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Study of the de Almeida–Thouless line in the one-dimensional diluted power-law XY spin glass
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We study the de Almeida–Thouless (AT) line in the one-dimensional power-law diluted XY spin-glass model,
in which the probability that two spins separated by a distance r interact with each other, decays as 1/r2σ .
Tuning the exponent σ is equivalent to changing the space dimension of a short-range model. We develop a
heat bath algorithm to equilibrate XY spins; using this in conjunction with the standard parallel tempering and
overrelaxation sweeps, we carry out large-scale Monte Carlo simulations. For σ = 0.6, which is in the mean-
field regime above six dimensions—it is similar to being in 10 dimensions—we find clear evidence for an
AT line. For σ = 0.75 and σ = 0.85, which are in the non-mean-field regime and similar to four and three
dimensions, respectively, our data is like that found in previous studies of the Ising and Heisenberg spin glasses
when reducing the temperature at fixed field. For σ = 0.75, there is evidence from finite-size-scaling studies
for an AT transition but for σ = 0.85, the evidence for a transition is nonexistent. We have also studied these
systems at fixed temperature varying the field and discovered that at both σ = 0.75 and at σ = 0.85 there is
evidence of an AT transition! Confusingly, the correlation length and spin-glass susceptibility as a function of
the field are both entirely consistent with the predictions of the droplet picture and hence the nonexistence of
an AT line. In the usual finite-size critical point scaling studies used to provide evidence for an AT transition,
there is seemingly good evidence for an AT line at σ = 0.75 for small values of the system size N , which is
strengthening as N is increased, but for N > 2048 the trend changes and the evidence then weakens as N is
further increased. We have also studied with fewer bond realizations the system at σ = 0.70, which is the analog
of a system with short-range interactions just below six dimensions, and found that it is similar in its behavior
to the system at σ = 0.75 but with larger finite-size corrections. The evidence from our simulations points to
the complete absence of the AT line in dimensions outside the mean-field region and to the correctness of the
droplet picture. Previous simulations which suggested there was an AT line can be attributed to the consequences
of studying systems which are just too small. The collapse of our data to the droplet scaling form is poor for
σ = 0.75 and to some extent also for σ = 0.85, when the correlation length becomes of the order of the length
of the system, due to the existence of excitations which only cost a free energy of O(1), just as envisaged in the
TNT picture of the ordered state of spin glasses. However, for the case of σ = 0.85 we can provide evidence that
for larger system sizes, droplet scaling will prevail even when the correlation length is comparable to the system
size.
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I. INTRODUCTION

While the spin-glass problem at mean-field level is now
well-understood [1], questions remain as to the nature of the
ordered state in three-dimensional spin glasses. A key ques-
tion is whether the ordered phase of real spin glasses has the
broken replica symmetry features found in mean-field theory.
This question is most easily answered by finding whether
on application of a magnetic field hr there is a line, the
so-called de Almeida–Thouless (AT) line [2], below which
in the hr-T plane there is replica symmetry breaking. This
line exists at mean-field level (see Fig. 1) and its possible
existence in three dimensions can be studied experimentally
and with simulations. Simulational studies of the existence
of replica symmetry breaking within the zero-field spin-glass
state itself are plagued by finite-size effects: it is expected that
the difference between the predictions of droplet scaling and
those of replica symmetry breaking will only become visible
for very large systems (for a review see Ref. [3]). A recent

review of simulations, including studies of the existence of the
AT line, can be found in Ref. [4].

Right from the early days of spin-glass studies there have
been doubts raised as to whether the AT line existed below six
dimensions. For example, Bray and Roberts [6] attempted to
do an expansion in 6 − ε dimensions for the critical exponents
at the AT line but failed to find a stable fixed point. They
suggested that maybe that indicated that there might be no AT
line below six dimensions. A renormalization group calcula-
tion also gave indications that the AT line was going away as
d → 6 from above [7]. As it is difficult to do simulations in
dimensions around 6 to check these speculations, simulators
have had to turn instead to one-dimensional models with long-
range power-law interactions.

These models go back to Kotliar, Anderson, and Stein
[8], who in turn were inspired by the long-range ferromagnet
that was studied by Dyson [9,10]. The long-range power-
law model has the advantage that by tuning the power-law
exponent σ , one has access to both the mean-field and the
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FIG. 1. The AT line. The solid line is the exact AT line for the SK
model, calculated as in Ref. [5]. The dashed line is the approximation
to it of Eq. (8). We have marked on the diagram the results of our
simulations on the SK model, which were done to check our Monte
Carlo procedures. The points in red and green are the results of our
simulations at σ = 0.6, which lie in the mean-field region. The data
on the horizontal axis for σ = 0.6 are normalized to the transition
temperature Tc in zero field for that value of σ . For the XY SK model
the AT line goes to infinity as T → 0.

regimes with non-mean-field critical behavior. However, the
full power-law model is expensive for numerics. Fortunately a
clever workaround was introduced by Leuzzi et al. [11] where
instead of the interactions falling off as a power law, it is the
probability of there being a bond between two spins that falls
off as a power law. The fewer bonds in the model means that
a significantly smaller computational cost is involved, thus
allowing for the simulation of larger system sizes.

While the vast literature on spin glasses is mostly focused
on Ising spins [11–16], there has been a revival of interest
in classical m-component vector spin-glass models [5,17–26]
in the past decade or so. The XY model has m = 2 and the
Heisenberg model has m = 3. One of the triggers for this
revival has been the finding that the infinite-range vector spin
glass exhibits an AT line provided a magnetic field that is
random in all the component directions is applied [5]. Fur-
thermore, analytical studies of the AT transition in m-vector
models shows that the field theory of these AT transitions is
that of the Ising spin glass [5]. Thus, it has become possible to
study the question of whether or not an Ising AT transition ex-
ists in various dimensions by studying one-dimensional vector
spin glasses with long-range interactions [18]!

In this paper, we study the one-dimensional diluted XY
spin glass subjected to a random vector magnetic field, with
the aid of large-scale Monte Carlo simulations. While Monte
Carlo simulations are a time-tested tool for the study of phase
transitions in spin glasses, the exorbitant cost of equilibration
makes them rather challenging in practice. It has been argued
that vector spins tend to equilibrate faster compared to Ising
spins [27], because of the soft nature of the spins involved,
even though the presence of more components adds to the

cost. The Heisenberg spin glass [5,17–19,27–32] has been the
popular vector spin to have been considered, because of the
availability of the heatbath algorithm [28], which works very
efficiently to equilibrate it. The XY spin glass is less effec-
tively handled by the heatbath algorithm [33,34] because of
the technicalities involved in inverting a probability distribu-
tion for which a simple closed form expression is unavailable
in the XY case. In this paper, we develop a method, which
is outlined in the Appendix to perform this inversion numer-
ically with the hope of benefiting from the vector nature of
XY spins, while simultaneously reducing the components to
as small a number as possible.

The improved algorithm yields mixed fruits. The gains
from the reduced number of components seems to be largely
counterbalanced by the additional resources consumed by
the numerical inversion. However, with the aid of extensive
computational power, we are able to access system sizes com-
parable to those in the corresponding study with Heisenberg
spins. Our findings for the XY diluted spin glass closely
mimic those obtained for the Heisenberg version of the same
model [5,17,18] and the Ising spin glass in three dimensions
[35] when we investigate crossing the possible AT line by
varying T at fixed values of hr . In the mean-field regime (we
studied here the case of σ = 0.6, which corresponds to 10
dimensions, which is above the upper critical dimension of
6), there is clear evidence of an Almeida-Thouless line (see
Sec. V A). There is rather weak evidence for an Almeida-
Thouless line for σ = 0.85 using the commonly employed
finite-size critical point scaling methods of analysis (see
Sec. V C). At this value of σ , our system should be similar to
the Edwards-Anderson model in three dimensions with short-
range interactions. For the in-between case at σ = 0.75 which
lies in the non-mean-field regime, but closer to the mean-field
boundary at σ = 2/3, our data do provide stronger evidence
for a phase transition in the presence of small magnetic fields
than at σ = 0.85. However, by varying the magnetic field hr

at fixed temperature T we find in Sec. V that at both σ = 0.75
and at σ = 0.85 there is quite decent evidence for an AT line.
Confusingly, the field dependence of the correlation length is
very well-described by the Imry-Ma prediction of the droplet
picture, which implies the complete absence of the AT tran-
sition! In the droplet picture the correlation length in a field
remains finite and only diverges as hr → 0. However, when
this correlation length becomes comparable to the system size
L the Imry-Ma formula needs to be modified and we give
in Sec. VI a scaling form for this modification. It is based
upon the usual finite-size-scaling approach used in studying
critical phenomena, and just as for critical phenomena we
find that there are finite-size corrections to this scaling form.
In addition to these scaling corrections there are corrections
which arise when ξSG ∼ L < L∗ which are of different origin
and are connected to TNT effects [36,37]. TNT effects arise
from droplets whose linear dimension L is of the order of the
system size with free energy cost of O(1) (rather than the Lθ of
the droplet picture), and exist in systems whose sizes L < L∗

[3]. The length scale L∗ is always large and is expected to
diverge as d → 6 or as σ → 2/3. It is only for the case of
σ = 0.85 that we can reach sizes where TNT effects seem to
be getting small. These matters are discussed in Sec. VII.
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Furthermore, we can use the droplet scaling picture to ex-
plain some of the features of the apparent AT transition which
arise on performing the usual finite-size critical scaling anal-
yses, and show that these are the consequence of not studying
large enough systems. Unfortunately these arguments will
only become compelling for system sizes which we cannot
reach. Our chief evidence for the droplet picture is its very
successful prediction of the correlation length as a function
of the field in the region when finite-size and TNT effects are
unimportant.

