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Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines
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For a four-stroke asymmetrically driven quantum Otto engine with working medium modeled by a single
qubit, we study the bounds on nonequilibrium fluctuations of work and heat. We find strict relations between the
fluctuations of work and individual heat for hot and cold reservoirs in arbitrary operational regimes. Focusing on
the engine regime, we show that the ratio of nonequilibrium fluctuations of output work to input heat from the
hot reservoir is both upper and lower bounded. As a consequence, we establish a hierarchical relation between
the relative fluctuations of work and heat for both cold and hot reservoirs and further make a connection with
the thermodynamic uncertainty relations. We discuss the fate of these bounds also in the refrigerator regime.
The reported bounds, for such asymmetrically driven engines, emerge once both the time-forward and the
corresponding reverse cycles of the engine are considered on an equal footing. We also extend our study and
report bounds for a parametrically driven harmonic oscillator Otto engine.
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I. INTRODUCTION

Thermodynamic devices have significantly advanced hu-
mankind since the Industrial Revolution in 1760, whether it
be through the development of steam engines in the past or
the modern automobiles we use every day. Improving these
machines’ performance has long been a top concern. The most
commonly utilized thermodynamic machines are heat engines
and refrigerators. While the latter uses external work to re-
move heat from a cold body, the former’s goal is to transform
heat absorbed from a hot body into work [1,2].

Sadi Carnot’s foundational research established a general
upper bound on the efficiency of any heat engine operating be-
tween hot and cold reservoirs at constant inverse temperatures,
βh and βc, respectively. This upper bound, commonly known
as the Carnot bound [1,2], is stated as ηc = (βc − βh)/βc.
Similarly, for any refrigerator operating between the same two
reservoirs, a maximum achievable coefficient of performance,
also referred to as the cooling efficiency, εc = (1 − ηc)/ηc,
was reported [1,3].

These bounds, however, can be saturated only in an ideal
reversible thermodynamic cycle, which requires infinite cycle
time and thus has very limited practical importance. Under-
standing the finite-time behavior of thermodynamic cycles,
where inevitable irreversibility may lead to tighter bounds on
efficiency, is thus a more practical but demanding task [4–11].
Another important point to. note is that, with massive tech-
nological advancements, miniaturization of thermodynamic
devices is now possible, and enormous efforts have been
invested in studying thermodynamics of such small-scale sys-
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tems [4,12–20], leading to the emergence of new disciplines
such as stochastic thermodynamics and quantum thermody-
namics [21–23].

The performance of small-scale thermodynamic devices
can be significantly impacted by fluctuations of both thermal
and quantum origin, making their study crucial. It is a well-
established fact that fluctuations in equilibrium systems are
linked to response functions by the celebrated fluctuation-
dissipation theorem [24,25]. Over the past few decades,
via the discovery of the fluctuation relations [26–28], great
progress has also been made towards understanding nonequi-
librium fluctuations. Very recently, understanding the effects
of such nonequilibrium fluctuations and the higher-order sta-
tistical moments on the efficiency of small-scale engines,
whether classical or quantum, has attracted a lot of attention
[29–33]. In this context, it was recently shown that the ratio
of output work fluctuation to input heat fluctuation is upper
bounded by the square of the Carnot bound in the engine
operational regime [31]. Another work demonstrated that the
square of mean efficiency of a symmetrically driven qubit-
Otto engine sets a lower bound on the ratio of output work
fluctuation to input heat fluctuation [32].

Motivated by such works, in this paper, we investigate a
generalized asymmetrically driven four-stroke quantum Otto
cycle [4,5,7,14,34–50]. We concentrate on the paradigmatic
qubit-Otto cycle, which was recently implemented in the
NMR platform [4], and we offer fundamental insights into
the relationships between nonequilibrium fluctuations of work
and heat from both hot and cold reservoirs while operating
in various operational regimes. Furthermore, we provide hi-
erarchical relationships between the relative fluctuations in
the engine operational regime and connect our results with
the thermodynamic uncertainty relations (TURs) [51–58]. We
also explore similar constraints on fluctuations for a harmonic
oscillator working medium [5,14,59].
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FIG. 1. Schematic for a finite-time asymmetrically driven quan-
tum Otto cycle: Two unitary strokes (A → B) and (C → D)
correspond to expansion and compression of the working medium
and governed by Uexp and Ucom, respectively. For symmetric driv-
ing, Ucom = �U †

exp�
†. The thermalization strokes are represented by

(B → C) for the hot end and (D → A) for the cold end.

We organize our paper as follows: In Sec. II, we give a
brief introduction to the four-stroke quantum Otto cycle that
is asymmetrically driven and summarize the two-time mea-
surement scheme to obtain the joint heat and work statistics.
In Sec. III, we initially consider a single qubit as the working
medium and derive the central results of the paper, namely the
demonstration of useful bounds on nonequilibrium fluctua-
tions of heat and work, independent of its regime of operation.
Following this, we obtain the bounds for the engine regime of
operation as well as make connections of the derived bounds
with the TURs. In addition, we also discuss the bounds for the
refrigerator regime of operation and supplement our analytical
calculations with numerical results for better illustration. In
Sec. IV we discuss briefly the results for the parametrically
driven harmonic oscillator working medium. Finally, we sum-
marize our central results in Sec. V. Certain details of the
calculations are provided in the Appendices.

II. QUANTUM OTTO CYCLE AND TWO-POINT
MEASUREMENT SCHEME

First, we briefly demonstrate the various strokes of an Otto
cycle (see Fig. 1). The working medium is characterized by
the parametric time-dependent Hamiltonian H[λt ], and the
system parameter λt is varied between λi and λ f during one
cycle. The system begins at t = 0 with Hamiltonian H[λi]
in a thermal state with an inverse temperature βc and passes
through the following four steps:

(i) Expansion stroke (A → B): In the first step, system
eigenenergy spacing is enlarged by external drive as the sys-
tem Hamiltonian changes unitarily from H[λi] to H[λ f ] in τ1

time duration. This stroke is dictated by a unitary generator
Uexp, and the system consumes stochastic work W1 during
this stroke. Note that the volume compression stroke in a
traditional Otto cycle is comparable to this stroke.

(ii) Heating stroke (B → C): In the second step, the system
is brought into weak contact with the hot reservoir at inverse
temperature βh. With no changes to the external parameters,
the system Hamiltonian remains constant, and the system

absorbs heat Qh from the hot reservoir during the time du-
ration τ2 of this stroke and thermalizes.

(iii) Compression stroke (C → D): The system is separated
from the hot reservoir during the third step, and an external
driving source causes the system Hamiltonian to transition
from H[λ f ] back to H[λi] in stroke time duration τ3. Ucom is
the unitary generator of this stroke. The system’s energy gap
narrows during this stroke, producing stochastic work W3. It is
comparable to the volume expansion stroke of the traditional
cycle.

(iv) Cooling stroke (D → A): In the final step, the system
is brought back into weak contact with the cold reservoir,
keeping the system Hamiltonian constant, to complete the
cycle. The system thermalizes during this stroke in time τ4,
and heat Qc is exchanged.

Throughout our discussion, we adhere to the sign conven-
tion that energy entering the system is positive. In order to
guarantee complete thermalization of the working medium
during the heat exchange strokes, we further assume that the
durations of these strokes, τ2 and τ4, are much longer than the
system relaxation time. We emphasize that, the compression
stroke mentioned here is not carried out by time-reversing the
expansion technique, i.e., Ucom �= �U †

exp�
†, where � is the

antiunitary time reversal operator. This breaks the underlying
time-reversal symmetry connecting the expansion and com-
pression strokes, making the time forward and reverse cycles
distinct. This leads to differing joint probability distributions
of stochastic variables: work and heat. In this study, we also
make the assumption that the energy needed to couple and
decouple the system from the reservoirs, before and after the
heat exchange strokes, are negligibly small in comparison to
all other energy scales involved in the problem.

