifurcations of entrainment of
complex Ginzburg-Landau solitons by an external pulse.
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I. INTRODUCTION

Entrainment is a central paradigm of nonlinear science,
which can arise whenever a continuous symmetry is broken in
two or more coupled systems. When the broken symmetry is
time-translation invariance, entrainment leads to synchroniza-
tion, of which the simplest example is the frequency locking
of limit cycles of nonlinear oscillators, either by external
injection, as in the van der Pol circuit [1], or by mutual
interaction, such as in Huygens’ pendulum clocks [2]; mutual
synchronization can give rise to collective behavior when the
number of synchronized oscillators is large [3–5]. Synchro-
nization occurs on more complex attractors as well, including
quasiperiodic [6] and chaotic [7–10] attractors. Synchroniza-
tion may take place in spatially extended systems [11,12], of
which recently studied examples include dissipative optical
soliton breathers [13], Kerr [14,15] and laser [16] frequency
combs, and optomechanical [17,18] oscillators.

Entrainment of steady states breaking space-translation
invariance leads to wave-number locking, either by external
injection [19–22], or by mutual interaction [23,24]. Patterns
breaking both time- and space-translation invariance can be
spatiotemporally entrained by spatially uniform temporally
periodic driving [25–27], as well as by injection of traveling
waves [28–33].

The entrainment phenomenon is ubiquitous because it is
tied to spontaneous symmetry breaking. The entrainment
dynamics is universal for the same reason. For example,
synchronization of a limit cycle always involves the locking
dynamics of a phase, which is the variable associated with
the zero mode that appears in the stability spectrum of the
limit cycle as a result of the breaking of a continuous time-
translation invariance to a discrete one; this mechanism is
independent of the details of the dynamical system, and for
this reason the phase evolution is captured by the universal
Adler equation [2].

Here, we study the entrainment effect for localized patterns
that break internal symmetries in addition to space-translation
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invariance. Then, the stability spectrum of the pattern has
internal-symmetry zero modes in addition to the translation
zero mode. A general perturbation couples to all the zero
modes, producing a multiple degrees-of-freedom locking dy-
namical system that nevertheless has a universal structure for
each set of broken internal symmetries.

We present two sets of results: We first derive the universal
form of the locking dynamical system governing the entrain-
ment of localized patterns with an internal phase symmetry,
for which there are two symmetry generators, one for transla-
tions and one for phase shifts. It follows that entrainment in
this class is governed by a two-degrees-of-freedom dynamical
system, which depends on two disparity parameters—relative
velocity and frequency detuning. We show that for a given
external injection there is a bounded locking domain in the
space of possible disparities where the pattern can be stably
entrained, and that the locking domain depends linearly on
the strength of the coupling.

Our second set of results is derived for a concrete example
of pulse solutions of the cubic-quintic complex Ginzburg-
Landau (QCGL) equation injected with Gaussian pulses. We
present locking diagrams showing the locking domains for
several parameter choices of the QCGL equation and in-
jected pulses. The diagrams exhibit the full complexity of a
two-parameter family of two-degrees-of-freedom dynamical
systems, including multistability and curves of saddle-node
and Hopf bifurcations, tangent at Bogdanov-Takens bifurca-
tion points.

II. LOCKING DYNAMICS WITH AN INTERNAL
PHASE SYMMETRY

Consider a pattern-forming dynamical system in one space
dimension

∂�u

∂t
= N [�u], (1)

for the multicomponent field �u(x). The nonlinear operator
N respects space-translation symmetry,

N [�(· − ξ )](x) = N [�(·)](x − ξ ), (2)
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for any shift ξ , and an internal symmetry

N [G�] = GN [�] (3)

for a continuous (Lie) group of global operations G (group
action) that mix the components of � but do not affect the
spatial coordinate x.

We assume that Eq. (1) has at least one stable spatially
uniform, internal-symmetry invariant time-independent solu-
tion, and a stable pattern solution, �0(x), that is localized
near x = 0, and tends to uniform solutions as x → ±∞. In
the frame where �0(x) is stationary, N [�0] = 0. �0 breaks
translation symmetry by being localized, and we assume that
it is not invariant under all the group operations, so that it
breaks internal symmetry as well.