Our claim that the evidence favors the absence of the AT
line for values of σ outside the mean-field region is consistent
with the attempt [21] to calculate the AT field at T = 0 using
an expansion in 1/m. This indicated that as d → 6 from
above in the Edwards-Anderson model, the AT field would
go to zero, implying the absence of the AT line below six
dimensions (which in the one-dimensional long-range model
corresponds to 2/3 < σ < 1). For σ > 1 there is no finite
temperature spin-glass phase.

The plan of this paper is as follows. In Sec. II we describe
the model in detail. In Sec. III we describe the quantities
which were studied in our Monte Carlo simulations, the de-
tails of which are given in the Appendix. Our data is analyzed
in Sec. V on the assumption that there is an AT transition,
while in Sec. VI the data is analyzed according to droplet
scaling assumptions. In Sec. VII we discuss the effect of TNT
behavior on our results. Finally, in Sec. VIII we summarize
our conclusions.

II. MODEL HAMILTONIAN

The general Hamiltonian for vector spin glasses is

H = −
∑
〈i, j〉

Ji jSi · S j −
∑

i

hi · Si, (1)

where Si is the spin on the ith lattice site (i = 1, 2, . . . , N),
which is chosen to be a unit vector. m represents the number
of components of the vector Si. In this work we concentrate on
XY spins, and set m = 2. The Cartesian components hμ

i (μ =
1, 2) of the onsite external magnetic field are i.i.d. random
variables drawn from a Gaussian distribution of zero mean
and variance h2

r and satisfy the relation:[
hμ

i hν
j

]
av

= h2
r δi jδμν. (2)

We use the notation 〈· · · 〉 for thermal average and [· · · ]av for
an average over quenched disorder throughout this paper.

The spins are arranged on a circle so the geometric distance
between a pair of spins (i, j) is given by [16]

ri j = N

π
sin

(π

N
|i − j|

)
, (3)

which is the length of the chord connecting the ith and jth
spins. The interactions Ji j are independent random variables
such that the probability of having a nonzero interaction be-
tween a pair of spins (i, j) falls with the distance ri j between
the spins as a power law:

P(Ji j ) ∝ 1

r2σ
i j

. (4)

If the spins i and j are linked the magnitude of the interaction
between them is drawn from a Gaussian distribution whose
mean is zero and whose standard deviation is unity, i.e.:

[Ji j]av = 0 and
[
J2

i j

]
av

= J2 = 1. (5)

The mean number of nonzero bonds from a site is fixed to be z̃
(coordination number). So, the total number of bonds among
all the spins on the lattice is fixed to be Nb = Nz̃/2. When
z̃ = 6 this model mimics the 3D simple cubic lattice model
and we use this value for z̃ for all the σ values studied. (For
σ = 0 and z̃ = N − 1, the model becomes the infinite-range
Sherrington-Kirkpatrick (SK) model [38].)

To generate the set of interaction pairs [11,17] (i, j) with
the desired probability we pick a site i randomly and uni-
formly and then choose a second site j with probability given
by

pi j = r−2σ
i j∑

j �=i
r−2σ

i j

. (6)

If the spins at i and j are already connected we repeat this
process until we find a pair of sites (i, j) which have not been
connected. Once we find such a pair of spins, we connect them
with a bond whose strength Ji j is a Gaussian random variable
with attributes given by Eq. (5). We repeat this process exactly
Nb times to generate Nb pairs of interacting spins.

The advantage of the diluted model over the fully con-
nected model is that, in a fully connected model, there are
N (N − 1)/2 interactions. The ratio of the number of interac-
tions of the diluted model to the fully connected model is z̃/N
which is a very small value as N becomes large. Hence, it
is possible to go to much larger system sizes with a diluted
model as compared to a fully connected model.

At zero-field, the mean-field spin-glass transition temper-
ature for the m-component vector spin glass is given by
[17,18,40]

T MF
c = 1

m

⎛
⎝∑

j

[J2
i j]av

⎞
⎠

1/2

=
√

z̃

m
J. (7)

The approximate location of the AT line for an m-component
infinite-range spin glass near the zero-field transition temper-
ature Tc is [5] (

hr

J

)2

= 4

m(m + 2)

(
1 − T

Tc

)3

. (8)

The accuracy of this approximation for the SK model can be
judged from Fig. 1.

A one-dimensional chain with power-law diluted interac-
tions for a particular value of σ is equivalent to a short-range
model [15,39] of effective dimension deff, where

deff = 2

2σ − 1
, (9)

i.e., there is a one-to-one mapping between a long-range di-
luted network with exponent σ and a short-range model with
space dimension deff, at least when 1/2 < σ < 2/3. Thus,
when σ = 0.60, deff = 10. For the interval 2/3 < σ < 1 other
relations are required [15,41]. For example, for Ising spin
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glasses, it was suggested in Ref. [41] that d = 4 corresponded
to σ ≈ 0.790, while d = 3 corresponded to σ ≈ 0.896. Un-
fortunately, the mapping for the XY model has been less
studied.

III. CORRELATION LENGTHS AND SUSCEPTIBILITIES

In this section we discuss the quantities which were ob-
tained from our Monte Carlo simulations and used to extract a
correlation length ξSG and the spin-glass susceptibility χSG.
The simulations themselves are described in detail in the
Appendix.

The thermal average of a quantity is calculated using mul-
tiple replicas in the following standard way:

〈A〉〈B〉〈C〉〈D〉 = 〈A(1)B(2)C(3)D(4)〉, (10)

where (1), (2), (3), and (4) are four copies of the system at the
same temperature, and A, B, C, and D are the quantities over
which we would like to perform thermal averaging. The wave-
vector-dependent spin-glass susceptibility is given by [5]

χSG(k) = 1

N

∑
i, j

1

m

∑
μ,ν

[(
χ

μν
i j

)2]
aveik(i− j), (11)

where

χ
μν
i j = 〈

Sμ
i Sν

j

〉 − 〈
Sμ

i

〉〈
Sν

j

〉
. (12)

The spin-glass correlation length is then determined from

ξSG = 1

2 sin(kmin/2)

(
χSG(0)

χSG(kmin)
− 1

)1/(2σ−1)

, (13)

where kmin = (2π/N ).

IV. FINITE-SIZE ANALYSES ASSUMING
A TRANSITION EXISTS

In this section we detail the method of finite-size analysis
when a transition is assumed to exist. When studying the AT
line, which is a line of phase transitions in the hr-T plane,
it can be crossed on an infinite number of trajectories. The
most commonly used trajectory is the one where hr is kept
constant and the temperature T is varied. In this work we also
consider the trajectory in which T is kept constant and hr is
varied. We refer to the zero-field transition temperature as Tc

while we denote a generic transition temperature on the AT
line by TAT(hr ). Similarly we denote the field on the AT line
by hAT(T ).

The spin-glass susceptibility χSG ≡ χSG(0) of a finite sys-
tem of N spins has the finite-size-scaling form [near the
transition temperature TAT(hr )] [5]:

χSG

N2−η
= C[N1/ν (T − TAT(hr ))], (2/3 � σ < 1), (14a)

χSG

N1/3
= C[N1/3(T − TAT(hr ))], (1/2 < σ � 2/3),

(14b)

where η is given by 2 − η = 2σ − 1. These forms are
examples of finite-size-scaling expressions which would be
expected to hold in the critical region when N → ∞, [T −
TAT(hr )] → 0, with (say) N1/ν[T − TAT(hr )] finite. The scal-
ing function C will depend on the value of σ . There are

always finite-size corrections to these forms. For example, the
corrections to Eq. (14b) will be of the form
χSG

N1/3
= C{N1/3[T − TAT(hr )]} + N−ωG{N1/3[T − TAT(hr )]}.