To construct the joint probability distribution (PD) of total
work output W = W1 + W3 and heat input Qh from the hot
bath, we perform projective energy measurements [26–28] on
the respective Hamiltonians involved in the first three strokes
(A → B → C → D). We write the joint PD as

P(W, Qh) =
∑

n,m,k,l

δ(W − εm[λ f ] + εn[λi] − εl [λi] + εk[λ f ])

× δ(Qh − εk[λ f ] + εm[λ f ])T I
n→mT II

k→l

× e−βcεn[λi]

Zc[λi]

e−βhεk [λ f ]

Zh[λ f ]
, (1)

where, Zc[λi] = ∑
n exp(−βcεn[λi]) and Zh[λ f ] =∑

k exp(−βhεk[λ f ]) are the canonical partition functions
and the unitarily driven transition probabilities are given as

T I
n→m = |〈m; λ f |Uexp|n; λi〉|2, (2)

T II
k→l = |〈l; λi|Ucom|k; λ f 〉|2. (3)

Despite the fact that the PD is constructed here by measuring
energy exchanges in three of the four strokes, we emphasize
that, in case of perfect thermalization in the heat exchange
strokes, the statistics of the energy exchange variable Qc in
the fourth stroke can be easily obtained from the above distri-
bution (see Appendix A for details).

To obtain the averages and fluctuations (second cumulants)
of work and heat we study the characteristic function (CF)
of total work and heat defined by the Fourier transformation

014118-2



BOUNDS ON NONEQUILIBRIUM FLUCTUATIONS FOR … PHYSICAL REVIEW E 108, 014118 (2023)

of PD,

χ (γw, γh) =
∫

dW dQh P(W, Qh) eiγwW eiγhQh , (4)

where γw and γh are the conjugate Fourier parameters for W
and Qh, respectively. All the cumulants (denoted by double
angular brackets) are easily obtained from this CF in Eq. (4)
by taking partial derivatives with respect to γw and γh,〈〈

W nQm
h

〉〉 = ∂n∂m

∂ (iγw )n∂ (iγh)m
lnχ (γw, γh)

∣∣∣
γw,γh=0

. (5)

It is crucial to emphasize that in order to derive bounds on
nonequilibrium fluctuations for this asymmetric driving situ-
ation, Ucom �= �U †

exp�
†, we have taken into account both the

forward and reverse processes. The PD specified above will
now be referred to as the forward PD, indicated by PF (W, Qh).
In a similar way, we construct the PD for the reverse cycle by
following the strokes (D → C → B → A). In the reverse cy-
cle the expansion and compression strokes are accomplished
by Ũexp = �U †

com�† and Ũcom = �U †
exp�

†, respectively, and
the corresponding PD is denoted as PR(W, Qh). This definition
of the PDs for forward and reverse cycles is consistent with the
fluctuation symmetry (see Appendix B for details),

PF (W, Qh)

PR(−W,−Qh)
= exp (), (6)

where

 = βcW + (βc − βh)Qh (7)

is the total stochastic entropy production in the forward cy-
cle. The fluctuation relation, expressed in terms of the CF,
is χF (γw, γh) = χR[−γw + iβc,−γh + i(βc − βh)]. Note that
this detailed fluctuation relation, also known as the heat engine
fluctuation relation, was previously introduced in Ref. [60]
and holds true for asymmetrically driven quantum Otto engine
scenario considered here.

With a clear understanding of the forward and reverse
PDs, we now define the symmetrized fluctuations and relative
fluctuations (RF) of work and heat, taking into account both

forward and reverse processes on an equal footing,

�φ := 〈〈φ2〉〉F + 〈〈φ2〉〉R, (8)

RF(φ) := 2
〈〈φ2〉〉F + 〈〈φ2〉〉R

(〈φ〉F + 〈φ〉R)2
, (9)

where φ = W, Qh, Qc and 〈.〉F (R) and 〈〈.〉〉F (R) denote the
first and second cumulants corresponding to the forward (re-
verse) PDs. Note that with these generalized definitions, the
time-reversal symmetric case, with PF (W, Qh) = PR(W, Qh),
now becomes a specific case of our generalized method. In
what follows, we first start with our model—asymmetrically
driven single qubit as working medium—and discuss bounds
on nonequilibrium fluctuations for heat and work.

III. SINGLE QUBIT UNDER ASYMMETRIC DRIVING
AS A WORKING MEDIUM

We consider a single qubit as the working medium of
an Otto cycle. During the unitary expansion stroke A → B,
the system Hamiltonian changes from H[ω0] with energy
level spacing ω0 to H[ω1] with enhanced level spacing ω1 in
time τ1 and returns to H[ω0] during the compression stroke
(C → D) in time τ3. The quasistatic limit cycle is reached
when the unitary stokes are driven quantum-adiabatically,
meaning no transition is allowed between the instantaneous
energy eigenstates {|0; ωt 〉, |1; ωt 〉}. From this point forward,
we will frequently use the words “quasistatic” and “quantum-
adiabatic” interchangeably. Any departure from the ideal
quasistatic cycle can therefore be quantified by the transition
probabilities between the states. We define, for the expan-
sion stroke, u = |〈0; ω1|Uexp|0; ω0〉|2 = |〈1; ω1|Uexp|1; ω0〉|2,
as the probability of no transition between the system en-
ergy states and similarly for the compression stroke v =
|〈0; ω0|Ucom|0; ω1〉|2 = |〈1; ω0|Ucom|1; ω1〉|2. Note that u, v ∈
[0, 1] and u = v corresponds to the time-reversal symmetric
situation. The quasistatic limit corresponds to u = v = 1. The
exact expression of the forward CF for the asymmetric driving
case can be obtained in a compact form and is given by

χF (γw, γh) =
(

u cos

[
1

2
(γw(ω0 − ω1) + γhω1 − iβcω0)

]
+ (1 − u) cos

[
1

2
(γw(ω0 + ω1) − γhω1 − iβcω0)

])

×
(

v cos

[
1

2
(γw(ω0 − ω1) + γhω1 + iβhω1)

]
+ (1 − v) cos

[
1

2
(−γw(ω0 + ω1) + γhω1 + iβhω1)

])

× sech

(
βcω0

2

)
sech

(
βhω1

2

)
. (10)

For the reverse cycle the corresponding reverse CF, denoted as χR(γw, γh), is simply obtained by the replacement u ↔ v in
Eq. (10).

A. Expressions for averages and fluctuations of heat and work

With the CF [Eq. (10)] in hand, one can write down the expressions of the first and second cumulants of work and heat as

〈Qh〉F = −ω1

2

[
tanh

(
βhω1

2

)
+ (1 − 2u) tanh

(
βcω0

2

)]
, (11)

〈〈
Q2

h

〉〉
F = ω2

1

4

[
2 − tanh2

(
βhω1

2

)
− (1 − 2u)2 tanh2

(
βcω0

2

)]
, (12)

〈W 〉F = 〈W1〉F + 〈W3〉F = 1

2
[ω0 + (1 − 2u)ω1] tanh

(
βcω0

2

)
+ 1

2
[ω1 + (1 − 2v)ω0] tanh

(
βhω1

2

)
, (13)
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〈〈W 2〉〉F = (ω0 + ω1)2

2
− (u + v) ω0 ω1 − 〈W1〉2

F − 〈W3〉2
F , (14)

〈Qc〉F = −ω0

2

[
tanh

(
βcω0

2

)
+ (1 − 2v) tanh

(
βhω1

2

)]
, (15)

〈〈
Q2

c

〉〉
F = ω2

0

4

[
2 − tanh2

(
βcω0

2

)
− (1 − 2v)2 tanh2

(
βhω1

2

)]
. (16)

In a similar way, the averages and fluctuations (second cumu-
lants) for the reverse cycle can be obtained by interchanging
u and v. Notice that, depending on values of u and v, the
Otto cycle (forward or reverse) has four possible operational
regimes: engine, refrigerator, heater, and accelerator [50].

