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Large deviations of the interface height in the Golubović-Bruinsma model of stochastic growth
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We study large deviations of the one-point height H of a stochastic interface, governed by the Golubović-
Bruinsma equation, ∂t h = −ν∂4

x h + (λ/2)(∂xh)2 + √
D ξ (x, t ), where h(x, t ) is the interface height at point x and

time t and ξ (x, t ) is the Gaussian white noise. The interface is initially flat, and H is defined by the relation h(x =
0, t = T ) = H . We focus on the short-time limit, T � TNL, where TNL = ν5/7(Dλ2)−4/7 is the characteristic
nonlinear time of the system. In this limit typical, small fluctuations of H are unaffected by the nonlinear term,
and they are Gaussian. However, the large-deviation tails of the probability distribution P (H, T ) “feel” the
nonlinearity already at short times, and they are non-Gaussian and asymmetric. We evaluate these tails using
the optimal fluctuation method (OFM). The lower tail scales as − lnP (H, T ) ∼ H5/2/T 1/2. It coincides with its
analog for the Kardar-Parisi-Zhang (KPZ) equation, and we point out to the mechanism of this universality. The
upper tail scales as − lnP (H, T ) ∼ H11/6/T 5/6, it is different from the upper tail of the KPZ equation. We also
compute the large deviation function of H numerically and verify our asymptotic results for the tails.
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I. INTRODUCTION

Stochastic growth models out of equilibrium have been at
the forefront of nonequilibrium statistical physics since the
early 1990s [1–3]. Probably the most celebrated paradigmatic
model of this class is described by the Kardar-Parisi-Zhang
(KPZ) equation. In one dimension, this equation has the
form [4]

∂t h = ν∂2
x h + λ

2
(∂xh)2 +

√
D ξ (x, t ), (1)

where h(x, t ) is the height of a growing KPZ interface at the
point x of a substrate at time t , and ξ (x, t ) is a Gaussian white
noise with zero average and

〈ξ (x1, t1)ξ (x2, t2)〉 = δ(x1 − x2)δ(t1 − t2). (2)

At late times, the lateral correlation length of an infinite
one-dimensional KPZ interface grows as t2/3, and the charac-
teristic interface width grows as t1/3. The exponents 2/3 and
1/3 are hallmarks of the KPZ universality class: an important
universality class of non-equilibrium growth [1–9].

Since the early 2010s, more detailed characteristics of the
height fluctuations of the KPZ interface have been introduced
and studied. One of these characteristics is the probability
distribution P (H, t ) of the interface height at x = 0 at time
t , H = h(x = 0, t ). This distribution strongly depends on the
initial condition h(x, t = 0) and, in an infinite system, this de-
pendence persists forever [7–9]. There has been a spectacular
progress in quantitative analysis of this problem. It started
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from the discovery of remarkable exact representations for
P (H, t ) for several “standard” initial conditions and extrac-
tion of relevant asymptotics, see Refs. [7–9] for reviews. This
line of work received the name “stochastic integrability.”

In parallel, the one-point height fluctuations have been
studied by the optimal fluctuation method (OFM) [10–26].
The OFM (also known in other areas of physics and math-
ematics as the weak-noise theory, the instanton method, the
dissipative WKB approximation, the macroscopic fluctuation
theory, etc.) is an asymptotic method, based on a problem-
specific small parameter. The method involves a saddle-point
evaluation of the exact path integral for stochastic partial
differential equations, including the KPZ equation. This is
achieved via minimization of the proper action functional and
determination of the optimal path of the system. In the context
of surface growth in one dimension it is the most likely history
of the interface h(x, t ), and the most likely realization of the
noise ξ (x, t ), which dominate the contribution of different his-
tories to a large deviation in question. It has been found that,
at short times, the OFM captures the whole large-deviation
function of H for a broad variety of initial and boundary con-
ditions [10–26]. The optimal paths not only make it possible
to evaluate the large-deviation function of H but also provide
a useful insight into physics of large deviations. For some
initial conditions, the theoretically predicted optimal paths
were directly measured in Monte Carlo simulations which
probe the distribution tails of P (H, T ) with an importance
sampling algorithm [24,25].