(15)

It has been suggested [17,39] that the correction to scaling
exponent is given at least in the mean-field region by

ω = 1/3 − (2σ − 1). (16)

Curves of χSG/N2−η (χSG/N1/3 in the mean-field regime)
plotted for different system sizes should intersect at the tran-
sition temperature TAT(hr ). In reality, finite-size corrections to
Eq. (14) are always present and cause the intersection point
between the curves for size N and 2N to depend on N . The
intersection temperatures vary as [39,42–44]

T ∗(N, 2N ) = TAT(hr ) + A

Nλ
, (17)

where A is the amplitude of the leading correction, and the
exponent λ is

λ = 1/3 + ω, (1/2 < σ � 2/3), (18a)

λ = 1/ν + ω, (2/3 < σ < 1), (18b)

where ω is the leading correction to the scaling exponent.
When σ = 0.6, ω = −2σ + 4/3, so λ = 5/3 − 2σ = 0.467
[39]. In the regime when σ > 2/3 the values of both ν and λ

are not well-determined, so there we shall treat λ as a fitting
parameter.

The spin-glass correlation length has a similar finite-size-
scaling form in the critical region

ξSG

N
= X [N1/ν (T − TAT(hr ))], (2/3 � σ < 1), (19a)

ξSG

Ndeff/6
= X [N1/3(T − TAT(hr ))], (1/2 < σ � 2/3).

(19b)

ν, the correlation length critical exponent, has to be deter-
mined numerically in the interval 2/3 < σ < 1.

We have also studied crossing the AT line at fixed T and
varying hr . Then Eq. (19) takes the form

ξSG

N
= X [N1/ν (hr − hAT(T ))], (2/3 � σ < 1), (20a)

ξSG

Ndeff/6
= X [N1/3(hr − hAT(T ))], (1/2 < σ � 2/3),

(20b)

where hAT(T ) denotes the field at the AT line at tempera-
ture T . Similarly, the spin-glass susceptibility χSG of the finite
system near the AT transition line takes the form

χSG

N2−η
= C[N1/ν (hr − hAT(T ))], (2/3 � σ < 1), (21a)

χSG

N1/3
= C[N1/3(hr − hAT(T ))], (1/2 < σ � 2/3).

(21b)

In the thermodynamic limit, Eq. (19) is similar to Eq. (20);
the effect of finite-size corrections to the two can differ. For
example, while the correction to scaling exponent λ does
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not depend on the choice of the trajectory, the magnitude of
the scaling corrections can differ. Thus, in the intersection
formulas when applied to fields

h∗(N, 2N ) = hAT(T ) + Ã

Nλ
, (22)

the coefficient Ã will be different from A in Eq. (17). Correc-
tions to scaling of, say, Eq. (21a), are more generally of the
form
χSG

N2−η
= C{N1/ν[hr − hAT(T )]} + N−ωG{N1/ν[hr − hAT(T )]},

(23)

where ω is the correction to scaling exponent, and G is another
scaling function. This type of scaling form holds in the limit
where N1/ν[hr − hAT(T )] is fixed as N → ∞, which of course
can only be realized approximately in numerical studies.

A key feature of the finite-size critical point scaling analy-
sis is that right on the AT line itself, that is when hr = hAT(T ),
R = χSG/N2−η (χSG/N1/3 for σ � 2/3) should be finite as
N → ∞. We find (see Sec. VI) that R is at least not increasing
with N , and perhaps finite [see Fig. 12(a)], for σ = 0.60 but
for σ = 0.70, 0.75 and 0.85 it is in fact increasing with N , at
the crossing field h∗(N, 2N ). We deduce from this observation
that at these values of σ the crossings at h∗(N, 2N ) are not
associated with a true critical point at all but are consequences
of droplet scaling. At a true critical point R would tend to a
finite constant as N increases, but we find it increases with N ,
provided N > 1024 (or system sizes 2N > 2048) for the case
of σ = 0.75 [see Fig. 12(b)].

In Sec. V we shall present our attempts at analyzing the
data for σ = 0.6, σ = 0.75, σ = 0.85 at fixed values of hr but
varying T , and also at a fixed value of T and varying hr , on
the assumption that there is an AT line and using the finite-
size-scaling methods of this subsection.

We have also obtained data at fixed T and varying hr for
σ = 0.60, 0.70, 0.75, 0.85 and analyzed them using finite-
size generalizations of well-known droplet scaling relations.
In this case the droplet picture provides a simple set of for-
mulae for analyzing the data in the assumed absence of an AT
line.

V. ANALYSES OF THE SIMULATION DATA ASSUMING
THERE IS AN AT LINE

We shall study the phase transitions at hr = 0, and deter-
mine the zero-field transition temperature Tc [= TAT(hr = 0)],
and seek evidence of an AT transition at nonzero hr using
the standard critical point finite-size-scaling method of deter-
mining the “crossings” or intersections of the curves of, say,
χSG/Nz (with z = 1/3 when σ � 2/3, and with z = 2 − η =
2σ − 1 for σ � 2/3) at values of N and 2N as we reduce T
through the AT transition temperature at fixed hr , or the field
hr at fixed T in the vicinity of the AT field hAT(T ) as outlined
in Sec. IV. There seems no reason to doubt the existence of an
AT line for any value of σ in the mean-field region σ < 2/3,
and our results are entirely consistent with the existence of an
AT transition at σ = 0.60. They serve as a useful comparison
for the studies in the non-mean-field regime σ > 2/3, where
the evidence will be found to favor the droplet picture. We

have studied N values 128, 256, 512, 1024, 2048, 4096, 8192,
and 16 384 for both σ = 0.60 and σ = 0.75, but went up to
N = 32 768 for the case of σ = 0.75 when the field hr was
varied at fixed T . When σ = 0.85 the largest N values used
was 4096. In this case the zero-field transition temperature
Tc is quite low and as a consequence all the investigations
have to be done also at low temperatures, where equilibration
times are long, preventing the study of larger systems. We
are mainly interested in the question as to whether outside
the mean-field region, that is for σ > 2/3, an AT transition
actually exists and whether (say) the dependence of ξSG on
the field hr can be understood as will be suggested in Sec. VI
on the droplet picture without invoking an AT transition at all.
If it can, this would provide support to the argument that the
droplet scaling picture rather than replica symmetry breaking
describes spin glasses below six dimensions. We have ana-
lyzed the data for σ = 0.70, 0.75, and for σ = 0.85 using
the usual “crossing” method (the finite-size-scaling approach
outlined in Sec. IV), which indeed works well for σ = 0.6.
The evidence for the existence of an AT transition at σ = 0.75
and 0.85 will be contrasted with the evidence against an AT
transition at these values of σ .

Our main focus was the case σ = 0.75. We looked briefly
at the case σ = 0.70 to find whether or not it might be prac-
tical to study whether σ = 2/3 is the value of σ above which
the AT line might disappear. We found that it was similar
to σ = 0.75, but that the corrections to scaling were larger.
This means that for a given level of accuracy, larger N values
are required. We studied σ = 0.85 because it should behave
similarly to physical systems in three dimensions but we could
not equilibrate systems at the larger N values in this case
because the temperatures T of interest have to be less than
Tc, which is rather small.

A. σ = 0.6

We shall focus on σ = 0.60 in this subsection. It corre-
sponds according to Eq. (9) to an effective dimension of 10
dimensions, which is in the mean-field region; it lies above the
upper critical dimension of spin glasses, which is 6 (or in the
mean-field region σ < 2/3 in the one-dimensional long-range
model). It is natural to expect that for this value of σ there will
be an AT line and this is amply confirmed by our simulations.
For this value of σ , simulations of the corresponding Ising
model [12,15] and the Heisenberg model [17,18] also found
an AT line.