B. General lower bound on the ratio of work to heat fluctuations

We now discuss the first central result of our work where
we demonstrate bounds on the nonequilibrium fluctuations of
heat and work for a qubit system as the working fuel of an
quantum Otto cycle. In particular we find the following lower
bounds regardless of the operational regime of the Otto cycle:

�W

�Qh
�

(
ω1 − ω0

ω1

)2

, (17)

�W

�Qc
>

(
ω1 − ω0

ω1

)2

. (18)

Recall that, as stated in Eq. (8), the definition of fluctuations
include both forward and reverse processes. We now provide
a proof for these results.

Let us first consider the fluctuations of heat from the hot
reservoir. Our strategy will be to consider a modified version
of Eq. (17) written as ω2

1�W − (ω1 − ω0)2�Qh � 0. With a
bit of straightforward calculations, the left-hand side of this
inequality can be written as

ω2
1�W − (ω1 − ω0)2�Qh

= ω0 ω3
1 (2 − u − v)

[
2 − tanh2

(
βcω0

2

)

− tanh2

(
βhω1

2

)]

+ ω0 ω2
1

[
ω0 tanh2

(
βhω1

2

)

+ (2ω1 − ω0) tanh2

(
βcω0

2

)]

× [u(1 − u) + v(1 − v)]. (19)

Noticing that u, v ∈ [0, 1] and ω1 > ω0, regardless of the op-
erating regime, we immediately conclude that both the terms
on the right-hand side of the above equation are individually
non-negative and hence we obtain the inequality ω2

1�W −
(ω1 − ω0)2�Qh � 0. The equality occurs in the quasistatic
limit, i.e., for u = v = 1. Repeating the same approach for the

fluctuations of the heat from the cold reservoir we find that

ω2
1�W − (ω1 − ω0)2�Qc

=
[

(ω1 − ω0)3

2
(ω1 + ω0) + ω0 ω3

1 (2 − u − v)

]

×
[

2 − tanh2

(
βcω0

2

)
− tanh2

(
βhω1

2

)]

+ [u(1 − u) + v(1 − v)]

[
ω4

1 tanh2

(
βcω0

2

)

+ ω3
0 (2ω1 − ω0) tanh2

(
βhω1

2

)]
> 0, (20)

where, once again, both terms on the right-hand side of the
above equation are individually always greater than zero as
long as u, v ∈ [0, 1] and ω1 > ω0. Thus, as the first central
result, we see that the ratios of nonequilibrium fluctuations
are not arbitrary but constrained by the parameters of the Otto
cycle. Also, notice that these constraints hold true in all four
operational regimes of the Otto cycle.

In what follows, we will show that once we specify that the
Otto cycle operates in the engine or refrigerator regime, the
fluctuations of heat and work receive additional upper bounds.
In the absence of underlying time-reversal symmetry (u �= v),
since the forward and reverse cycles are no longer identical,
we find that the consistent way of characterizing the engine
(or refrigerator) operational regime requires imposing engine
(or refrigeration) constraints on both time-forward and reverse
cycles. In other words, we characterize the engine (or refrig-
erator) operating regime of the Otto cycle demanding that
both time-forward and reverse cycles function as an engine (or
refrigerator). Because of this specification, the bounds found
in our work matches with the earlier bounds found in the time-
symmetric case [32] in a certain limit (u = v). We emphasize
that, the proper symmetrized definition of the fluctuations
introduced in Eqs. (8) and (9) are crucial to demonstrate useful
bounds.

Before we proceed, let us briefly summarize the conditions
for the quantum Otto cycle to function as an engine or a
refrigerator. Given that βc > βh and ω1 > ω0, the required and
sufficient conditions for the Otto cycle to function as an engine
in both time-forward and reverse cycles are 〈W 〉F � 0 and
〈W 〉R � 0. These criteria impose constraints on the values of
u and v, which together with the first law of thermodynamics
determine the signs of the average heat flows, 〈Qh〉F (R) � 0
and 〈Qc〉F (R) � 0. In the quasistatic limit (u = v = 1), the en-
gine condition simplifies to βcω0 � βhω1. On the other hand,
the necessary and sufficient conditions to realize refrigeration
are 〈Qc〉F � 0 and 〈Qc〉R � 0. These, combined with the first
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law, immediately set, 〈W 〉F (R) � 0 and 〈Qh〉F (R) � 0. In the
rest of this paper, the engine (or refrigerator) operation regime
will imply that both the time-forward and reverse cycles oper-
ate as engine (or refrigerator).

C. Bounds on fluctuation in the engine regime

In a prior study [32], it was demonstrated that the ratio
of output work fluctuation to input heat fluctuation for a
symmetrically driven qubit-Otto cycle operating as an engine
is lower bounded by the square of the average efficiency,
i.e., η(2) = 〈〈W 2〉〉/〈〈Q2

h〉〉 � 〈η〉2, for a symmetrically driven
(u = v) qubit-Otto cycle, where 〈η〉 = −〈W 〉/〈Qh〉. The im-
mediate effect of this finding is that the relative fluctuation of
output work is consistently greater than that of the input heat.
For time-asymmetric work protocols (u �= v), we redefine the
quantities η(2) and average efficiency 〈η〉 by taking into ac-
count both the time-forward and reverse cycles,

〈η〉 := − 〈W 〉F + 〈W 〉R

〈Qh〉F + 〈Qh〉R
, (21)

η(2) := �W

�Qh
. (22)

We discovered that η(2) is bounded from both above and below
in the engine operational regime,

1 > η(2) � η2
otto � 〈η〉2. (23)

Equation (23) is the second central result of this work. Note
that the lower bound η(2) � η2

otto follows simply from Eq. (17)
(as the analysis is true in any operational regime), where
ηotto = 1 − ω0/ω1 is the maximum attainable efficiency of the
Otto engine considered here. Importantly, η2

otto sets a tighter
lower bound η(2) in comparison to what was reported in [32],
and its value is fixed once we fix the parameter values to
execute the engine cycle. In the quasistatic limit the lower
bounds on η(2) saturate, i.e., η(2) = η2

otto = 〈η〉2. A further fun-
damental relationship between the symmetrized fluctuations
is also provided by the upper bound on η(2): The symmetrized
fluctuation of input heat is always greater than the fluctuation
of output work, �Qh > �W . Note that this upper bound also
holds true for time-symmetric driving, where u = v. Interest-
ingly, for the time-asymmetric driving example, u �= v, we
find violation of this upper bound if we only take into account
the forward (or reverse) cycle, i.e., 〈〈W 〉〉F/R/〈〈Qh〉〉F/R � 1.

We now provide a rigorous proof for the upper bound 1 >

η(2). We proceed by considering a modified version of this
inequality and prove that �Qh − �W > 0. The left-hand side
of this inequality is written as

�Qh − �W

= ω0

2

[
2− tanh2

(
βcω0

2

)
− tanh2

(
βhω1

2

)]
A+ B1 − B2,

(24)
where we have defined

A = −[ω0 + (1 − 2u)ω1] − [ω0 + (1 − 2v)ω1], (25)

B1 = ω2
0

2

[
2 − tanh2

(
βcω0

2

)
− tanh2

(
βhω1

2

)]
, (26)

B2 = ω2
0[u(1 − u) + v(1 − v)] tanh2

(
βhω1

2

)
. (27)

In order to show that �Qh − �W is always positive in the
engine operational regime, we will use the generalized engine
criteria (set up works as engine in both the forward and reverse
cycles) to demonstrate that A > 0 and B1 − B2 � 0.