We next let the pattern �0 interact with a weak external
signal F that is localized near x = 0 at t = 0, moving with a
constant velocity v, and undergoing internal symmetry trans-
formations at a constant rate relative to the free pattern, so that
the equation of motion for the perturbed field � becomes

∂�

∂t
= N [�] + e−iGt F (x − vt ); (4)

here, the operation G is an element of the Lie algebra action
on the internal space of �, induced by the group action of (3),
and e−iGt is a one-parameter subgroup of operations.

When t < 0 and |vt | is large, the only effect of the external
injection is a slight perturbation in the tail of the pattern �0,
so that

�(x, t ) ∼
t→−∞ �0(x). (5)

However, when t approaches zero, the injected signal overlaps
with the nontrivial region of the localized pattern, and its
interaction with the position and the internal symmetry of
the pattern may lead to two distinct outcomes as t → +∞.
If the interaction is weak, then the injected signal eventually
overtakes the localized pattern with the interaction becoming
negligible again when |vt | is large, so that the net asymptotic
result of the interaction is a displacement x∞ and an internal
symmetry transformation G∞ of the pattern:

Unlocked: �(x, t ) ∼
t→∞ G∞�0(x − x∞). (6)

On the other hand, if the interaction is strong enough and ef-
fective, then the pattern becomes entrained: That is, as t → ∞
it may become stationary in the injection frame, so that the
pattern-signal interaction remains strong enough to maintain
locking indefinitely with displacement y∞ and internal sym-
metry transformation �∞ relative to the entraining signal,

Locked: �(x, t ) ∼
t→∞ �∞e−iGt�0(x − vt − y∞). (7)

Our goal is to determine which combinations of injection
parameters, F , v, G, lead to asymptotic entrainment as in (7).
The problem is difficult to solve in general, and moreover, our
results below suggest that there exist nonstationary entrained
states. In this view, we focus in the following on the special
case of a pattern breaking an internal phase symmetry. Then
� = (ψ,ψ∗), ψ a complex-valued function, and N [�] =
(O[�],O[�]∗), where O is a complex-function-valued dif-
ferential operator, and ∗ complex conjugation. The symmetry
operation is Gϕ� = (eiϕψ, e−iϕψ∗), and the injection takes

the form e−iGt F = ( f e−iωt , f ∗eiωt ), where f is a complex-
valued function localized near x = 0, and ω is the relative
injection-pattern frequency.

The variables associated with the broken translation and
phase symmetries are the position ξ and overall phase ϕ of
the localized pattern ψ0. Our next goal is to derive the locking
dynamical system for ξ and ϕ. For this purpose note that
even though f is assumed small, ξ and ϕ may become large
for t � 1, since they are associated with broken symmetries,
and therefore experience no restoring force. We accordingly
assume that

ψ (x, t ) = {ψ0[x − ξ (t )] + ψ1[x − ξ (t ), t]}e−iϕ(t ), (8)

where ψ1 is a small shape perturbation.
Using this ansatz in Eq. (4) gives

∂�1

∂t
+ dξ

dt
�ξ + dϕ

dt
�φ = L�1 + F, (9)

where L is the linear stability operator of the pattern, i.e.,
the functional derivative of N with respect to �, evaluated
at �0, and �ξ = −[ψ ′

0, (ψ ′
0)∗], �ϕ = (−iψ0, iψ∗

0 ), are the
zero modes associated with the broken translation and phase
symmetries (respectively), L�ξ = L�ϕ = 0. The assumption
that �0 is a stable pattern implies that the rest of the spectrum
of L is in the left half of the complex plane. We make the
stronger assumption that the spectrum of L, other than the
two symmetry-related zero eigenvalues, is separated from the
imaginary axis by a gap, guaranteeing that �1 remains small
for a sufficiently small injection.

The equations of motion for ξ and ϕ should be derived
from (9); however, these variables are not fully defined by (8),
because a small change in ξ and ϕ can be absorbed into ψ1.
This ambiguity is removed by requiring that

〈�̄ξ , �1〉 = 〈�̄ϕ,�1〉 = 0, (10)

where �̄ξ = (ψ̄ξ , ψ̄
∗
ξ ) and �̄ϕ = (ψ̄ϕ, ψ̄∗

ϕ ) are the zero eigen-
functions of L† (the adjoint of L) corresponding to �ξ and �φ ,
normalized with 〈�̄ξ , �ξ 〉 = 〈�̄ϕ,�ϕ〉 = 1; we use the inner
product

〈
,�〉 ≡ 〈(φ, φ̃), (ψ, ψ̃ )〉 = 1

2

∫ ∞

−∞
dx(φ∗ψ + φ̃∗ψ̃ ).