Our results for hr = 0 are given in Figs. 2(a), 2(b), and
2(c). According to Eq. (14b), the data for χSG/N1/3 when
plotted for different system sizes should intersect at the tran-
sition temperature Tc. Similarly, according to Eq. (19b), the
data of ξSG/Ndeff/6 with deff = 2/(2σ − 1) should intersect at
the same transition temperature. Figures 2(a) and 2(b) show
the data for different system sizes. We find the temperature
T ∗(N, 2N ) at which the curves corresponding to the sys-
tem sizes N and 2N intersect. We then fit this data with
Eq. (17) to find the transition temperature. The exponent
λ ≡ 5/3 − 2σ is known to equal 0.467 in this case [17,39].
The result is displayed in Fig. 2(c), where the T ∗(N, 2N ) data
obtained from intersections of χSG are fitted against N−λ with
a straight line for the largest six pairs of system sizes to give
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FIG. 2. Finite-size-scaling analyses of data for σ = 0.60 obtained by fixing the field and varying the temperature. The zero-field data are
presented in the first row and the data with hr = 0.1 are shown in the second row. Figures (a) and (d) show the plots of χSG/N1/3 as a function
of the temperature T for different system sizes, with hr = 0 and hr = 0.1, respectively. The corresponding data for ξSG/Ndeff/6 are shown in
figures (b) and (e), with deff = 2/(2σ − 1) in the mean-field regime [Eq. (9)]. The exponents of N are chosen according to Eqs. (14b) and (19b).
Both the sets of plots show that the curves for different system sizes intersect. The data for the intersection temperatures T ∗(N, 2N ) between
pairs of adjacent system sizes for χSG/N1/3 and ξSG/Ndeff/6 are plotted as a function of N−λ in figures (c) and (f), for hr = 0 and hr = 0.1,
respectively. The value of the exponent λ is fixed to be 0.467 which is known exactly in the mean-field regime [17,39]. For hr = 0, the fits give
Tc = 0.8873 ± 0.0017 from χSG and Tc = 0.8893 ± 0.0046 from ξSG. For hr = 0.1, both the datasets are consistent with a spin-glass transition
temperature of TAT(hr = 0.1) = 0.67.

Tc = 0.8873 ± 0.0017. The corresponding intersections of the
ξSG data (omitting the two smallest system sizes) gives Tc =
0.8893 ± 0.0046. The values of Tc obtained from χSG data
and ξSG data are in agreement with each other. The mean-field
prediction of Eq. (7) is much higher, T MF

c = √
6/2 = 1.2247.

Fluctuation effects not present in the SK limit must be respon-
sible for this large difference.

For hr = 0.1, the data is as shown in Figs. 2(d), 2(e), and
2(f). When the T ∗(N, 2N ) data obtained from χSG are fitted
against N−λ with a straight line for the largest four pairs of
system sizes we get TAT(hr = 0.1) = 0.6735 ± 0.0120. The
corresponding ξSG data (omitting the two smallest system
sizes) gives TAT(hr = 0.1) = 0.6745 ± 0.0148.

Thus, we have found that the AT line passes through the
point (T, hr ) = (0.674, 0.1). To compare that with the pre-
dictions from the SK model, we use the zero-field transition
temperature Tc = 0.887 obtained above. Then for hr = 0.1,
the predicted value of the AT transition temperature ratio of
the SK model [from Eq. (8)] would be TAT(hr = 0.1)/Tc =
0.74, while the Monte Carlo determined value at σ = 0.6 is
0.7590 ± 0.0113. (For the SK model, the Monte Carlo value
of the ratio is 0.7641 ± 0.0341.) Thus, while the zero-field
transition temperature at σ = 0.6 is not close to the mean-field

value of Eq. (7), the SK form of the AT line is a good approx-
imation provided it is expressed in terms of the renormalized
zero-field transition temperature Tc (see also Fig. 1).

The AT line can be approached not only by reducing the
temperature T but also by reducing the field at fixed T . In
Figs. 3(a) and 3(b) we have constructed the crossing plots at
fixed temperature T = 0.6 (= 0.67 Tc) as a function of hr for
χSG and ξSG, respectively. Analysis of the crossing plots of
h∗(N, 2N ) in Fig. 3(c) shows that the behavior is again con-
sistent with the existence of an AT line at least at σ = 0.60.
The same value of λ was used as when plotting T ∗(N, 2N ).
The h∗(N, 2N ) data for all the pairs of system sizes are
fitted against N−λ to give hAT(T = 0.6) = 0.1569 ± 0.0061
from χSG and hAT(T = 0.6) = 0.1571 ± 0.0067 from ξSG. We
found two points on the AT line, (T, hr ) = (0.674, 0.1) from
T ∗(N, 2N ), and (T, hr ) = (0.6, 0.157) from h∗(N, 2N ) data.
These points are plotted in Fig. 1 for comparison with the
exact AT line for the SK model.

B. σ = 0.75

The case σ = 0.75 corresponds to the non-mean-field
regime: the long-range diluted model for this value of σ is
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FIG. 3. Finite-size-scaling analyses of χSG data (a), and ξSG data (b), for σ = 0.60 obtained by fixing the temperature to T = 0.6 (=
0.67 Tc ) and varying the field. Both the plots show that the curves for different system sizes intersect. Figure (c) shows the data for the
intersection fields h∗(N, 2N ) between pairs of adjacent system sizes, plotted as a function of N−λ. Both the datasets are consistent with a
spin-glass transition at hAT(T = 0.6) ≈ 0.16.

equivalent to a short-range model with d ≈ 4 dimensions.
In this regime, simulations of the corresponding Heisenberg
model [17,18] were thought consistent with an AT transition.

According to Eq. (14a), the data for χSG/N2−η,where
2 − η = 2σ − 1, plotted for different system sizes should in-
tersect at the transition temperature Tc. Similarly, according
to Eq. (19a), the curves of ξSG/N should also intersect at
the transition temperature. Figures 4(a) and 4(d) show the
finite-size-scaled data of χSG, and Figs. 4(b) and 4(e) show
the finite-size-scaled data of ξSG. The curves for different
system sizes show a clear tendency to intersect close to the
same temperature. The data for T ∗(N, 2N ) are then fitted with
Eq. (17) where the value of the exponent λ is not known in
the non-mean-field regime and hence should be considered as
a fitting parameter.

If there were an AT transition, then there would be a unique
value of λ, the same for both the ξSG and χSG intersections
corresponding to both h∗(N, 2N ) and T ∗(N, 2N ). To find the
value of λ through nonlinear fitting, we have six different sets
of data: T ∗(N, 2N ) obtained from χSG and ξSG intersections,
with hr = 0 and hr = 0.05 [Figs. 4(a), 4(b), 4(d), and 4(e)],
and h∗(N, 2N ) obtained from χSG and ξSG intersections at T =
0.55 [Figs. 5(a) and 5(b)]. We tried fitting these individual data
sets with Eq. (17) [Eq. (22) for h∗(N, 2N )] through nonlinear

TABLE I. Values of the exponent λ obtained from our simula-
tions for different values of σ . The last column shows the values
of χ 2/Ndof which is a measure of goodness-of-fit. Ndof denotes the
number of degrees of freedom. For σ = 0.75, the value of λ shown
here is obtained by fitting the h∗(N, 2N ) data obtained from χSG

intersections in Fig. 5(a) with Eq. (22) using efficient nonlinear
fitting algorithms. For σ = 0.85, we use the T ∗(N, 2N ) data from
χSG intersections in Fig. 6(a) to determine λ. For convenience, we
include a column showing our estimates for the zero-field spin-glass
transition temperature for different σ . These values are obtained from
the fits shown in Figs. 2(c), 4(c), and 6(c).

σ Tc λ χ 2/Ndof

0.60 0.89 0.47 —
0.75 0.62 0.26 1.03
0.85 0.33 1.03 0.39

fitting by considering λ, Tc, and A [Ã for h∗(N, 2N )] as fitting
parameters. This is a nonlinear fitting procedure for which we
use efficient methods like the trusted region reflective (TRF)
algorithm and the Levenberg-Marquardt (LM) algorithm (for
which packages are available in python) to determine the
fitting parameters. Doing so, we found that the h∗(N, 2N ) data
obtained from the χSG intersections at T = 0.55 [Fig. 5(a)]
gave us the best fit (using chi-square test), and we obtain
λ = 0.26 (see Table I). Since the exponent giving the leading
correction to scaling λ is universal, we use the same value
of λ with both intersections h∗(N, 2N ) and T ∗(N, 2N ) ob-
tained from χSG and ξSG data. We substitute the value of λ

obtained above in Eq. (17) and fit the T ∗(N, 2N ) data against
N−λ with a straight line. As shown in Fig. 4(c), for hr = 0,
the χSG fit (considering all the pairs of system sizes) gives
Tc = 0.6200 ± 0.0031. The corresponding ξSG fit (omitting
the smallest system size) gives Tc = 0.6244 ± 0.0098.

For hr = 0.05, the intersection temperatures data are
shown in Fig. 4(f). Omitting the smallest system size, the
T ∗(N, 2N ) data are fitted with Eq. (17) to give TAT(hr =
0.05) = 0.4395 ± 0.0241 from χSG and TAT(hr = 0.05) =
0.2893 ± 0.0252 from ξSG. Compared to Fig. 2(f) which
gives the equivalent plot for the case with σ = 0.60, the data
in Fig. 4(f) does not look like data which is converging to the
same asymptotic limit when N is large. If the crossings were
actually due to a genuine AT transition, then the asymptotic
limit should be the same for both. If we follow the mean-field
prescription [Eq. (8)] that is applicable to the SK model, the
spin-glass transition temperature for hr = 0.05 is TAT(hr =
0.05)/Tc = 0.83. The minimum temperature we simulated
for σ = 0.75 is Tmin/Tc = 0.45 (look at Table III), which
is 0.54 times the mean-field prediction. However, for σ =
0.60 with hr = 0.1, the mean-field calculations give TAT(hr =

TABLE II. Values of the exponents xχ , x, and z obtained from
our simulations for different values of σ and T (look at Fig. 9).