First, we observe that min(1 − 2u), min(1 − 2v) = −1,
since u, v ∈ [0, 1]. Therefore, from Eq. (13) we conclude that
regardless of the operation regime, both 〈W3〉F and 〈W3〉R

are always positive, since ω1 > ω0. Now, once we fix that
the setup functions as an engine in both forward and re-
verse cycles, in order to satisfy the conditions on total work
〈W 〉F � 0 and 〈W 〉R � 0 we must have 〈W1〉F , 〈W1〉R < 0,
which immediately implies that [ω0 + (1 − 2u)ω1] < 0 and
[ω0 + (1 − 2v)ω1] < 0. Thus, we conclude that quantity A is
always positive.

Next, to show that B1 − B2 � 0, we first maximize B2 with
respect to the engine constraints 〈Qh〉F � 0 and 〈Qh〉R � 0.
Notice that the lower bounds of u and v are subjected to
stricter restrictions under these constraints and can be ex-
pressed as

1

2
+ tanh

(
βhω1

2

)
2 tanh

(
βcω0

2

) � u, v � 1. (28)

These lower limits in turn set an upper bound on the quantity
u(1 − u) + v(1 − v) denoted by the below inequality

u(1 − u) + v(1 − v) � 1

2

tanh2
(

βcω0

2

) − tanh2
(

βhω1

2

)
tanh2

(
βcω0

2

)

� 1

2

tanh2
(

βcω0

2

) − tanh2
(

βhω1

2

)
tanh2

(
βhω1

2

) . (29)

Using the right-hand side of the above inequality to maximize
B2, we conclude that

B1 − B2 � B1 − (B2)max = ω2
0

[
1 − tanh2

(
βcω0

2

)]
� 0.

(30)

Now that we have shown that A > 0 and B1 − B2 � 0, we
immediately infer �Qh − �W > 0. This concludes the proof
of our second central result: Eq. (23). In Fig. 2, we provide
a contour plot for the upper and lower bounds for η(2) by
choosing arbitrary values for the various parameters drawn
randomly from uniform distributions. Both the bounds are
respected for the asymmetrically driven case and thus match
with our theoretical predictions.

D. Proof for hierarchy of relative fluctuations
in the engine regime

Now that Eq. (23) has been demonstrated, the relation be-
tween the symmetrized relative fluctuations of total work and
input heat (from the hot bath) is given as RF(W ) � RF(Qh),
which is readily obtained from the bound η(2) � 〈η〉2. This re-
lation is valid in the engine operational regime. We now show
that there exists a rigorous hierarchy between the symmetrized
relative fluctuations of work and heat from both hot and cold
reservoirs, in the engine operational regime, once the relative
fluctuation of the exhaust heat into cold reservoir is taken into
account. This hierarchy is stated as

RF(W ) � RF(Qh) � RF(Qc). (31)
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FIG. 2. Results for (a) upper and (b) lower bounds on η(2) for an
asymmetrically driven qubit-Otto cycle. ω0, ω1, Tc, and Th were cho-
sen randomly from uniform distribution between the interval [0,5].
u, v were chosen between [0,1]. Simulations done over 2.5 million
points. The white color regions correspond to situations where the
generalized engine conditions, i.e., 〈W 〉F � 0 and 〈W 〉R � 0 are not
satisfied.

As the proof for RF(Qh) � RF(Qc), we will demonstrate the
modified inequality given as

(〈Qc〉F + 〈Qc〉R)2

(〈Qh〉F + 〈Qh〉R)2
� �Qc

�Qh
. (32)

As the first step, following the relation 〈η〉 � ηotto together
with the engine constraints 〈Qc〉F , 〈Qc〉R � 0, we immedi-
ately obtain

(〈Qc〉F + 〈Qc〉R)2

(〈Qh〉F + 〈Qh〉R)2
� ω2

0

ω2
1

. (33)

Next, in the engine operational regime, we show that

ω2
0

ω2
1

� �Qc

�Qh
. (34)

The proof for the modified version the above inequality,
ω2

0�Qh − ω2
1�Qc � 0, goes as follows:

ω2
0�Qh − ω2

1�Qc

= [u(1 − u) + v(1 − v)] ω2
0 ω2

1

×
[

tanh2

(
βcω0

2

)
− tanh2

(
βhω1

2

)]
� 0, (35)

as βcω0 � βhω1 in the engine operational regime. Combining
Eq. (33) and Eq. (34) we obtain

(〈Qc〉F + 〈Qc〉R)2

(〈Qh〉F + 〈Qh〉R)2
� ω2

0

ω2
1

� �Qc

�Qh
. (36)

This concludes our proof for RF(Qh) � RF(Qc). In the engine
operational regime, this hierarchy between the relative fluctu-
ations as given in Eq. (31), is the third central result of our
work.

Note that relative fluctuations of the integrated currents
(average work and heat) can be linked to the precision of
these quantities. The recently discovered TURs state that the

precision of such nonequilibrium quantities is associated with
a dissipation cost, which is quantified by the average entropy
production [44,45,51–55]. In the following section we will
first derive some important results concerning the TURs and
make a further connection with the results obtained in the
previous sections.

E. Thermodynamic uncertainty relations for qubit-Otto cycle

The thermodynamic uncertainty relations predict bounds
on individual relative fluctuations in terms of the average
entropy production 〈〉. For the time-reversal symmetric case,
a slightly modified version of TUR was recently reported in
Ref. [61] in the context of a two-qubit swap engine. This
modified TUR is given by

〈〈W 2〉〉
〈W 〉2

� 2

〈〉 − 1. (37)

In this work, we show analytically that the modified TURs
also hold for symmetrically driven four-stroke qubit-Otto cy-
cle. Furthermore, we consider the general asymmetrically
driven scenario and demonstrate a proof for generalized
TURs, given as

TUR(φ) ≡ 〈〉F + 〈〉R

2
(RF(φ) + 1) � 2. (38)

with φ = W, Qh, and Qc. As can be observed easily that these
TURs in the time-reversal symmetric limit: u = v take the
form of Eq. (37). In Appendix B, we provide a rigorous proof
of these generalized TURs given in Eq. (38). Our proof is
valid in arbitrary operational regime of the Otto cycle and for
arbitrary asymmetric protocols. At this point, we emphasize
that for this generic asymmetric driving situation, if we simply
take time-forward (or reverse) cycle into account, then TURs
are violated. More specifically, numerical study revealed that

〈〉F/R

(〈〈
Q2

c

〉〉
F/R

〈Qc〉2
F/R

+ 1

)
� 2. (39)

However, by accounting for both time-forward and reverse
processes and constructing symmetrized expressions for the
TURs, we can demonstrate that Eq. (38) always holds.

Although we save the rigorous proof of Eq. (38) for Ap-
pendix C, some key remarks are worth mentioning in the main
text.

Remark I: In the quasistatic limit, u = v = 1, the expres-
sions of heat and work in the forward and reverse cycles
become identical and we obtain

TUR(φ)
∣∣
u,v=1 = (βcω0 − βhω1) coth

(
βcω0 − βhω1

2

)
� 2 ,

(40)

where we have used the fact that x coth(x) � 1. Here φ =
W, Qh, and Qc and the F, R subscripts have been removed.
In the quasistatic limit, the TURs saturate as βcω0 → βhω1.

Remark II: Away from the quasistatic limit, for general
asymmetric driving scenario, although Eq. (38) still holds, the
value of TUR(φ) can become lesser than the quasistatic value
depending on the parameters we choose to run the Otto cycle.
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FIG. 3. (a) Plot for the hierarchy between the three TURs in the
engine regime. The black dashed line represents the lower bound
2. (b) Comparison between different bounds on average efficiency
coming from the TURs. Parameters chosen: Tc = 0.57, Th = 5.2,
ω0 = 0.9, u = 0.99, and v = 0.9. The black dashed line represents
the ideal Otto efficiency ηotto.