It was observed some time ago [15] that the OFM equa-
tions for Eq. (1) belong to a class of completely integrable
classical systems. Recently this idea has borne fruit in
Refs. [27,28] where the short-time large-deviation function of
H was calculated exactly, for three major initial conditions,
by combining the OFM with the Zakharov-Shabat inverse
scattering method.
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The KPZ equation, however, is only one member of a
whole family of continuum models of noneqilibrium stochas-
tic interface growth. Since the beginning of the 1990s, several
other models, with different mechanisms of nonlinearity and
dissipation and different types of noise, have been proposed
and studied, see Ref. [2] for an extensive review. We believe
that the time is ripe to broaden the application range of the
OFM by applying it to some of these systems. Here we fo-
cus on the Golubović-Bruinsma (GB) equation of stochastic
interface growth [29]:

∂t h = −ν∂4
x h + λ

2
(∂xh)2 +

√
D ξ (x, t ). (3)

The GB equation retains the same nonlinearity and noise as in
the KPZ equation (1), but it differs from the latter by the dis-
sipation mechanism: Here it is surface diffusion, described by
the fourth-derivative term −ν∂4

x h. In general, this difference
is quite important as we will see shortly.

In the context of stochastic interface growth, the GB
equation is a useful model equation [2,29], but the same
equation also describes spatially extended one-dimensional
nonequilibrium condensates in a variety of experimental set-
tings, see Ref. [30] and references therein.

Without the nonlinear term, the GB equation (3) becomes
the linear stochastic Mullins-Herring equation:

∂t h = −ν∂4
x h +

√
D ξ (x, t ). (4)

Its noiseless version ∂t h = −ν∂4
x h, proposed by Mullins 65

years ago [31], describes the capillary relaxation of a solid
surface, where the surface diffusion of adatoms is accompa-
nied by adatom exchange between the surface and the bulk
of the solid [32–36]. The linear stochastic equation (4) was
introduced by Wolf and Villain [32] and by Das Sarma and
Taborenea [37]. This equation and its analog with a conserved
noise were extensively studied in the context of dynamic
scaling behavior of interfaces [2,3,37–39]. Previously we em-
ployed the OFM to study the probability distribution P (H, T )
of the one-point interface height for Eq. (4) with a conserved
noise [40]. Here we study the short-time behavior of P (H, T )
for the nonlinear GB equation (3). We suppose that the process
starts at t = 0 from flat interface,

h(x, t = 0) = 0, (5)

and condition the interface height at x = 0 on reaching a value
H at time t = T [41]:

h(x = 0, t = T ) = H. (6)

In the short-time limit, T � TNL, where TNL = ν5/7(Dλ2)−4/7

is the characteristic nonlinear time of the GB equation, typical
(that is, small) fluctuations of H are governed by the linear
equation (4). As a result, they are Gaussian. Using the OFM,
here we will obtain

− lnP (H, T ) � 3πν1/4H2

23/4�(1/4)DT 3/4
, (7)

where �(. . . ) is the gamma function. As to be expected,
Eq. (7) is in perfect agreement with previous results for the
linear equation (4) [2,3,16].

Large deviations of H , corresponding to the tails of the dis-
tribution P (H, T ), “feel” the presence of the nonlinear term

in the GB equation already at short times, and they demand a
full account of the nonlinearity. As we show here, the tails of
P (H, T ) are non-Gaussian. For the upper tail λH → +∞ we
obtain a slower-than-Gaussian asymptotic

− lnP (H, T ) � βν1/3H11/6

D|λ|11/6T 5/6
, (8)

where β � 1.73. The asymptotic (8) is quite different from the
short-time λH → +∞ asymptotic of P (H, T ) for the KPZ
equation which scales as − lnP (H, T ) ∼ H3/2/T 1/2 [10–13].

We also determine the lower tail, λH → −∞, of P (H, T ):

− lnP (H, T ) � 8
√

2|λ| H5/2

15πDT 1/2
. (9)

This faster-than-Gaussian tail coincides with the leading-
order λH → −∞ tail of P (H, T ) for the KPZ equa-
tion [12,13]. This happens because the λH → −∞ tail turns
out to be independent of dissipation, be it the diffusion term
of the KPZ equation or the surface-diffusion term of the GB
equation.

Further, we obtain asymptotic solutions for the optimal
paths of the system and compute the optimal paths numeri-
cally, using a modified version of the back-and-forth iteration
algorithm developed by Chernykh and Stepanov [42,43]. The
numerical solutions enable us to evaluate (of course, in a finite
range of H) the complete large deviation function of height
s(H ) [defined by Eq. (12) below] and verify our asymptotic
results for the typical fluctuations and for the tails.