σ T xχ x z

0.7 0.6 1.5747 ± 0.0009 3.3220 ± 0.0413 0.4740 ± 0.0062
0.75 0.55 1.6114 ± 0.0005 2.7077 ± 0.0531 0.5951 ± 0.0119
0.85 0.3 1.8919 ± 0.0014 2.2019 ± 0.0152 0.8592 ± 0.0066
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FIG. 4. Finite-size-scaling analyses of data for σ = 0.75 obtained by varying the temperature at fixed field. Figures in first row show
the data generated at zero-field, where as the figures in second row show the data obtained by turning on a magnetic field of hr = 0.05.
Figures (a) and (d) show data for χSG/N2−η (with 2 − η = 2σ − 1) for different system sizes. Figures (b) and (e) show the corresponding
data for ξSG/N . According to Eqs. (14a) and (19a) the data should intersect at TAT(hr ), which is shown in figures (c) and (f) for hr = 0 and
hr = 0.05, respectively. The T ∗(N, 2N ) data shown in these figures did not fit well with Eq. (17). So we used the value of the scaling exponent
λ = 0.26 obtained from the h∗(N, 2N ) data (see Table I), and fitted the T ∗(N, 2N ) data against N−λ using a straight line. The resulting values
for the zero-field transition temperature are Tc = 0.6200 ± 0.0031 from χSG and Tc = 0.6244 ± 0.0098 from ξSG. For hr = 0.05 the linear
fitting gives TAT(hr = 0.05) = 0.4395 ± 0.0241 from χSG and TAT(hr = 0.05) = 0.2893 ± 0.0252 from ξSG, and the values do not agree with
each other.

0.1)/Tc = 0.74, and the minimum temperature simulated for
this case is Tmin/Tc = 0.56. So, for σ = 0.60 the minimum
temperature simulated is just 76% of the mean-field transition

temperature at that particular field and still we were able
to observe clear signs of a phase transition. In contrast, for
σ = 0.75, we went down to a much lower temperature which

FIG. 5. Finite-size-scaling analyses of data assuming a transition exists, for σ = 0.75 at a temperature of T = 0.55 (= 0.89 Tc ), are shown:
(a) for χSG and (b) for ξSG (inset shows our two largest system sizes N = 16 384 and N = 32 768). The legend displayed in figure (a) is common
for both the figures (a) and (b). A nonlinear fit of the intersection fields data obtained from χSG [shown in figure (a)], with the Eq. (17) using
the Levenberg-Marquadt algorithm gives λ = 0.26 (see Table I). Figure (c) shows the h∗(N, 2N ) data fitted against N−λ with a straight line.
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TABLE III. Parameters of the simulations. Nsamp is the number of disorder samples, Nsweep is the number of over-relaxation Monte Carlo
sweeps for a single disorder sample. The system is equilibrated over the first half of the sweeps, and measurements are done over the last
half of the sweeps with a measurement performed every four over-relaxation sweeps. Tmin and Tmax are the lowest and highest temperatures
simulated, and NT is the number of temperatures used for parallel tempering.

σ hr N Nsamp Nsweep Tmin Tmax NT ttot (h)

0.6 0 128 10 000 512 0.6 1 18 0.49
0.6 0 256 8000 1024 0.6 1 22 2.23
0.6 0 512 6400 2048 0.6 1 22 6.46
0.6 0 1024 8000 4096 0.6 1 26 40.74
0.6 0 2048 3840 8192 0.6 1 24 105.41
0.6 0 4096 3200 16 384 0.6 1 27 571.49
0.6 0 8192 3200 32 768 0.6 1 30 3776.85
0.6 0 16 384 2600 65 536 0.64 0.98 32 18 225.5
0.6 0.1 128 9600 2048 0.5 0.8 21 7.75
0.6 0.1 256 9600 2048 0.5 0.8 21 15.89
0.6 0.1 512 9600 8192 0.5 0.8 22 85.67
0.6 0.1 1024 8000 16 384 0.5 0.8 22 414.47
0.6 0.1 2048 7200 32 768 0.5 0.8 26 2029.23
0.6 0.1 4096 7200 65 536 0.5 0.8 24 10 014.8
0.6 0.1 8192 4380 131 072 0.55 0.8 25 34 810.6
0.6 0.1 16 384 7128 262 144 0.55 0.8 28 224 425
0.75 0 128 12 800 1024 0.35 0.85 21 1.6
0.75 0 256 12 800 2048 0.35 0.85 24 7.21
0.75 0 512 8000 8192 0.35 0.85 24 35.22
0.75 0 1024 8000 16 384 0.35 0.85 24 196.9
0.75 0 2048 6400 32 768 0.35 0.85 25 774.55
0.75 0 4096 4880 65 536 0.35 0.85 27 3405.2
0.75 0 8192 3000 131 072 0.38 0.82 30 14 290.9
0.75 0.05 128 19 200 8192 0.28 0.6 21 45.27
0.75 0.05 256 16 000 16 384 0.28 0.6 20 133.35
0.75 0.05 512 13 600 32 768 0.28 0.6 20 464.77
0.75 0.05 1024 11 000 65 536 0.28 0.6 21 2075.57
0.75 0.05 2048 10 920 262 144 0.28 0.6 24 21 314.3
0.75 0.05 4096 10 800 524 288 0.3 0.58 26 123 093
0.75 0.05 8192 5320 1 048 576 0.32 0.54 32 364 358
0.85 0 128 12800 8192 0.2 0.5 30 17.97
0.85 0 256 12800 16384 0.2 0.5 32 72.15
0.85 0 512 12800 65536 0.2 0.5 30 752.36
0.85 0 1024 12800 131072 0.2 0.5 30 3219.93
0.85 0 2048 8000 262144 0.2 0.5 30 9504.05
0.85 0 4096 6480 524288 0.24 0.48 30 40322.4
0.85 0.02 128 8000 65536 0.1 0.4 30 194.33
0.85 0.02 256 4000 131072 0.1 0.4 32 470.39
0.85 0.02 512 4400 524288 0.1 0.4 34 4780.6
0.85 0.02 1024 3000 2097152 0.1 0.4 35 30356.9
0.85 0.02 2048 1800 4194304 0.16 0.4 36 84056
0.85 0.05 128 2000 65536 0.1 0.4 30 67.07
0.85 0.05 256 4000 131072 0.1 0.4 32 604.8
0.85 0.05 512 3500 524288 0.1 0.4 36 4958.17
0.85 0.05 1024 3120 2097152 0.1 0.4 36 28028.1
0.85 0.05 2048 3240 4194304 0.16 0.4 36 151503

is 54% of the mean-field spin-glass transition temperature at
hr = 0.05 and still we couldn’t see clear signs of a phase
transition.

We have also studied χSG and ξSG at fixed T , but vary-
ing hr and the finite-size-scaling plots for these are given in
Figs. 5(a) and 5(b). There appears to be good intersections in
the curves, supporting therefore the possible existence of an

AT transition at the temperature studied T = 0.55(= 0.89 Tc).
A plot of h∗(N, 2N ) versus 1/Nλ is in Fig. 5(c), using the same
value of λ = 0.26. In the intersections of ξSG there is a clear
rising trend of h∗(N, 2N ) with increasing N until N = 1024,
followed by decreasing values of h∗(N, 2N ) for N > 2048.
For the case of σ = 0.60, where there is almost certainly a
genuine AT transition [Fig. 3(c)] only the rising trend is seen.
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FIG. 6. A finite-size-scaling plot of χSG (a) and ξSG (b), for σ = 0.85 in the absence of magnetic field (hr = 0) (with 2 − η = 2σ − 1).
Both the datasets clearly indicate that a phase transition occurs. The transition temperature in the thermodynamic limit is estimated in figure (c).
A nonlinear fit of the χSG data from figure (c) with the Eq. (17) using the Levenberg-Marquadt algorithm gives λ = 1.03 (see Table I). A linear
fit of the data using this value of λ gives Tc = 0.3336 ± 0.0013 from χSG and Tc = 0.3297 ± 0.0036 from ξSG.

It is as if for the smaller systems N < 2048 the system at
σ = 0.75 is behaving similarly to its mean-field cousin at
σ = 0.60. Note that this change of trend cannot be attributed
to the correction to scaling terms of Eq. (23). These only
apply in the limit N → ∞ with N1/ν[hr − hAT(T )] fixed. For
a genuine AT transition the intersections h∗(N, 2N ) from both
ξSG and χSG should both extrapolate as N → ∞ to the same
field hAT(T ). It is hard to argue that Fig. 5(c) provides good
evidence for this. However, on the droplet picture, it would
be expected that h∗(N, 2N ) should extrapolate to zero. The
evidence that is happening is also weak.