Justifications of these statements are provided in Ap-
pendix C. Interestingly, in the engine regime (for both forward
and reverse cycle), where we have already established the
existence of a hierarchy between the symmetrized relative
fluctuations of work and heat from both hot and cold reser-
voirs [see Eq. (31)], we can express all three TUR products in
a nutshell–

TUR(W ) � TUR(Qh) � TUR(Qc) � 2. (41)

It is crucial to note that Eq. (41) only applies to the engine op-
erational regime. This is the fourth central result of this work.
In Fig. 3(a) we display the hierarchy in the generalized TURs
in the engine regime with each TUR ratio lower bounded by
the value 2. In what follows, we show that, each of the TUR
like trade-off relations offers thermodynamically consistent
bound on symmetrized average efficiency 〈η〉 and we com-
pare these bounds with the bound 〈η〉 � ηotto as follows from
Eq. (23).

F. Bounds on thermodynamic efficiency following the TURs

In order to provide bounds on the average efficiency in
the engine operational regime following the TURs, we first
notice that the expression of symmetrized average entropy
production can be rewritten as

〈〉F + 〈〉R = βc(〈Qh〉F + 〈Qh〉R)(ηc − 〈η〉),

= − βc(〈W 〉F + 〈W 〉R)

(
1 − ηc

〈η〉
)

,

= − βc(〈Qc〉F + 〈Qc〉R)

(
1 − 1 − ηc

1 − 〈η〉
)

. (42)

Now, by using the appropriate expression of entropy produc-
tion from Eq. (42), and plugging it into Eq. (38), we derived
independent upper bounds on average efficiency for each

FIG. 4. Results for (a) upper and (b) lower bounds on ε(2) in the
refrigeration regime for asymmetrically driven qubit-Otto cycle. ω0,
ω1, Tc, and Th were chosen randomly from uniform distribution be-
tween the interval [0,5]. u, v were chosen between [0,1]. Simulations
done over 2.5 million points.

φ = W, Qh, and Qc. We have listed them as follows:

〈η〉 � ηc − 2
〈Qh〉F + 〈Qh〉R

βc A(Qh)
≡ ηhot, (43)

〈η〉 � ηc

/[
1 − 2

〈W 〉F + 〈W 〉R

βc A(W )

]
≡ ηwork, (44)

〈η〉 � 1 − βh

βc

[
1 + 2

〈Qc〉F + 〈Qc〉R

βc A(Qc)

]−1

≡ ηcold. (45)

Here ηc = 1 − βh/βc is the Carnot efficiency and

A(φ) = �φ + 1
2 (〈φ〉F + 〈φ〉R)2,

with φ = W, Qh, and Qc. Although the values of TUR(φ) in
the engine regime follow a rigorous hierarchy as shown by
Eq. (41), the bounds on efficiency that arise from them disre-
gard such hierarchical relationship. However, numerical tests,
as demonstrated in Fig. 3(b), revealed that depending on the
parameter regime, the bound ηcold, derived from the tightest
TUR, i.e., TUR(Qc) � 2, can potentially become tighter than
ηotto [see Eq. (23) and Eq. (45)].

G. Bounds on fluctuation in the refrigerator regime

We now briefly discuss the refrigerator operational regime.
In case of refrigeration the central quantity to investigate
is ε(2) = �Qc/�W . Equation (18) already provide an upper
bound on ε(2). With refrigeration conditions, numerical results
further suggest a lower bound on ε(2), and we write

ω2
1

(ω1 − ω0)2
> ε(2) >

ω2
0

ω2
1

. (46)

In Fig. 4, we demonstrate the validity of the lower and upper
bounds in the refrigeration regime of the qubit-Otto cycle.
Note that, unlike Eq. (31), which is valid in the engine regime,
we do not find hierarchy of symmetrized relative fluctua-
tions in the refrigerator regime. This indicates fundamental
differences in nonequilibrium fluctuations in different opera-
tional regimes and is a theme for future exploration.
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FIG. 5. For an asymmetrically driven HO Otto cycle (a) upper
and (b) lower bounds on η(2) in the engine regime. ω0, ω1, Tc, and
Th were chosen randomly from uniform distribution between the
interval [0,5]. Q,Q∗ were chosen between [1,6]. Simulations done
over 2.5 million points.

In what follows, we consider a parametrically driven har-
monic oscillator as the working medium and illustrate the
bounds.

IV. HARMONIC OSCILLATOR UNDER ASYMMETRIC
DRIVING AS A WORKING MEDIUM

We consider a harmonic oscillator (HO), with unit mass, as
the working fluid of the Otto cycle operating between the two
thermal reservoirs with inverse temperatures βc and βh, with
βc > βh. The parametric time-dependent Hamiltonian of the
HO working fluid is given by

H[ωt ] = p2

2
+ 1

2
ω2

t x2. (47)

For the cycle, during the unitary expansion stroke A → B, the
time-dependent trapping frequency ωt goes from ω0 at t =
0 to ω1 at time t = τ1, governed by the expansion protocol
Uexp. During the compression stroke C → D, the compression
protocol Ucom drives ω1 back to ω0 in the time interval τ3.
The heat exchange strokes take place in between and perfect
thermalization is achieved in both the heat exchange strokes.
To assure time-asymmetric driving, we again consider U †

exp �=
�Ucom�†. For the HO Otto cycle, the exact joint CF of output
work and input heat can be obtained and much like the qubit
case, the nonadiabaticity of asymmetric drivings are captured
by the parameters Q and Q∗, where Q, Q∗ ∈ [1,∞]. Notice
that Q = Q∗ corresponds to the symmetric driving situation
and Q = Q∗ = 1 is the quasistatic limit (see Appendix D for
the details). Below we illustrate the numerical results.

In the engine operational regime, 〈W 〉F � 0 and 〈W 〉R � 0,
the numerical results in Fig. 5 suggest that the lower and
upper bounds for η(2) are given as 1 > η(2) � 〈η〉2. Contrary
to Eq. (23) for qubit-Otto cycle, numerical studies suggested
that for the HO Otto engine η2

otto = (1 − ω0/ω1)
2

fails to
provide a lower bound on η(2) at very low temperatures of
the heat reservoirs, specifically for Tc < 1.0. This discrepancy
in results is caused by the different dimensionalities (num-
ber of energy levels) of the working fluids. Note that ηotto

corresponds to the quantum-adiabatic (quasistatic) cycle’s ef-
ficiency in both scenarios: u = v = 1 for the qubit-Otto cycle
and Q = Q∗ = 1 for the HO-Otto cycle. However, as there are
an infinite number of energy levels available for HO-working
medium, quantum nonadiabaticity (transitions between the
instantaneous eigenbasis) plays a more significant role in de-
termining the fluctuations and diminishes the usefulness of the
adiabatic (quasistatic) value of efficiency ηotto in establishing
bound on η(2).

V. SUMMARY

In summary, we provide a study of bounds on nonequilib-
rium fluctuations of heat and work for asymmetrically driven
four stroke quantum Otto engine with working fluid consist-
ing of a qubit or a harmonic oscillator. We show that the
nonequilibrium fluctuations are not arbitrary but are restricted.
In the engine regime, the ratio of nonequilibrium fluctuations
of work and heat from hot reservoir η(2) receive both upper
and lower bounds. For both the qubit and oscillator case, the
upper bound for η(2) remains the same, whereas the tighter
lower bound η2

otto, found in qubit-Otto engine, is violated for
the oscillator case. For the qubit-Otto cycle, we further make
an important connection of our result with the TURs and
observe that in the engine regime, the TURs of work and heat
for both cold and hot reservoirs follow a strict hierarchy and
further lower bounded by the value 2. These results further
indicate an interesting possibility to receive a tighter estimate
for the thermodynamic efficiency. While preliminary results
[49] indicate that some of these bounds may also be satisfied
with HO and qubit-Otto engines with finite-time thermaliza-
tion, it will be interesting to explore the universality of these
bounds for more complex working fluids and for other class
of finite-time engines.
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APPENDIX A: STATISTICS OF HEAT FROM THE
COLD BATH Qc