Here is a plan of the remainder of the paper. In Sec. II
we present the OFM formulation (the equations and bound-
ary conditions) for the evaluation of P (H, T ) for Eq. (3).
A derivation of the equations and boundary conditions is
relegated to the Appendix. Section II also includes our nu-
merical results for the complete s(H ). In Sec. III we present
asymptotic solutions of the OFM problem in three different
limits: H → 0 (typical fluctuations), λH → +∞ [the upper
tail of P (H, T )], and λH → −∞ [the lower tail of P (H, T )].
Our asymptotic solutions for the tails were motivated by the
numerical results for the optimal paths in different regimes,
and by expected analogies between the GB equation and the
KPZ equation. Section IV contains a brief summary and a
discussion of possible extensions of our results.

II. OFM FORMALISM

It is convenient to rescale the variables. After the rescaling
transformation

t

T
→ t,

x

(νT )1/4
→ x and

|λ|T 1/2h

ν1/2
→ h, (10)

Eq. (3) becomes

∂t h = −∂4
x h − 1

2 (∂xh)2 + √
ε ξ (x, t ), (11)

where ε = Dλ2T 7/4/ν5/4, and we have assumed, without loss
of generality, that λ < 0 [44]. Clearly, the exact distribution
P (H, T ) depends only on two dimensionless parameters: the
rescaled height H̃ = |λ|T 1/2H/ν1/2 and ε.
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The OFM relies on a small parameter which justifies the
saddle-point evaluation of the path integral. In the present
case, we formally set ε → 0. In this asymptotic regime the
weak-noise scaling holds:

− lnP (H, T ) � s(H̃ )

ε
= ν5/4

Dλ2T 7/4
s

( |λ|T 1/2H

ν1/2

)
, (12)

and we will suppress the tilde in H̃ in the following. The
a priori unknown large deviation function s(. . . ) should be
determined via minimization of the proper action functional,
intrinsic in the saddle-point evaluation. The minimization pro-
cedure, outlined in the Appendix, yields an Euler-Lagrange
equation which can be recast in a Hamiltonian form. The
Hamilton’s equations are

∂t h = −∂4
x h − (1/2)(∂xh)2 + ρ, (13)

∂tρ = ∂4
x ρ − ∂x(ρ∂xh). (14)

Their solution for h(x, t ), subject to proper boundary condi-
tions, describe the optimal path, that is the most likely history
of the interface h(x, t ), conditioned on H . In its turn, the
conjugate momentum density field ρ(x, t ) describes (up to a
rescaling) the most likely realization of the Gaussian white
noise ξ (x, t ), conditioned on the same H .

The interface is initially flat, see Eq. (5). The “final” con-
dition (6) can be temporarily incorporated via a Lagrange
multiplier (see the Appendix), which leads to the boundary
condition

ρ(x, t = 1) = �δ(x), (15)

where δ(. . . ) is the delta function. The a priori un-
known Lagrange multiplier � should be ultimately expressed
through H .

Once the optimal path is determined, the rescaled action
s(H ), which plays the role of the large deviation function of
H , can be calculated from the equation

s(H ) = 1

2

∫ 1

0
dt

∫ ∞

−∞
dx ρ2(x, t ). (16)

Alternatively, s(H ) can be found from the “shortcut relation”
ds/dH = �, which follows from the fact that H and � are
conjugate variables, see, e.g., Ref. [45].

It is often convenient to rewrite Eqs. (13) and (14) in terms
of the local interface slope V (x, t ) = ∂xh(x, t ):

∂tV + V ∂xV = −∂4
x V + ∂xρ, (17)

∂tρ + ∂x(ρV ) = ∂4
x ρ. (18)

Figure 1 shows the rescaled action s(H ), obtained by
solving the OFM problem numerically with a modified back-
and-forth iteration algorithm [42,43]. Evident in Fig. 1 is a
strong asymmetry of the right and left tails of P (H, T ).

FIG. 1. The large-deviation function of the rescaled height s(H ),
see Eq. (12), computed by solving the OFM equations (13) and
(14) numerically with a modified back-and-forth iteration algorithm
[42,43]. Evident is a strong asymmetry of the tails H < 0 and H > 0.
To remind the reader, we set λ < 0.