C. σ = 0.85

For σ = 0.85 we are further into the non-mean-field
region. According to Eq. (9), σ = 0.85 corresponds to a
short-range model close to three dimensions. In this regime,
simulations of the corresponding Heisenberg model [17,18]
did not find an AT line.

For hr = 0, Figs. 6(a) and 6(b) clearly show that the curves
for different system sizes are intersecting. The data for inter-
section temperatures are shown in Fig. 6(c). Similar to the
case of σ = 0.75, the T ∗(N, 2N ) data obtained from χSG and
ξSG intersections with hr = 0 [Figs. 6(a) and 6(b)], and the
h∗(N, 2N ) obtained from χSG and ξSG intersections at T = 0.3
[Figs. 8(a) and 8(b)] are fitted with Eq. (17) [Eq. (22) for
h∗(N, 2N )] by considering λ, Tc, and A [Ã for h∗(N, 2N )] as
fitting parameters, and found that the T ∗(N, 2N ) data obtained
from the χSG intersections gave us the best fit. We obtain λ =
1.03 (see Table I) from both TRF and LM methods. We use
this value of λ in Eqs. (17) and (22) for further calculations.
The fit using the χSG data for all the pairs of system sizes gives
Tc = 0.3336 ± 0.0013. The corresponding ξSG fit (omitting
the smallest system size) gives Tc = 0.3297 ± 0.0036. The
two values of Tc are quite close.

For hr = 0.05 the χSG/N2−η data do not intersect as shown
in Fig. 7(a). Such a field could conceivably be above the
largest AT field even at T = 0, so we also studied a smaller
field: hr = 0.02 shown in Fig. 7(c). There is no sign of any
crossing at this field either!. The ξSG data is less clearcut.
Fig. 7(b) shows there are no intersections at a field of

hr = 0.05 while a merging behavior is seen for the larger
systems at hr = 0.02, as shown in Fig. 7(d). In our simulations
we went to very low temperatures such as T = 0.1, which is
small in comparison with the mean-field values of TAT for
hr = 0.02 and hr = 0.05 using Eq. (8), but we still could
not find any clear intersections in the χSG or ξSG data. This
suggests that there is no phase transition in this regime in
the presence of a magnetic field. Our data are consistent with
the scenario where the external magnetic field destroys the
phase transition, just as happens for a ferromagnet when a
uniform field is turned on. Very similar features were seen
for the Heisenberg version of this model [17,18] and in the
three-dimensional Ising model [35].

Confusingly, intersections are seen at fixed T = 0.3(=
0.91 Tc) as hr is varied in the plots of χSG/N2−η in Fig. 8(a)
and of ξSG/N in Fig. 8(b). The usual analysis of h∗(N, 2N )
is given in Fig. 8(c). Thus, in crossing the AT line along a
trajectory of fixed T we have seen intersections, suggesting
there might be an AT transition. However, the large N limit
of h∗(N, 2N ) in Fig. 8(c) in the case of σ = 0.85, suggests
that hAT(T ) might actually be zero, consistent with the droplet
scaling picture. In the next section the dependence of ξSG

and χSG on hr will be explained using the droplet scaling
approach.

VI. DATA ANALYSES ON THE DROPLET PICTURE

In this section we give the field dependence of ξSG and
χSG according to the droplet picture [45–47], including also
their finite-size modifications, and compare these with our
simulation data.

In the droplet picture one uses an Imry-Ma argument [48]
for the correlation length ξ and identifies it with the size of the
region or domain within which the spins become reoriented
in the presence of the random field. The free energy gained
from such a reorientation by the the random field is of order√

qEA(T )hrξ
d/2. The size of such domains ξ is determined

by equating this free energy to the free energy cost of the
interface of this domain of re-ordered spins with the rest of
the system, which is of the form ϒ(T )ξ θ [49]. Equating these
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FIG. 7. Finite-size-scaling plots for σ = 0.85 are shown: (a) for χSG with hr = 0.05, (b) for ξSG with hr = 0.05, (c) for χSG with hr = 0.02,
and (d) for ξSG with hr = 0.02. Figure (c) shows that the data do not intersect even at very low temperatures [much lower than the mean-field
value of TAT(hr = 0.02) = 0.2997 obtained using Eq. (8)], indicating that there is no phase transition in this regime. In figures (b) and (d), the
data show merging behavior at low temperatures.

two free energies gives

ξ ∼
[

ϒ(T )√
qEA(T )hr

]1/(d/2−θ )

. (24)

While there is a considerable literature on the dependence of
the interface exponent θ on σ for the case of Ising spin glasses
[50], we know of no equivalent studies for the case of the XY
spin glass. (Our data suggests that its θ might be close to that
of the Ising spin glass.)

Equation (24) shows that as hr → 0, the length scale be-
comes infinite; ξ diverges as ξ ∼ 1/hx

r , where

x = 1

d/2 − θ
. (25)

The exponent x is the analog of ν at the AT transition; it is as if
the AT transition hAT(T ) = 0. We would expect this formula
to apply until finite-size effects limit its growth, which will
occur when ξ is of O(L) [or O(N ) in our one-dimensional

FIG. 8. Finite-size-scaling plots of (a) χSG and (b) ξSG as a function of magnetic field hr , for σ = 0.85 at a temperature of T = 0.3
(= 0.91 Tc ). The inset of figure (b) shows the data for the two largest system sizes N = 2048 and N = 4096. The common legend for both the
figures (a) and (b) is shown in figure (a). The intersection fields h∗(N, 2N ) data is shown in figure (c). We substitue the value of the exponent
λ = 1.03 (see Table I) obtained from the T ∗(N, 2N ) data at hr = 0 in Eq. (22) and fit h∗(N, 2N ) data against N−λ to get hAT(T = 0.3) =
0.0046 ± 0.0006 from χSG and hAT(T = 0.3) = 0.0047 ± 0.0016 from ξSG.
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FIG. 9. Figures in the top row show χSG plotted as a function of magnetic field hr at fixed temperature, for: (a) σ = 0.6 at T = 0.6, (b)
σ = 0.75 at T = 0.55, and (c) σ = 0.85 at T = 0.3. Figures in the bottom row show plots of ξSG versus hr for: (d) σ = 0.6 at T = 0.6, (e)
σ = 0.75 at T = 0.55, and (f) σ = 0.85 at T = 0.3. For large values of hr , we fitted the χSG data with 1/h

xχ
r and ξSG data with 1/hx

r . The color
labeling for different system sizes is same for all these figures, and the common legend is displayed at the top. The values of exponents xχ , x,
and z = xχ/x obtained from curve fitting are presented in Table II.

system]. Identifying ξSG with ξ , Figs. 9(e) and 9(f) show that
the Imry-Ma fit indeed works well at the larger fields; the data
for the larger hr collapse nicely onto a power-law form as
predicted by Eq. (24) for all sizes N . It only departs from this
formula when ξSG becomes of order N , when finite-size cor-
rections to the Imry-Ma formula are needed. Also TNT effects
(see Sec. VII) produce corrections to the Imry-Ma formula
when ξSG is of O(N ) unless N = L > L∗. The crossover scale
L∗ is thought to be large, especially as σ approaches 2/3 (or
d → 6) [3].

To allow for finite-size effects on the Imry-Ma formula we
use the analogue of Eq. (21a) with hAT = 0 and ν = x to write

ξSG

N
= X (N1/xhr ). (26)

Our results for σ = 0.75 are shown in Fig. 10(e) and for σ =
0.85 are shown in Fig. 10(f). There are clearly finite-size cor-
rections to this formula. It is a formula which formally would
be expected to hold in the scaling limit of N → ∞ with N1/xhr

fixed. The crossover function X (y) ∼ 1/yx when y is large, to
recover Eq. (24). It goes to a constant when y → 0. However,
a closer look at our two largest system sizes N = 16 384 and
N = 32 768 at σ = 0.75 [inset to Fig. 10(e)] and our two
largest system sizes at σ = 0.85, N = 2048 and N = 4096
[inset to Fig. 10(f)] shows that the finite-size corrections are
becoming small, and are smaller the further the system is
away from the mean-field region. If one moves in the other

direction, toward the start of the mean-field region σ = 2/3,
the finite-size corrections are larger, as seen in Fig. 13(b) for
σ = 0.70. The finite-size-scaling form for these corrections to
the scaling of Eq. (26) will be of the form

ξSG

N
= X (N1/xhr ) + N−ωH(N1/xhr ), (27)

where ω is the correction to scaling exponent. However, TNT
effects (see Sec. VII) produce large further corrections to
these asymptotic forms when L < L∗. Since in our studies L∗
is probably larger than the length N of our system, at least
for σ = 0.75, the scaling form of Eq. (27) does not work
in the region where ξSG is of order N [see Fig. 14(a)]. For
σ = 0.85, where L∗ is expected to be smaller, Fig. 14(b) hints
that Eq. (27) might apply as the plots at adjacent sizes for
the larger N values seem to be getting closer together as N is
increased, which is a feature predicted by Eq. (27).