In this Appendix, we provide a brief demonstration on
how to calculate the cumulants of Qc from P(W, Qh). In
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case of perfect thermalization we will prove that the stochas-
tic variable Qc and the variable Q̃c = −W − Qh have one
and the same statistics. To determine the statistics of all the
stochastic variables W1, Qh, W3, and Qc, we need to introduce
“diagnostic” projective quantum measurements after every
stroke and the beginning of the cycle [62]. Let the succes-
sive energy measurement results respectively be denoted by
E0, E1, E2, E3, and E0′ . Clearly these energies take values
from the sets of energy eigenvalues {εk[λi]} and {ε j[λ f ]} of
the initial Hamiltonian H[λi] = ∑

k εk[λi]P̂k[λi] (E0, E3, E0′ )
and final Hamiltonian H[λ f ] = ∑

j ε j[λ f ]P̂j[λ f ] (E1 and
E2), respectively. Here P̂k( j)[λi( f )] = |k( j); λi( f )〉〈k( j); λi( f )|
are eigenprojectors. With these measured energies we can
determine the heat exchanged with the cold bath as

Qc = E0′ − E3, (A1)

where E0′ denotes the measurement result after the final ther-
malization with the cold bath. Now the key question is to
determine the relation between Qc and the variable,

Q̃c = −(W1 + W3 + Qh) = E0 − E3. (A2)

For perfect thermalization or even imperfect thermalization,
once the engine goes to a steady limit cycle, from energy
conservation (first law of thermodynamics) we expect the
following relation to hold: 〈Q̃c〉 = 〈Qc〉. Extending this expec-
tation, we now seek to answer when and/or if a more stricter
condition, i.e., 〈Q̃r

c〉 = 〈Qr
c〉 for any positive integer r holds.

In this case we can conclude that Qc and Q̃c have one and the
same statistics. The conditional probability (forward process)
of the energy measurement results E0 = εn[λi], E1 = εm[λ f ],
E2 = εk[λ f ], E3 = εl [λi], and E0′ = εn′[λi] is given as

pF (n′, l, k, m, n) = T βc

l→n′T II
k→lT

βh

m→kT
I

n→m pβc (n), (A3)

where pβc (n) = exp (−βcεn[λi])/Zc[λi] is just the Gibbs
canonical probability. The transition probabilities in the two
work strokes were introduced in Eq. (3) in the main text.
Coming to the transition probabilities in the heat strokes, let
us first consider the hot bath stroke and write the transition
matrix for the general heat stroke (not necessarily perfect
thermalization),

T βh

m→k = Tr{P̂k[λ f ]�βh [P̂m[λ f ]]}, (A4)

where �βh [.] is the CPTP map representing the thermaliza-
tion, i.e., the map representing the time evolution generated
by the Lindblad master equation for the system in contact
with a thermal bath. Only when we have perfect thermal-
ization does the result of this map become independent of
the (normalized) input state P̂m[λ f ] and always outputs the
thermal density matrix, i.e., for perfect thermalization we have
�βh [ρ̂] = exp (−βhH[λ f ])/Zh[λ f ] and we have

T βh

m→k = pβh (k), (A5)

where pβh (k) = exp (−βhεk[λ f ])/Zh[λ f ]. In analogy, we can
write down the transition matrix for the cold bath heat stroke
in the general case as

T βc

l→n′ = Tr{P̂n′[λi]�βc [P̂l [λi]]}. (A6)

For perfect thermalization this reduces to

T βc

l→n′ = pβc (n′). (A7)

With this, we can write the (marginal) probability distributions
for the two variables of interest Qc and Q̃c as

PF (Qc) =
∑

n′,l,k,m,n

δ(Qc − εn′[λi] + εl [λi])pF (n′, l, k, m, n),

(A8)

PF (Q̃c) =
∑

n′,l,k,m,n

δ(Q̃c − εn[λi] + εl [λi])pF (n′, l, k, m, n).

(A9)

Using the above distributions and the transition joint probabil-
ity in Eq. (A3), we can write down the rth (raw) moments of
the variables as〈

Qr
c

〉
F =

∑
n′,l,k,m,n

(εn′[λi] − εl [λi])
rT βc

l→n′T II
k→lT

βh

m→k

× T I
n→m pβc (n), (A10)

〈
Q̃r

c

〉
F

=
∑

n′,l,k,m,n

(εn[λi] − εl [λi])
rT βc

l→n′T II
k→lT

βh

m→k

× T I
n→m pβc (n). (A11)

From the above two equations, it immediately becomes clear
that for transition matrix with imperfect thermalization, where
the transition probability depends on initial state, as given by
Eqs. (A4) and (A6), we obtain〈

Qr
c

〉
F �= 〈

Q̃r
c

〉
F . (A12)

Let us now consider that the heat strokes lead to perfect ther-
malization, and then we can use the expressions in Eqs. (A5)
and (A7) for the transition probabilities in Eqs. (A10) and
(A11), which simplify as follows:〈

Qr
c

〉
F =

∑
n′,l,k,m,n

(εn′[λi] − εl [λi])
r pβc (n′)T II

k→l pβh (k)

× T I
n→m pβc (n), (A13)

〈
Q̃r

c

〉
F =

∑
n′,l,k,m,n

(εn[λi] − εl [λi])
r pβc (n′)T II

k→l pβh (k)

× T I
n→m pβc (n). (A14)

To simplify this further, we note the following simple prop-
erty:∑

m

T I
n→m =

∑
m

|〈m; λ f |Uexp|n; λi〉|2

=
∑

m

〈n; λi|U †
exp|m; λ f 〉〈m; λ f |Uexp|n; λi〉

= 〈n; λi|U †
exp(τ1)Uexp(τ1)|n; λi〉 = 1. (A15)

In addition, we use the fact that
∑

n pβc (n) = ∑
n′ pβc (n′) = 1

to write〈
Qr

c

〉
F =

∑
n′,l,k

(εn′[λi] − εl [λi])
rT II

k→l pβh (k)pβc (n′), (A16)

〈
Q̃r

c

〉
F

=
∑
l,k,n

(εn[λi] − εl [λi])
rT II

k→l pβh (k)pβc (n), (A17)
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giving the clear result 〈
Qr

c

〉
F = 〈

Q̃r
c

〉
F . (A18)

For the reverse process, using similar analogy for the perfect
thermalization in the two heat exchange strokes, it can be
shown that 〈

Qr
c

〉
R

= 〈
Q̃r

c

〉
R
. (A19)

This is indeed the formal justification for the result that
four consecutive measurements during the quantum Otto are
enough to get the statistics of all three energy exchanges, as
mentioned in the main text.

APPENDIX B: PROOF FOR THE FLUCTUATION
SYMMETRY

In this Appendix, we provide a proof of Eq. (6). The PD
for the time-forward process is given in Eq. (1). The PD for
the corresponding reverse process is given by

PR(W, Qh) =
∑

n,m,k,l

δ(W − εk[λ f ]+εl [λi] − εn[λi] + εm[λ f ])

× δ(Qh − εm[λ f ] + εk[λ f ])T̃ I
l→k T̃ II

m→n

× e−βcεl [λi]

Zc[λi]

e−βhεm[λ f ]

Zh[λ f ]
. (B1)

Note that in the reverse cycle the expansion and compres-
sion strokes are governed by Ũexp = �U †

com�† and Ũcom =
�U †

exp�
†, respectively. As a result, the transition probabilities

for the time-forward and reverse processes follow the relations

T̃ I
l→k = |〈k; λ f |Ũexp|l; λi〉|2

= |〈k; λ f |�U †
com�†|l; λi〉|2

= |〈k; λ f |U †
com|l; λi〉∗|2 = |〈l; λi|Ucom|k; λ f 〉|2

= T II
k→l , (B2)

T̃ II
m→n =T I

n→m. (B3)

Now, using the property of delta function, δ(a − b) f (a) =
δ(a − b) f (b), Eq. (B1) can be rewritten as

PR(W, Qh) =
∑

n,m,k,l

δ(W + εm[λ f ] − εn[λi] + εl [λi] − εk[λ f ])

× δ(Qh + εk[λ f ] − εm[λ f ])T I
n→mT II

k→l

× e−βc (εn[λi]−W −Qh )

Zc[λi]

e−βh (εk [λ f ]+Qh )

Zh[λ f ]

= exp ()PF (−W,−Qh), (B4)

where  = βcW + (βc − βh)Qh. With the simple change
of variables W → −W and Qh → −Qh we recover
PR(−W,−Qh) = exp (−)PF (W, Qh), which is identical
to Eq. (6).