III. ASYMPTOTICS OF s(H )

A. Typical fluctuations, H → 0

Typical, small fluctuations of H are described by the limit
of H → 0 or � → 0. In this limit we can drop the nonlinear
terms in Eqs. (13) and (14) and obtain

∂t h = −∂4
x h + ρ, (19)

∂tρ = ∂4
x ρ. (20)

These linear equations provide the optimal fluctuation theory
for Eq. (4), and they can be solved exactly. Solving Eq. (20)
backward in time with the initial condition (15), we obtain

p(x, t ) = �

(1 − t )1/4


[
x

(1 − t )1/4

]
, (21)

where

(z) = �(5/4)

π
0F2

(
1

2
,

3

4
;

z4

256

)

−�(3/4)

8π
z2

0F2

(
5

4
,

3

2
;

z4

256

)
, (22)

and pFq(a; b; z) is the generalized hypergeometric function
[46]. This solution at different times is depicted on Fig. 2.
It exhibits an oscillatory spatial decay, characteristic of the
surface diffusion [31].

FIG. 2. The optimal history of rescaled noise ρ(x, t )/� in the
limit of small fluctuations, H → 0, or � → 0. Shown is the solution
(21) at t = 0 (black), 0.7 (blue), and 0.85 (magenta).
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FIG. 3. The quadratic asymptotic (25) of s(H ) (dashed line) ver-
sus s(H ) found numerically (solid line). The numerical curve is a
small fragment of the s(H ) curve from Fig. 1.

The action in terms of � can be obtained by substituting
Eqs. (21) and (22) into Eq. (16):

s(�) = �2

2

∫ 1

0

dt

(1 − t )1/4

∫ ∞

−∞
dz 2(z) = α�2, (23)

where α = �(1/4)
6 4√2π

= 0.16174 . . . . Now we have to express �

through H . We can bypass the need to solve Eq. (19) by using
“the shortcut relation” ds/dH = �. We have

ds

dH
= ds

d�

d�

dH
= 2α�

d�

dH
= �. (24)

Therefore � = H/2α, and we obtain the rescaled action

s(H → 0) = H2

4α
, (25)

leading to Eq. (7) for P (H, T ). Figure 3 compares the asymp-
totic (25) with the numerically computed s(H ), and a good
agreement is observed for sufficiently small |H |. The Gaus-
sian asymptotic (7), which predicts, in the original variables,
a T 3/8 growth of the standard deviation of H with time T , per-
fectly agrees with the known results for Eq. (4), see page 142
of Ref. [2], Eq. (3.25) of Ref. [3], and Eq. (8) of Ref. [16]. No-
tice that the applicability condition of this asymptotic |H | � 1
in the rescaled variables depends on time T in the original
variables:

|H | � ν1/2

|λ|T 1/2
.

Therefore, when T → 0 at fixed H , the Gaussian asymptotic
is always valid. However, for a fixed T , this asymptotic breaks
down for sufficiently large |H |, that is, in the distribution tails.
Let us now describe these tails.

B. Upper tail: λH → +∞
Our numerical simulations (see Fig. 4) show that the dom-

inant contribution to the action in this tail comes from a
solution of the type

h(x, t ) = h0(x) − ct and ρ(x, t ) = ρ0(x), (26)

parametrized by c. In this solution the (rescaled) optimal
realization of the noise ρ(x, t ) has the form of a stationary
soliton of ρ0(x) which drives a traveling wave of h(x, t ) in
the vertical direction with velocity c or, in the language of

FIG. 4. The optimal path for large negative λH . Shown are
h(x, t ) (top panel) and V (x, t ) (middle panel) obtained by solving
numerically Eqs. (13) and (14) for � = −200 (which corresponds
to H � −143.6) at times t = 0, 0.25, 0.5, 0.75, and 1. The bottom
panel shows ρ(x, t ) at times t = 0.3, 0.6, and 0.9. The V antishock,
driven by a stationary ρ soliton, and two outgoing deterministic V
shocks are clearly seen.

the slope V = ∂xV , a stationary antishock V (x, t ) = V0(x) ≡
h′

0(x) = 0 located at x = 0. The ansatz (26) is the same as
for the upper tail of P (H, T ) for the KPZ equation [13],
but the solution details are quite different. In particular,
here the soliton-antishock solution exhibits decaying spa-
tial oscillations. As c � 1 (indeed, in the leading order c =
|H | � 1, see below), the soliton-antishock solution is strongly
localized at x = 0. The V antishock does not satisfy the
boundary conditions V (|x| → ∞) = 0. Similarly to the KPZ
equation, the remedy comes in the form of two outgoing
deterministic (that is, ρ = 0) shocks of V (x, t ) which obey the
equation

∂tV + V ∂xV = −∂4
x V (27)

and satisfy the boundary conditions V (x → −∞, t ) = 2c
and V (x → ∞, t ) = 0 for the right-moving shock and V
(x → −∞, t ) = 0 and V (x → ∞, t ) = 2c for the left-
moving shock.