In Fig. 9(d) we show a similar plot to those in Figs. 9(e) and
9(f) but for the case of σ = 0.60. Notice however that because
of the AT transition at this value of σ , at which ξSG would
diverge to infinity as N → ∞ at some finite field hr = hAT(T ),
a shoulder above the dashed line has started to appear which
is the beginning of this divergence. Such a feature is absent
in the figures for both σ = 0.75 and at σ = 0.85. Similarly,
Fig. 10(d) shows poor collapse of ξSG data for σ = 0.6, which
is in contrast to the cases of σ = 0.75 and σ = 0.85. This
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FIG. 10. Finite-size-scaling analysis of χSG data (a, b, c) and ξSG data (d, e, f) on the droplet picture, obtained by fixing the temperature T
and varying the magnetic field hr . The data are plotted on a log-log scale. Figures (a, d) are for σ = 0.6 at T = 0.6, (b, e) are for σ = 0.75
at T = 0.55, and (c, f) are for σ = 0.85 at T = 0.3. The corresponding inset figures show our data for the two largest system sizes: N =
8192 and 16 384 for σ = 0.6, N = 16 384 and 32 768 for σ = 0.75, and N = 2048 and 4096 for σ = 0.85. The legend displayed at the top is
common for all the figures (both main and inset). The values of the exponents x and z are given in Table II.

indicates that the ξSG data for σ = 0.6 is not in accordance
with Eq. (27).

The spin-glass susceptibility according to the droplet pic-
ture is a similar generalization of the finite-size-scaling form
of Eq. (14a):

χSG

Nz
= C(N1/xhr ), (2/3 � σ < 1). (28)

The crossover function C(y) ∼ 1/yxχ when y is large, so that
then χSG ∼ ξ z and becomes independent of N . Its form is then

χSG ∼ 1/hxχ

r , (29)

which implies that xχ = xz. In the opposite limit as y → 0,
C(y) goes to a finite constant. Figs. 9(a), 9(b), and 9(c) show
that the χSG data for the larger hr collapse nicely onto a
power-law form as predicted by Eq. (29) for all sizes N . The
exponent z depends upon whether we are dealing with short-
range interactions (such as nearest-neighbor interactions) or
with the long-range interactions employed in this paper. For
short-range interactions, the average value of χ2

i j falls off with
spin separation ri j as

χ2
i j ∼ (qEA(T ))2T

ϒ(T )rθ
i j

, (30)

[46,47]. This result applies in the zero-field spin-glass state.
Then as

χSG = 1

N

N∑
i, j=1

χ2
i j, (31)

so in d dimensions for the zero-field spin glass χSG ∼ Ld−θ .
Hence,

z = d − θ

d
, (32)

to recover the result χSG → Nz as N1/xhr goes to zero. We
caution that this formula for z will only hold for short-range
interactions.

With long-range interactions a “droplet” is not a single
connected region but a set of isolated islands of flipped spins
[50] and this will make the decay of χ2

i j with ri j faster than in
Eq. (30). This is an effect which has not been studied before,
and so in our problem the exponent z has to be determined by
fitting the data. The results of our determinations of the droplet
exponents x, xχ and z for the different values of σ which we
have studied are summarized in Table II.

The resulting excellent data collapse (at least when ξSG <

N), is shown in Figs. 10(b) and 10(c). The value of z was de-
termined from the observation that when N1/xhr is large, χSG

should be independent of N . It is remarkable that z determined
at large values of N1/xhr results in a decent collapse of the
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data in the opposite limit where N1/xhr → 0. Nevertheless,
corrections to the Imry-Ma scaling form are visible in the
figures [and are sizable in the region where N1/xhr is small
when viewed in a linear plot rather than a log scale plot, just
as in the ξSG plots Figs. 10(e) and 10(f)]. In the limit when
N1/xhr is held fixed with N → ∞ the leading correction to
scaling will be

χSG

Nz
= C(N1/xhr ) + N−ωG(N1/xhr ), (33)

where G(y) is an unknown scaling function and the correction
to scaling exponent ω is not known with any certainty [but see
Eq. (36)].

Let us suppose that the droplet picture is correct and that
(say) the spin-glass susceptibility χSG is described by Eq. (28).
This equation predicts that there will be a crossing in the
plots of χSG/N2σ−1 used in AT line critical scaling stud-
ies. (Note we are setting 2 − η = 2σ − 1.) The correction
to scaling term of Eq. (33) is not needed for this, but this
correction does strongly influence where the crossings take
place for the N values which are reached in our simulations.
The crossing arises as follows. At small values of hrN1/x, the
function C goes to a constant. It turns out that z > (2σ − 1),
so χSG/N2σ−1 diverges as N is increased as Nz−(2σ−1) as
hr → 0. However, when hrN1/x is large, χSG → 1/hz

r , so
χSG/N2σ−1 → 1/N2σ−1hz

r → 0 as N goes to infinity. Because
at small fields, χSG/N2σ−1 is larger for large N , but at bigger
hr fields it is smaller at the larger N values, so there must be a
crossing point. We shall denote the crossing value between the
lines at N and 2N by h∗(N, 2N ) = H . Then H is determined
by the solution of the following:

χSG(H, N )

N2σ−1
= C(N1/xH )Nz−(2σ−1)

= χSG(H, 2N )

(2N )2σ−1
= C((2N )1/xH )(2N )z−(2σ−1).

(34)

Assuming C(y) → a − by, when y → 0, it is easy to show
then that the N dependence of h∗(N, 2N ) at very large N will
be as 1/N1/x . In reality we have no data in this region of very
large N where the corrections to scaling term in Eq. (33) can
be ignored. The corrections to scaling are numerically small
but are very important in determining the values of h∗(N, 2N ).

There is a similar crossing predicted in the plots of ξSG/N
as a function of hr when Eq. (27) holds, using the analog of
Eq. (34). In this case it is the scaling correction which causes
the curves to cross [which requires H(0) to be negative], and
for these curves the crossings h∗(N, 2N ) at very large N will
decrease as 1/N1/x+ω [compare with Eq. (18b)] on taking
χ (y) = c − dy and H(y) → constant as y → 0. Once again
we have no data in this very large N regime. In Fig. 11 we
have plotted h∗(N, 2N )N1/x versus 1/Nω, assuming that ω is
given by Eq. (36). Note that the size of the corrections to
scaling ∼1/Nω is simply not small for the values of N which
we can study, contrary to what was assumed in the above.
h∗(N, 2N )N1/x should go to a constant as N goes to infinity
and it is only for the case of σ = 0.85, where the corrections
to scaling are the smallest of the three cases studied, does that
look remotely possible. For the case of σ = 0.70 the correc-
tions look to be very large. We conclude that for the values of
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FIG. 11. A plot of h∗(N, 2N )N1/x versus 1/Nω, for σ =
0.70, 0.75 and 0.85. The values of x and ω, which is obtained from
Eq. (36) were taken from Table II.

σ = 0.70 and σ = 0.75, the crossing data on h∗(N, 2N ) is not
close to the large N asymptotic form predicted by the droplet
picture. But the droplet picture does predict that the existence
of such intersections.

If we only had information on the values of the crossing
fields h∗(N, 2N ), then it would be difficult to really be sure
whether the droplet picture or the RSB picture best described
the data. The results on h∗(N, 2N ) alone are inconclusive as
regards both the AT transition line picture and the droplet
picture. While on the droplet picture h∗(N, 2N ) are predicted
to go to zero as N → ∞, the values of h∗(N, 2N ) are not
convincingly going to zero as N is increased (see Fig. 11).
Fortunately, there is another way of distinguishing the two
approaches, which does not require us to reach the N values
at which h∗(N, 2N ) starts to approach zero. We define

R ≡

⎧⎪⎪⎨
⎪⎪⎩

χSG(h∗(N, 2N ), N )

N2σ−1
, 2/3 � σ < 1,

χSG(h∗(N, 2N ), N )

N1/3
, 1/2 < σ � 2/3.