APPENDIX C: ANALYTICAL PROOF OF TUR
FOR QUBIT-OTTO CYCLE

In this Appendix, we provide a rigorous proof of Eq. (38),
regardless of the operational regime. First, we will discuss

the symmetric driving case (u = v). Later in this section we
generalize the proof for asymmetric driving. Notice that in
the symmetric driving scenario the time-forward and reverse
processes become identical and Eq. (38) reduces to

〈〈φ2〉〉
〈φ〉2

� 2

〈〉 − 1, (C1)

where φ = W, Qh, and Qc. Here we will consider an alterna-
tive expression,

〈〉(〈〈φ2〉〉 + 〈φ〉2) − 2〈φ〉2 � 0 (C2)

and demonstrate the proof for φ = Qc. For φ = W and Qh, the
same analogy holds. In this particular section, for simplicity
of notations, we define x = βcω0/2 and y = βhω1/2 and tx =
tanh(x), ty = tanh(y).

1. Symmetric driving case

First, let us list the required expressions of first and second
moments of Qc and the average entropy production using
simplified notations,

〈〉 = (x − y)(tx − ty) + 2(1 − u)(xty + ytx ), (C3)

〈Qc〉 = −ω0

2
(tx − ty) − ω0(1 − u)ty, (C4)

〈
Q2

c

〉 = 〈〈
Q2

c

〉〉 + 〈Qc〉2 = ω2
0

2
(1 − txty) + ω2

0(1 − u)txty.

(C5)

Notice that we have separated the quasistatic (quantum-
adiabatic) part from the nonadiabatic contributions. With the
above expressions in hand, the left-hand side of Eq. (C2),
apart from the positive factor ω2

0/2, can be expressed as a
quadratic function of the variable p = 2(1 − u),

f (p) = c + bp + ap2. (C6)

Here

c = (x − y)(tx − ty)(1 − txty) − (tx − ty)2, (C7)

b = txty(x − y)(tx − ty) + (1 − txty)(xty + ytx ) − 2ty(tx − ty),
(C8)

a = txty(xty + ytx ) − t2
y , (C9)

and p ∈ [0, 2]. Notice that, p = 0 corresponds to the qua-
sistatic situation. Our aim is to show that f (p) is non-negative
in the interval [0,2]. First, we check the signs of the coeffi-
cients.

Sign of c. Notice that f (p = 0) = c and it corresponds to
the quasistatic situation. It is straightforward to show that

c = (tx − ty)2[(x − y) coth (x − y) − 1] � 0, (C10)

since x coth x � 1. Therefore, in the quasistatic situation the
TUR for Qc in Eq. (C1) always holds.

Sign of b. Let us now focus on sign of b. The first two terms
in the expression of b are always non-negative. For, x � y we
can trivially get that b � 0. However, determining the sign of
b, for x > y, requires more involved analysis. We proceed as
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follows:

b � (1 − txty)(xty + ytx ) − 2ty(tx − ty)

= (tx − ty)[coth (x − y)(xty + ytx ) − 2ty]

= (tx − ty){coth (x − y)(xty − ytx )

+ 2[coth (x − y)ytx − ty]}
= (tx − ty)txty{coth (x − y)(x coth x − y coth y)

+ 2[coth (x − y)(y coth y) − coth x]}
� 0. (C11)

Notice that, in the first line we discarded the first term of b,
which is always positive, and for the last step, we use the fact
that we are considering x > y situation, and make use of the
following identities

(1) tx � ty,

(2) x coth x � y coth y � 1,

(3) coth (x − y) � coth x.

Thus, we conclude that b � 0, regardless of the operational
regime.

Importantly, the coefficient a does not have any definite
sign and for a = 0 we trivially get f (p) � 0 in the allowed
regime. Proceeding to the second step, we now perform a local
minima and maxima analysis in order to find the minimum
functional value of f (p) in the allowed domain p ∈ [0, 2]. The
first and second derivatives of f (p) with respect to p are given
in standard forms,

f ′(p) = b + 2ap,

f ′′(p) = 2a. (C12)

The minimaand maxima are given by the solution of f ′(p) =
0 and read as

p∗ = − b

2a
. (C13)

Possibility I: If a > 0, since we already have b � 0, then we
find that p∗ � 0, which lies outside the valid regime [0,2].
Note that a > 0 also implies f ′′(p∗) > 0. Thus, we conclude
that the function f (p) will posses a minima for a > 0, but the
minima will not fall inside the valid range of p ∈ [0, 2]. This
is the central part of our argument; no local minima of the
function f (p) exists for p ∈ (0, 2].

Possibility II: If a < 0, then we have p∗ � 0 and f ′′(p∗) <

0. This corresponds to maxima, and this maxima may or may
not fall inside [0,2].

Interestingly, from both these possibilities we come to the
same conclusion, stated as follows: Within this given range of
p ∈ [0, 2] the function f (p) will reach its minimum value at
one of the end points. We already know that f (0) = c � 0.
Now we find that

f (2) = (tx + ty)2[(x + y) coth (x + y) − 1] � f (0) � 0.

(C14)

Thus for p ∈ [0, 2], we conclude that f (p) � f (0) � 0. This
is equivalent to

〈〉〈Q2
c

〉 − 2〈Qc〉2 � (〈〉〈Q2
c〉 − 2〈Qc〉2)|u=1 � 0. (C15)

FIG. 6. The allowed domain of the function f̃ ( p̃, q), where p̃ =
2 − u − v and q = u − v.

Therefore, for the symmetric driving case, TUR given in
Eq. (C1) always holds. A similar analysis can also be carried
out for Qh and W . This concludes the proof of TURs for the
symmetric driving case. Now we move to the proof for the
more-generalized situation—the asymmetric driving scenario.

2. Asymmetric driving case

In this broken time-reversal symmetry situation, we will
consider a symmetrized form of Eq. (C2) by taking into ac-
count both the time-forward and reverse cycles, which is also
an alternative version of Eq. (38),

〈〉F + 〈〉R

2

⎡
⎣

〈〈
Q2

c

〉〉
F + 〈〈

Q2
c

〉〉
2

+
( 〈Qc〉F + 〈Qc〉R

2

)2
⎤
⎦

− 2

( 〈Qc〉F + 〈Qc〉R

2

)2

� 0. (C16)

For this proof our approach will be similar to the previously
discussed symmetric driving case. Remember that now we
are dealing with the u �= v situation, and because of that the
left-hand side of Eq. (C16) will be a function of both u and
v, and u, v ∈ [0, 1]. However, here we will work with the
variables p̃ = 2 − u − v and q = u − v, where p̃ ∈ [0, 2] and
q ∈ [−1, 1]. This is equivalent to working with center of mass
and relative coordinates and q indeed quantifies the relative
asymmetry introduced between the two unitary work strokes
of the Otto cycle. This two variable function (apart from the
positive factor 2ω2