(11)
Projecting Eq. (9) on �̄ξ and �̄ϕ now gives

dξ

dt
= 〈�̄ξ , F 〉 ≡ cξ (ξ − vt, ϕ − ωt ), (12)

dϕ

dt
= 〈�̄ϕ, F 〉 ≡ cϕ (ξ − vt, ϕ − ωt ), (13)

and making a change of variables to the position and phase
shifts, y = ξ − vt and θ = ϕ − ωt (respectively), we finally
obtain

dy

dt
= cξ (y, θ ) − v, (14)

dθ

dt
= cϕ (y, θ ) − ω, (15)

where the real-valued locking functions cξ and cϕ are local-
ized in y and periodic in θ . Equations (14) and (15) comprise
the universal locking dynamical system for localized patterns
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with an internal phase symmetry interacting with an external
signal. The (stable) fixed points of the locking system corre-
spond to (stable) entrained steady states of the pattern. The
examples studied below show that the structure and properties
of the stable entrained states can be quite varied and complex.
Nevertheless, some general features follow directly from the
equations.

First note that the locking functions take the forms

cξ (y, θ ) = Iξ ≡ g(y) cos [θ − α(y)], (16)

cϕ (y, θ ) = Iϕ ≡ h(y) cos [θ − β(y)], (17)

where

Iξ,ϕ = Re

(
eiθ

∫ ∞

−∞
ψ̄ξ,ϕ (x)∗ f (x − y)dx

)
. (18)

Entrained steady states are solutions (ŷ, θ̂ ) of the system

h(ŷ) cos[θ̂ − α(ŷ)] = v, g(ŷ) cos[θ̂ − β(ŷ)] = ω; (19)

eliminating θ̂ gives the equation

v = (h/g)(ω cos γ ± sin γ
√

g2 − ω2), (20)

where γ = β − α, and all functions are evaluated at ŷ.
Disparity parameters combinations (ω, v) for which (20)

has one or more solutions belong to the locking domain, where
entrainment is possible for a given injection signal f . Since f ,
ψ̄ξ , and ψ̄ϕ are localized, it follows that the locking functions
g, h → 0 for |y| → ∞, and are therefore bounded, so that the
locking domain is bounded in the rectangle |v| < max(|h|),
|ω| < max(|g|). For any ω in the latter interval, (20) defines a
function vω(y) defined for all y such that g2(y) > ω2, whose
range is a collection of one or more intervals, and the locking
domain can be pieced together from these intervals by running
over the allowed values of ω; several examples are shown
below.

The stable locking domain consists of those disparity
combinations (ω, v) in the locking domain for which the
eigenvalues of the Jacobian matrix

J =
(

∂ycξ ∂θcξ

∂ycφ ∂θcφ

)
(21)

have negative real parts for at least one entrained steady state.
For such entrained states tr J < 0 and det J > 0, and therefore
at the boundary of the stable locking region either tr J = 0
or det J = 0. The latter equality, together with the fixed-point
condition (19), implicitly defines a curve or curves of saddle-
node bifurcations on the stability boundary, and the former
defines a curve or curves of Hopf bifurcations; the curves of
both kinds meet at points of Bogdanov-Takens bifurcations
where both eigenvalues are zero [34]. Note that the locking
functions g and h, as well as the Jacobian matrix J depend
linearly on f , so that the locking domains and stable locking
domains scale linearly with the injection amplitude.

III. ENTRAINMENT OF COMPLEX
GINZBURG-LANDAU PULSES

The cubic-quintic complex Ginzburg-Landau (QCGL)
equation, defined by the nonlinear operator

FIG. 1. The locking functions h (top) and γ (bottom), for en-
trainment of a QCGL pulse by an externally injected Gaussian pulse.
The QCGL parameters are β = 0.8, δ = −0.1, ε = 0.8, μ = −0.5,
ν = −0.1. [See Eq. (22) for the parameter definitions.] Gaussian
injection parameters are a = 0.1 (here and below) and c = 0.2 (top),
c = 1.3 (bottom).