Let us start with the soliton-antishock solution. Substitut-
ing the ansatz (26) into Eqs. (13) and (14) and integrating
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one of the two resulting ordinary differential equations with
respect to x, we obtain

d3V0

dx3
= c − V 2

0

2
+ ρ0, (28)

d3ρ0

dx3
= ρ0V0, (29)

where V0(x) = h′
0(x). The integration constant in Eq. (29)

vanished because ρ(|x| → ∞, t ) = 0. After rescaling

z = (c/2)1/6x, v = (2c)−1/2V0, r = (1/c)ρ0 (30)

we recast Eqs. (28) and (29) into a parameter-free form,

v′′′(z) = 1 − v2(z) + r(z), (31)

r′′′(z) = 2r(z)v(z), (32)

where the primes denote the z derivatives. Remarkably, the
rescaling transformation (30) already makes it possible to
evaluate the rescaled action (16) for this tail up to a numerical
constant O(1) (which we will compute numerically). Using
Eq. (30), we (i) go over from x and ρ to z and r in Eq. (16) and
(ii) make use of the fact that, in the leading order, ρ(x, t ) =
ρ0(x) is time independent; see Eq. (26). We obtain

s � 1

2

∫ ∞

−∞
dx ρ2

0 (x) = βc11/6 � β|H |11/6, (33)

where

β = 1

25/6

∫ ∞

−∞
dz r2(z), (34)

and we also used the asymptotic relation

c � h(x = 0, t = 1) = |H |,
see Eq. (26).

To compute the constant β = O(1) from Eq. (34), we have
to solve the ordinary differential equations (ODEs) (31) and
(32). Analytical solution does not seem to be possible, so we
solved these ODEs numerically. As v(z) is antisymmetric, and
r(z) symmetric, with respect to z ↔ −z, it suffices to solve
Eqs. (31) and (32) only for z > 0 with five boundary con-
ditions v(0) = v′′(0) = r′(0) = 0, v(∞) = 1, and r(∞) = 0.
The resulting numerical solution for v(z) and r(z) is shown
by dashed lines in Fig. 5. The functions v(z) and r(z) exhibit
decaying oscillations. These can be easily understood from
a linearization of Eqs. (31) and (32) around the asymptotic
states v = 1, r = 0 at z → ∞ and v = −1 and r = 0 at z →
−∞. Finally, using the numerically found r(z), we obtain
from Eq. (34) β � 1.73.

Figure 5 also shows, by solid lines, the V and ρ profiles
obtained by solving numerically the full time-dependent OFM
equations (17) and (18), using the modified back-and-forth
iteration algorithm [42,43], for � = −200. The profiles were
rescaled according to Eq. (30), with c = |H | � 143.6. As one
can see, the agreement is good. Because of the boundary
conditions in time, Eqs. (6) and (15), the soliton-antishock
solution breaks down at t close to 0 and 1. These narrow
“boundary layers” in time, however, do not contribute to the
action s in the leading order at λH → +∞.

The upper panel of Fig. 6 shows that the asymptotic (33)
with β = 1.73 rapidly converges to the numerical results at

FIG. 5. The stationary soliton-antishock solution which domi-
nates the upper tail λH → +∞ of P (H, T ). The dashed lines show
a numerical solution of the ordinary equations (31) and (14) for the
rescaled profiles v(z) and r(z). The solid lines show rescaled profiles
V (x, t = 0.5) and ρ(x, t = 0.5), obtained by numerically solving the
complete OFM equations (17) and (18) for � = −200.

FIG. 6. Convergence of the asymptotics (33) (top) and (38) (mid-
dle and bottom) of the large-deviation function s(H ) to numerical
results at large |H | or |�|. Notice that the asymptotic (38) in terms
of H (middle) converges much slower than the asymptotic s(�) =
(1/5)(3π/2)2/3�5/3 in terms of � (bottom).