0) is given by

f̃ ( p̃, q) = c + bp̃ + ap̃2 − gq2 − hp̃q2, (C17)

and the allowed domain of the function f̃ ( p̃, q) is a square in
the p̃ q plane (see Fig. 6) with vertices at (0,0), (1,1), (2,0) and
(1,−1). Our goal is to show that f̃ ( p̃, q) � 0 for the allowed
values of p̃ and q. Notice that we have already introduced the
coefficients c, b, and a and showed that c, b � 0, whereas a
does not have definite sign. The new coefficients g and h are

g = 1
2 (x − y) (tx − ty) t2

y � 0, (C18)

h = 1
2 (xty + ytx ) t2

y � 0. (C19)

Note that f̃ (0, 0) = c corresponds to the quasistatic situation
(u = v = 1) and it is positive. We now proceed to the next
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step, i.e., find minimum possible value of f̃ ( p̃, q) for allowed
p̃, q and show that the minimum value is non-negative. For
this we perform maxima and minima analysis as before, but
now we deal with two variables. Below we list the first and
second partial derivatives of f̃ with respect to p̃ and q,

f̃ p̃ = b + 2ap̃ − hq2,

f̃q = −2q(g + hp̃),

f̃ p̃p̃ = 2a,

f̃qq = −2(g + hp̃),

f̃ p̃q = −2hq. (C20)

In order to find minima and maxima we solve f̃ p̃ = 0 and f̃q =
0 simultaneously. Now the allowed solution of f̃q = 0 is q∗ =
0, as g, h � 0 and p̃ cannot be negative. With this, solving
f̃ p̃ = 0 provide us p̃∗ = −b/2a. Now if a > 0, then we get
p̃∗ � 0, since b � 0, and we immediately conclude that no
maxima and minima or saddle point fall inside the allowed
region in the p̃q plane. However, if a < 0, then we have

f̃ p̃p̃ < 0,

f̃ p̃p̃ f̃qq − f̃ 2
p̃q > 0, (C21)

and this corresponds to the maxima. From both cases we
draw the same conclusion that the function f̃ ( p̃, q) reaches
its minimum allowed value at the boundary of its allowed
domain. So now we examine the f̃ ( p̃, q) on boundary of the
allowed square. Here we will demonstrate calculations for one
side (0, 0) → (1, 1) of the allowed square but the conclusions
hold true for the other three as well. Notice that this boundary
line in the p̃q plane is given by the equation p̃ = q. Thus, on
this boundary f̃ ( p̃, q) is parameterized as

f̃ ( p̃) = c + bp̃ + (a − g) p̃2 − hp̃3. (C22)

The derivatives of f̃ ( p̃) are given by

f̃ ′( p̃) = b + 2(a − g) p̃ − 3hp̃2, (C23)

f̃ ′′( p̃) = 2(a − g) − 6hp̃. (C24)

Now minima and maxima on this boundary are attained at
f̃ ′( p̃) = 0 which are now quadratic in p̃. However, since neg-
ative values of p̃ are not allowed, the only possible solution
is

p̃∗ = (a − g) +
√

(a − g)2 + 3hb

3h
. (C25)

Interestingly, for this value we find that

f̃ ′′( p̃∗) = −2
√

(a − g)2 + 3hb < 0, (C26)

which corresponds to the maxima. Thus we conclude that
the function f̃ ( p̃) attains its minimum value at one of the
end points of the line, namely (0,0) or (1,1). Performing the
same analysis for the other three sides we discover that, sur-
prisingly, the whole minimum value finding problem of this
two variable function eventually boils down to examining its
values at the vertices of the allowed square on the p̃ q plane. It

is straightforward to show that

f̃ (0, 0) = (tx − ty)2[(x − y) coth (x − y) − 1] � 0, (C27)

f̃ (2, 0) = (tx + ty)2[(x + y) coth (x + y) − 1] � 0, (C28)

f̃ (1, 1) = f̃ (1,−1) = 1

2
(xtx + yty)

(
2 − t2

y

) − t2
x

=
(
2 − t2

y

)
2

(
xtx + yty − t2

x − t2
y

) + t2
y

2

(
2 − t2

x − t2
y

)
� 0, (C29)

where in the last line we have used the identity x � tanh x for
x > 0. Now f̃ (2, 0) � f̃ (0, 0), and remember that f̃ (0, 0) rep-
resents the quasistatic situation. However, f̃ (1, 1), although
a positive quantity, can potentially become less than f̃ (0, 0)
for certain parameter values. Because of this, unlike the sym-
metric driving case, here we do not receive relation like
Eq. (C15). It is worth mentioning that f̃ (1, 1) is a very inter-
esting scenario as it represents the u = 1, v = 0 case, meaning
the expansion stroke is done infinitely slowly (quasistatic),
whereas the the compression happens instantly (quench).

Finally, we have proved that the function f̃ ( p̃, q) attains its
minimum value either at (0,0) or at (1,1) and (1,−1) and this
minimum value is non-negative. This concludes our proof of
Eq. (C16).

APPENDIX D: HARMONIC OSCILLATOR
AS A WORKING MEDIUM

In this Appendix, we provide details about the parametri-
cally driven harmonic oscillator working medium executing a
four-stroke Otto cycle. In the asymmetrically driven scenario,
the exact expression of the characteristic function of joint
probability distribution of output work and input heat for the
time-forward process is given by [63]

χHO
F (γw, γh) = 2(1 − e−βcω0 )(1 − e−βhω1 )

× [
Q

(
1 − x2

1

)(
1 − y2

1

)
+ (

1 + x2
1

)(
1 + y2

1

) − 4x1y1
]− 1

2

× [
Q∗(1 − x2

2

)(
1 − y2

2

)
+ (

1 + x2
2

)(
1 + y2

2

) − 4x2y2
]− 1

2 , (D1)

where

x1 = exp [−ω0(βc + iγw )],

y1 = exp [iω1(γw − γh)],

x2 = exp {−ω1[βh + i(γw − γh)]},
y2 = exp [iω0γw],

and Q,Q∗ ∈ [1,∞] are the so-called adiabaticity parameters
for the expansion and compression unitary strokes, respec-
tively. In other words, Q and Q∗ serve as a qualitative
indicator of the degree of nonadiabaticity (in the quantum
sense) introduced into the unitary work strokes (see Ref. [64]
for details). Q = Q∗ corresponds to the time-symmetric driv-
ing case with Q = Q∗ = 1 is the quasistatic limit. In the
time-asymmetric driving scenario (Q �= Q∗), the CF for the
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time-reverse cycle can be calculated from Eq. (D1), by interchanging Q and Q∗. Below, we list the expressions of the averages
and fluctuations of work and heat for the forward cycle,

〈Qh〉F = ω1

2

[
coth

(
βhω1

2

)
− Q coth

(
βcω0

2

)]
, (D2)

〈〈
Q2

h

〉〉
F = −ω2

1

4

[
2 − coth2

(
βhω1

2

)
− (2Q2 − 1) coth2

(
βcω0

2

)]
, (D3)

〈W 〉F = 〈W1〉F + 〈W3〉F = 1

2

[
(Qω1 − ω0) coth

(
βcω0

2

)
+ (Q∗ω0 − ω1) coth

(
βhω1

2

)]
, (D4)

〈〈W 2〉〉F = 〈W1〉2
F + 〈W3〉2

F − (ω0 + ω1)2

2
+ ω0ω1

2
(Q + Q∗) + ω2

1

4
(Q2 − 1) coth2

(
βcω0

2

)
+ ω2

0

4
(Q∗2 − 1) coth2

(
βhω1

2

)
,

(D5)

〈Qc〉F = ω0

2

[
coth

(
βcω0

2

)
− Q∗ coth

(
βhω1

2

)]
, (D6)

〈〈
Q2

c

〉〉
F = −ω2

0

4

[
2 − coth2

(
βcω0

2

)
− (2Q∗2 − 1) coth2

(
βhω1

2

)]
. (D7)

For the reverse cycle, similar expressions for averages and fluctuations of work and heat can be obtained by swapping Q and Q∗.
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