O[�] = (δ − iω0)ψ + (β + i/2)∂2ψ/∂x2

+ (ε + i)|ψ |2ψ + (μ + iν)|ψ |4ψ, (22)

with real parameters δ, β, ε, μ < 0, and ν, has an internal
phase symmetry, and is known to have stable pulse solutions
in some parameter ranges [35], which become stationary for
appropriately chosen ω0. We will consider entrainment of
QCGL pulses by a Gaussian pulse f (x) = ae−cx2

, a, c > 0.
Owing to the parity symmetry of the QCGL equation, its pulse
solutions are even, ψ0(−x) = ψ0(x), making h an odd func-
tion and g, α, and β even functions of y. These symmetries
imply that if (ŷ, θ̂ ) is a fixed point of (14) and (15) with
detuning parameters v, ω, then so are (−ŷ, θ̂ ) with −v, ω, and
(−ŷ, θ̂ + π ) with v,−ω, and therefore the locking domain is
symmetric with respect to sign flips of both v and ω.

Furthermore, it follows from (21) that under a sign flip of
ŷ the (off-)diagonal elements of J remain invariant (change
sign), so that tr J and det J are unchanged, while a π shift of θ̂
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FIG. 2. The locking function g for entrainment of a QCGL pulse
by an externally injected Gaussian pulse. The g values marked by the
horizontal lines represent admissible values of frequency disparity
ω, and the displacement values y for which g2(y) > ω2 are those for
which there are entrained steady states for this value of ω. When the
injected signal is broad (top), g is unimodal, and there is a single
interval of locked states for each ω, and when the injected signal is
narrow (right), g is bimodal, and there are two disjoint intervals of
locked states for sufficiently large ω. The QCGL and parameters are
as in Fig. 1; the injection width parameters are c = 0.2 (top) and
c = 1.3 (bottom).

makes all the elements of J flip sign. Consequently, the stable
locking domain is invariant under a sign flip of v, while at
most one of the locking states related by a sign change of ω

can be stable.
Figures 1 and 2 present numerical examples of the locking

functions. As shown in Fig. 2, the even function g can be
either unimodal with a maximum at y = 0, or bimodal, with
a minimum at y = 0. In the former case, there is a single
interval of velocity locking intervals v for each admissible
ω and sign choice in (20); in the latter case, there are two
locking intervals for each ω larger than the local minimum
of g at y = 0. Consequently, the locking domains for broad

FIG. 3. Locking diagrams showing boundaries of branches of
steady states of QCGL pulses entrained by an externally injected
Gaussian pulse, with signal-pulse displacements ŷ and phase shifts
ϕ̂ depending smoothly on the frequency disparity ω and velocity
disparity v. QCGL and injection parameters are as in the top and
bottom panels of Fig. 1 (respectively).

and narrow injections are qualitatively different, as shown
below. Unlike g, the locking functions h and γ have the same
qualitative structure for all QCGL and injection parameters
that we tested; examples are shown in Fig. 1.

Figure 3 shows two examples of locking domains of the
same QCGL pulse entrained by injected Gaussians of differ-
ent widths. The solid curves are boundaries of branches of
entrained steady states that are solutions of (19); the boundary
curves consist of saddle-node bifurcation points. In the top
panel the injected pulse is wide, making the locking function
g unimodal, with a single interval of solutions of (20) for each
ω, as in the example shown in the top panel of Fig. 2; it gives
two overlapping teardrop-shaped locking branches that are
individually invariant under v ↔ −v, and are mapped to each
other by ω ↔ −ω. Of the two branches, exactly one, the prin-
cipal branch, consists entirely of stable locked states, while
the locked states of the secondary branch are all unstable.
The similarly structured locking diagram in the top panel of
Fig. 4 shows the boundary of the principal branch with a solid
curve as in Fig. 3, and the boundary of the secondary branch
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FIG. 4. Locking diagrams for QCGL and injection parameters
β = 0.5, δ = −0.1, ε = 1.4, μ = −0.1, ν = 0.2, c = 3 (top), and
β = 0.8, δ = −0.1, ε = 0.8, μ = −0.5, ν = −0.1, c = 1.3 (bot-
tom). The boundaries of the stable part of the principal branch of
entrained steady states (solid curves) consist of saddle-node bifurca-
tions and Hopf bifurcations (in the bottom panel). The bifurcation
curves of the two types meet at Bogdanov-Takens bifurcation points
(circled). Unstable branch boundaries are shown with dashed curves.
Interior curves show subbranches of entrained states with constant
injection-pulse displacement ŷ or phase shift θ̂ ; solid (dashed/dotted)
parts of the curves show stable (unstable) parts, respectively of the
subbranches.