014117-5



BARUCH MEERSON AND ARKADY VILENKIN PHYSICAL REVIEW E 108, 014117 (2023)

FIG. 7. Deterministic V shock: An intrinsic feature of the opti-
mal path dominating the upper tail λH → +∞ of P (H, T ). Dashed
line: Traveling front solution V (x − c0t ) of Eq. (27). When properly
rescaled, this solution obeys Eq. (35). Solid line: Rescaled profile
V (x, t = 0.9), obtained by numerically solving the complete OFM
problem [Eqs. (17) and (18)] for � = −200. Here c = |H | � 143.6
and c0 = √|H |/2 � 8.47.

large negative H . In the original variables Eq. (33) yields the
upper tail (8) of P (H, T ).

To complete the solution for the optimal path, we now
turn to the outgoing deterministic shock solutions which take
care of the boundary conditions at large distances. These
shocks do not contribute to the action, and they are de-
scribed by traveling front solutions of the form V (x, t ) =
F (x ± c0t ) of Eq. (27). Equation (27) is a higher-order cousin
of the Burgers equation ∂tV + V ∂xV = ∂2

x V . Because of the
fourth-derivative dissipation term −∂4

x V the traveling shock
of Eq. (27) exhibits decaying oscillations in space. However,
exactly as in the case of the Burgers equation, the shock
velocity c0 is independent of the dissipation, and it is equal
to (V+ + V−)/2, where V+ and V− are the asymptotic values
of V in front of and behind the shock, respectively. For our
right-moving shock V+ = 0 and V− = √

2c and vice versa
for the left-moving shock. Therefore, the deterministic shock
velocity c0 = √

c/2 � √|H |/2 turns out to be the same as for
the KPZ equation [13,47].

The shock profiles, however, are markedly different from
the KPZ case. In particular, they approach their respective
constant values at x = ±∞ in an oscillatory manner. To com-
pute the profiles we rescale v = V/

√
2c and z = (x/2)1/6(x −

c0t ) and solve the resulting parameter-free ODE,

v′′′(z) = v(z) − v2(z), (35)

numerically. Since v(z) − 1/2 is an odd function of z, it suf-
fices to solve Eq. (35) only for z > 0. For the right-moving
shock the boundary conditions are v(0) = 1/2, v′′(0) = 0,
and v(∞) = 0. The solution is shown by the dashed line
in Fig. 7. The same figure shows, by the solid line, the
properly rescaled V profiles obtained by solving the full time-
dependent OFM equations (17) and (18) for � = −200. A
good agreement is observed.

C. Lower tail: λH → −∞
The lower tail has a very different nature from the upper

one. As evidenced by our numerical solutions (see Fig. 8),
in this limit the momentum density field ρ(x, t ) is large
scale and therefore can be described by the zero-dissipation

FIG. 8. Optimal configuration of the noise at t = 0 which dom-
inates the lower tail λH → −∞. Shown are the profiles of ρ(x, t =
0), obtained numerically here (the solid line) and analytically in
Ref. [13] (the dashed line), for � = 58 000.

limit of Eqs. (17) and (18). This limit is obtained by drop-
ping the fourth-derivative terms in Eqs. (17) and (18) which
originate from the surface-diffusion term −ν∂4

x h in the GB
equation (11). The resulting ideal hydrodynamic equations,

∂tρ + ∂x(ρV ) = 0, (36)

∂tV + V ∂xV = ∂xρ, (37)

coincide with those obtained for the lower tail of the KPZ
equation [13]. This happens simply because the GB equa-
tion (11) and the KPZ equation (1) (and, as a result, the
OFM equation for the two models) become identical in their
respective zero-dissipation limits. As the boundary conditions
at t = 0 and t = 1 are also the same for the two problems, this
makes the solutions in the zero-dissipation limit identical as
well.

Equations (36) and (37) describe an inviscid flow of an
effective compressible gas with density ρ and velocity V ,
driven by the gradient of a negative pressure P(ρ) = −ρ2/2.
The negative pressure causes collapse of the whole gas into
the origin at t = 1, in compliance with the boundary condition
(15). This idealized problem turns out to be exactly soluble,
and its solution was obtained in Ref. [13], see also Ref. [12].
The spatial profile of ρ(x, t ) is parabolic in x at all times,
and it lives on a compact support which shrinks to zero at
t = 1. The spatial profile of V (x, t ) includes two regions. In
the internal region, which has the same compact support as
ρ(x, t ), the V profile is linear in x. In the external region
V (x, t ) comes from the solution of the Hopf equation ∂tV +
V ∂xV = 0 and its matching with the internal solution [13].
We checked that this analytical solution agrees very well with
the numerical solution of the full system of Eqs. (17) and
(18), which describe the optimal path of the GB interface. As
an example, Fig. 8 shows ρ(x, t = 0), obtained numerically
for � = 58 000, and the corresponding theoretical profile of
ρ(x, t = 0)—a parabola—obtained in Ref. [13].