is marked by a dashed curve. This figure also shows contours
of constant-ŷ and θ̂ locked states, with solid (dashed) curves
representing stable (unstable) solutions respectively. Note that
Eqs. (19) imply that constant-ŷ curves are ellipses or ellipse
arcs. The top panel of Fig. 5 shows the locking diagram of
Fig. 3 (top) with the principal branch coordinated by ŷ and θ̂ .

In contrast with these examples, the bottom panels of
Figs. 3–5 show locking diagrams obtained with a bimodal
locking function g, which produces two disjoint v locking
intervals for large enough ω. Consequently, the two ovals in
the locking diagram shown in the bottom panel of Fig. 3 are
boundaries of a single branch—the principal branch, that is in-
variant under sign changes of both v or ω, and is double valued
where the oval interiors overlap. However, in this case some of
the principal branch locking states undergo Hopf bifurcations,

FIG. 5. Locking diagrams with QCGL and injection parameters
as in the top and bottom panels of Fig. 1 (respectively). Branch
and stability boundaries are marked as in Fig. 4. The stable parts of
the principal branches are coordinatized by the curves of constant-ŷ
entrained states (horizontal) and constant-θ̂ states (vertical).

so only a part of the entrained steady states are stable. The
Hopf bifurcation curves shown in the locking diagram of
Fig. 4 (bottom), make up the boundary of the stable locking
domain together with the saddle-node bifurcation curves. The
two kinds of bifurcation curves meet at Bogdanov-Takens
bifurcation points [34] that are circled in Fig. 4 (bottom). The
locking diagram of Fig. 5 (bottom) shows this stable locking
domain, coordinatized with constant-ŷ and constant-θ̂ curves.

Finally, we note that since the locking domains scale lin-
early with the amplitude of injection, the locking diagrams of
Figs. 3–5 can be viewed as two-dimensional sections of cones
in a three-dimensional parameter space of ω, v and injection
amplitude.

IV. CONCLUSIONS

Entrainment takes place when nonlinear systems with
broken continuous symmetries interact. The fundamental
property of entrainment phenomena is the sharp locking
transition of the symmetry-breaking variables. The lock-
ing transition is a manifestation of a bifurcation in the
locking dynamical system that governs the evolution of
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the symmetry-breaking variables. In standard entrainment
scenarios a single symmetry is broken—most notably time-
translation invariance in synchronization. However, patterns
in extended systems often break internal symmetries as well as
space-translation invariance. Here, we have shown that when
localized patterns with an internal symmetry are spatiotem-
porally forced, the locking dynamics becomes a multiple
degrees-of-freedom system, whose form is universal within
a symmetry class.

Focusing on the case of externally forced patterns with
an internal phase symmetry, we demonstrated two-degrees-
of-freedom locking effects, including entrainment bistability,
Hopf, and Bogdanov-Takens bifurcations. Even though here
we studied in detail only the stationary entrained states, our
analysis makes it clear that much of the complexity of two-
degrees-of-reedom dynamical systems can be realized in the

locking dynamics; for example, the occurrence of Hopf bifur-
cations implies that oscillatory “breather” entrainment can be
realized on limit cycles of the locking system.

The shown examples of locking domains are two-
dimensional sections of cones that are actually tips of
three-dimensional Arnold tongues [36]. In single-variable
locking Arnold tongues emerge at all commensurate frequen-
cies, yielding locking diagrams with a fractal structure. We
conjecture that beyond the fundamental entrainment that was
studied here, entrainment of patterns with internal symmetries
exhibits a complex structure of harmonic entrainment.
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