The final result for the rescaled action s(H ) in this regime is

s(H → ∞) = 8
√

2

15π
H5/2, (38)

the same as for the KPZ equation [12,13]. In the original
variables, Eq. (38) leads to the announced lower tail (9)
of P (H, T ). The middle panel of Fig. 6 shows that the
asymptotic (38) slowly converges to the numerical result
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at large positive H . The slow convergence signals the
presence of a relatively large subleading term in Eq. (38)
which is not captured by the leading-order hydrodynamic
solution. Our numerical data are compatible with a
subleading term O(H2 ln H ). The bottom panel of Fig. 6
shows a much faster convergence of the same asymptotic
(38) but rewritten in terms of the Lagrange multiplier �:
s(� → ∞) = (1/5)(3π/2)2/3�5/3 [13].

IV. SUMMARY AND DISCUSSION

We studied large deviations of the one-point height, as de-
scribed by the probability distribution P (H, T ), of an initially
flat interface, governed by the GB equation (3). We focused
on the short-time limit. Employing the OFM, we addressed
both typical fluctuations, see Eq. (7), and the distribution tails
(8) and (9). The lower tail (9) coincides with its counterpart
for the KPZ equation. The universal character of this tail is
explained by the macroscopic character of the optimal realiza-
tion of noise in this regime. On large scales one can neglect
dissipation of any origin if it is described by a differential
operator of a higher than first order, be it diffusion, surface
diffusion, and so on.

The upper tail (8) turns out to be very different both from
its counterpart for the KPZ equation and from the higher tail
(8). The reason is that the optimal realization of the noise
represents a strongly localized soliton of ρ, see Eqs. (26) and
(30). The soliton width scales as H−1/6 � 1. At such small
scales the dissipation is as important as the nonlinearity. Since
the dissipation term in the GB equation (the surface diffusion)
is different from that in the KPZ equation (the ordinary diffu-
sion), the resulting tails are also different.

Importantly, the optimal paths of the interface in this
problem respect, for all H , the mirror symmetry, h(−x, t ) =
h(x, t ), V (−x, t ) = −V (x, t ), and ρ(−x, t ) = ρ(x, t ). There
are two important consequences of this symmetry. The
first consequence is that, in analogy with the KPZ equa-
tion [13,14], the upper tail λH → +∞ of P (H, T ), see
Eq. (8), should be universal for a whole class of deterministic
initial conditions. The reason is that the ρ soliton and V
antishock are strongly localized at x = 0, while two expand-
ing deterministic shocks make it possible to match the small
soliton-antishock region with macroscopic external regions.
The deterministic shocks can accommodate any problem-
specific boundary conditions, and they do not contribute to
the action in the leading order.

The second consequence of the mirror symmetry of the op-
timal paths comes in the form of a simple connection between
the action s(H ), corresponding to P (H, T ) for the infinite
interface |x| < ∞ and the action s1/2(H ), corresponding to
P (H, T ) for the half-infinite interface 0 � x < ∞ with a re-
flecting wall at x = 0. Indeed, exploiting the mirror symmetry,
we obtain

s1/2(H ) = 1

2

∫ 1

0
dt

∫ ∞

0
dx ρ2(x, t ) = s(H )

2
, (39)

for any H . That is, the probability of observing a certain value
of H in the half-infinite system is always higher than in the
infinite system, and it becomes exponentially higher in the

tails. The same property is observed for the KPZ equation for
all deterministic initial conditions [18].

It would be interesting to use the OFM for the evaluation
of the probability distribution P (H, T ) of the one-point height
H in higher dimensions. There is a technical subtlety here:
The short-time variance of P (H, T )—which is controlled by
the d-dimensional version of the linear equation (4)—is well
defined only at d < 4, while at d � 4 it diverges [3,16,48].
A remedy to this divergence involves regularization, either by
introducing small but finite spatial correlations of the noise
[3] or studying the interface height averaged over a small ball
around the origin rather than the strictly one-point height H
[16]. However, in the GB equation it remains well defined
(and does not require a regularization) in the experimentally
relevant dimensions d = 2 and 3, so one can proceed to
studying P (H, T ). In d dimensions the GB equation, rescaled
according to Eq. (10), acquires the following form:

∂t h = −∇4h − 1
2 (∇h)2 + √

εd ξ (x, t ), (40)

where we have again assumed, without loss of generality, that
λ < 0. In Eq. (40)

εd = DT
8−d

4 λ2

ν
d+4

4

=
(

T

TNL

) 8−d
4

, (41)

where

TNL = ν
d+4
8−d

D
4

8−d |λ| 8
8−d

(42)

is the characteristic nonlinear time. Equation (41) implies that,
at short times, the parameter εd is small and, as a result, the
OFM is applicable in the experimentally relevant dimensions
d = 2 and 3.
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APPENDIX: DERIVATION OF THE
OFM EQUATIONS (13)–(15)

Derivation of Eqs. (13)–(15) closely follows that for the
KPZ equation (1), see, e.g., Ref. [13]. Using Eq. (3), we can
express the Gaussian noise term as

√
D ξ (x, t ) = ∂t h + ν∂4

x h − λ

2
(∂xh)2. (A1)

The corresponding Gaussian action is equal to S/D, where

S = 1

2

∫ T

0
dt

∫ ∞

−∞
dx

[
∂t h + ν∂4

x h − λ

2
(∂xh)2

]2

. (A2)

The OFM involves minimization of this action with respect to
the interface height histories h(x, t ), subject to the conditions
(5) and (6). The linear variation of the action is

δS =
∫ T

0
dt

∫ L/2

−L/2
dx

[
∂t h + ν∂4

x h − λ

2
(∂xh)2

]

×(
∂tδh + ν∂4

x δh − λ∂xh ∂xδh
)
. (A3)
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Let us introduce the effective momentum density field
ρ(x, t ) = δL/δv, where v ≡ ∂t h, and

L{h} = 1

2

∫ ∞

−∞
dx

[
∂t h + ν∂4

x h − λ

2
(∂xh)2

]2

(A4)

is the Lagrangian: a functional of h(x, t ). The effective mo-
mentum density field describes the optimal realization of the
noise. We obtain

ρ = ∂t h + ν∂4
x h − λ

2
(∂xh)2, (A5)

and arrive at

∂t h = −ν∂4
x h + λ

2
(∂xh)2 + ρ, (A6)

the first of the two Hamilton equations of the OFM. Now we
can rewrite the linear variation (A3) as

δS =
∫ T

0
dt

∫ ∞

−∞
dx ρ

(
∂tδh + ν∂4

x δh − λ∂xh ∂xδh
)
. (A7)

After several integrations by parts we obtain the Euler-
Lagrange equation, which yields the second Hamilton’s
equation:

∂tρ = ν∂4
x ρ + λ∂x(ρ∂xh). (A8)

The boundary terms in space, resulting from the integrations
by parts, all vanish because of the boundary conditions at
|x| → ∞. There are, however, two boundary terms in time,

at t = 0 and t = T , which result from the integration by
part of the first term under the double integral in Eq. (A7).
The term

∫
dx ρ(x, 0) δh(x, 0) vanishes because the height

profile at t = 0 is specified by Eq. (5). Then boundary term∫
dx ρ(x, T ) δh(x, T ) must also vanish. Since we specified

h(x, T ) at x = 0, the variation of h at this point must van-
ish: δh(x = 0, T ) = 0. However, ρ(x = 0, T ) can be arbitrary.
On the other hand, h(x �= 0, T ) is not specified; therefore
ρ(x �= 0, T ) must vanish. To determine the exact form of the
boundary condition at t = T , we accommodate the constraint
h(0, T ) = H by adding the term

�h(0, T ) = �

∫ L

−L
δ(x)h(x, T )dx, (A9)

to the action, where � is a Lagrange multiplier [18].
As a result, the boundary term of δS at t = T becomes∫

dx [ρ(x, T ) − �δ(x)] δh(x, T ), which leads to the boundary
condition [10,13]

ρ(x, T ) = �δ(x). (A10)

� is ultimately set up by the condition h(x = 0, T ) = H .
Performing the rescaling, described in Eq. (10),

and introducing the rescaled momentum density field,
|λ|T 3/2ν−1/2 ρ → ρ, we bring Eqs. (A6), (A8), and (A10)
to the forms (13), (14), and (15), respectively (with a
rescaled �).

Finally, Eqs. (16) of the main text follows from Eqs. (A2)
and (A5).
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