(35)

[Because we only determine χSG(hr, N ) at a finite num-
ber of values of hr , we use linear interpolation to calculate
χSG(h∗(N, 2N ), N ) using the χSG(hr, N ) values at the two
determined values of hr which lie on either side of h∗(N, 2N ).)
On the phase transition picture, R should approach a finite
constant as N → ∞. On the droplet picture R should increase
as Nz−(2σ−1) as N → ∞. For σ = 0.60 where an AT line is
expected R should go to a constant but at the N values studied
it actually still appears to be decreasing [see Fig. 12(a)] and
has yet to become constant, presumably due to finite-size ef-
fects. This indicates that trying to determine whether σ = 2/3
is the exact value at which the crossover to droplet scaling
behavior will also be challenging from the side below 2/3.
However, for σ = 0.75, Fig. 12(b) shows that R is clearly
increasing with N for large N values. But if we had had only
data for system sizes <2048 we might have indeed concluded
that there was good evidence for an AT transition in that R
seemed to be an N independent constant. While at the sizes we
can reach R is clearly increasing with N it has yet to reach its
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FIG. 12. A plot of R [Eq. (35)] versus N , obtained from the data generated by varying the magnetic field hr at a fixed temperature T . The
data is shown for: (a) σ = 0.6 at T = 0.6, (b) σ = 0.75 at T = 0.55, and (c) σ = 0.85 at T = 0.3. The quantity R is the y coordinate of the
point where the curves for adjacent sizes in Figs. 3(a), 5(a), and 8(a) intersect.

asymptotic form of increase as Nz−(2σ−1). The quantity R also
increases with N for σ = 0.70 and σ = 0.85 [see for example
Fig. 12(c)].

For χSG to match as σ → 2/3 from either the mean-field
side (where z = 1/3) with its value in the non-mean-field
region, we would expect that z should approach 1/3 as σ →
2/3 from above. At σ = 0.85, z ≈ 0.8409, at σ = 0.75, z ≈
0.6065, while at σ = 0.70, we find z ≈ 0.4737. Thus, it seems
quite plausible that z could approach 1/3 as σ → 2/3 from
above. Then the combination z − (2σ − 1) would approach
zero in this limit, which means that the divergence of R with
N will become harder and harder to see as σ approaches 2/3.
We conclude that it will be challenging to do numerical work
which shows that the AT line disappears at precisely σ = 2/3.
On the mean-field side of 2/3 the correction to scaling expo-
nent ω = 1/3 − (2σ − 1). It therefore seems natural to expect
that on the non-mean-field regime

ω = z − (2σ − 1). (36)

If valid, then this would imply that corrections to scaling
should be larger at σ = 0.70 than at σ = 0.75, and this is
what we observed in Figs. 13(b) and 13(a), in comparison with
(inset of) Figs. 10(e) and 10(b).

In the presence of a genuine AT transition, as hr is reduced
one would pass through three regions: first the paramagnetic
state at larger values of hr , then the critical region, then the
low-temperature phase with RSB at smaller values of hr . The
good data collapse for all values of hr using Eq. (26), and
Eq. (28) shows that at any finite value of hr there is just one
region, the paramagnetic region. Studying “intersections” as
in Sec. V is an attempt to find the critical region. But the
intersections at finite values of hr for σ = 0.75 and σ = 0.85
are not signs of a genuine phase transition, but at least in the
case of χSG these crossings are also just a consequence of
droplet scaling. The behavior of h∗(N, 2N ) as a function of
N is greatly complicated by finite-size effects and will only
become clear at much larger N values than those which we
have been able to study.

Because on the droplet picture there is no AT line and so
one is always in the paramagnetic phase at any nonzero field
(just as in a ferromagnet). However, length scales like ξSG

become very large as hr → 0 for temperatures T < Tc(hr =
0). Once they become comparable to the system dimensions
L and one is in the regime hr < h∗(N, 2N ), the system will
have many of the features which might be associated with
being in the broken replica symmetric phase which is en-
visaged to exist below the AT line. For physical systems in
three dimensions the relevant length scale is not the linear
dimension of the system L, but the linear dimension of a fully
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FIG. 13. A complete finite-size-scaling plot of (a) χSG and (b)
ξSG as a function of magnetic field hr , for σ = 0.70 at a temperature
of T = 0.6 (= 0.83 Tc, Tc = 0.72) for our two largest system sizes.
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equilibrated region. This may explain why both simulations
and experiments have failed for many years to resolve the
debate.

Might it be possible to find by simulations whether the
borderline between RSB ordering and droplet ordering is at
σ = 2/3, which is the equivalent of d = 6 with short-range
interactions? To this end we looked at the case of σ = 0.70.
We found from studying the crossings of ξSG and χSG for
the zero field case that the zero field transition temperature
is ≈0.724. Figs. 13(a) and 13(b) show our attempt to collapse
the data with the droplet scaling forms. Clearly the effects of
corrections to scaling are larger than was the case at σ = 0.75
in Figs. 10(e) and 10(b). This is in accord with Eq. (36)
which predicts that the correction to scaling exponent ω will
go to zero as σ → 2/3 if also z → 1/3 as expected. We
conclude that it will be difficult to provide good numerical ev-
idence that σ = 2/3 is the lower critical dimension of the AT
transition.

VII. TNT VERSUS THE DROPLET SCALING PICTURE

Newman and Stein [51] (see also the recent review [52]),
have suggested that the ordered phase of spin glasses in finite
dimensions will fall into one of four categories (and which
one might depend on the dimensionality d of the system):
The RSB state is one of these, and is somewhat similar to
that envisaged by Parisi for the SK model, but there is also
the chaotic pairs state picture of Newman and Stein. In both
of these pictures there is an AT transition. The other two
pictures are the so-called TNT picture of Krzakala and Martin
[36] and Palassini and Young [37] and the droplet scaling
picture [45–47]. In neither the TNT picture nor the droplet
scaling picture is there an AT transition. In the droplet picture
the Parisi overlap function P(q) is trivial, consisting of two
delta functions at ±qEA in zero field, whereas in the TNT
picture the form of P(q) is quite similar to the nontrivial (NT)
form which Parisi found for the SK model. The TNT picture
accounts for the nontrivial form of the Parisi overlap function
by postulating that there exist droplets of the linear size L of
the system, which contain O(Ld ) spins, and which do not have
a free energy of order Lθ (as they would in the droplet scaling
picture), but which have instead a free energy of O(1). It is the
presence of such droplets which makes P(q) nontrivial, which
is a feature observed in all simulations of it to date.

In a recent paper [3] one of us argued that once the linear
dimension of the system became larger than a crossover length
L∗ the nontrivial behavior observed in P(q) will change to the
trivial form predicted by droplet scaling. Estimates of L∗ in
d = 3 suggest it might be large, of the order of several hun-
dred lattice spacings and it is probably the case that to date the
regime where L > L∗ has not been reached. Furthermore, it
was suggested that as d → 6, L∗ would grow toward infinity,
as the droplets of O(1) evolve to the O(1) excitations in the
Parisi RSB solution, where the pure states have free energies
which differ from each other by O(1). In our one dimensional
proxy system we would therefore expect to find that L∗ is
much larger when σ = 0.75 than it is when σ = 0.85.

In this paper there are TNT-like effects visible in the be-
havior of ξSG/N in the region where ξSG is of O(N ) [see
Figs. 10(e) and 10(f)]. When ξSG is of order N the droplets
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FIG. 14. Finite-size-scaling plots of ξSG as a function of mag-
netic field hr , for (a) σ = 0.75 at a temperature of T = 0.55, and
(b) σ = 0.85 at a temperature of T = 0.3. These figures show ξSG/N
plotted on a linear scale versus N1/xhr in the region where ξSG/N is
of O(1).

which are important are those of size N and if L < L∗ some
of these will have free energy of O(1) rather than Lθ . As
a consequence the good scaling collapse of the data visible
when ξSG/N  1 will be lost. In Figs. 14(a) and 14(b) we
have plotted ξSG/N on a linear scale versus N1/xhr focusing
only on the region where ξSG/N is of O(1). If the droplet
scaling collapse had been good and of the form of Eq. (27),
then as N is increased the collapse should get better and
better. In fact due to TNT effects the data in Fig. 14(a) for
σ = 0.75 show the opposite trend, and the lines get further
apart with increasing N in the region where ξSG is of O(N ).
However, for σ = 0.85 Fig. 14(b) shows the lines seem to
be getting closer with increasing N . It suggests that for this
value of σ we are getting into the region where L > L∗ when
droplet scaling applies even when ξSG is of O(N ). Data at
larger values of N than 4096 would be nice to confirm this
trend but because these simulations have to be done at quite
low temperatures compared to those for σ = 0.75 it will be
challenging to do this. Despite this limitation on the size of
N which can be reached for σ = 0.85, there is evidence that
for it, TNT and finite-size-scaling effects are less troublesome
than for σ = 0.75, despite the fact that much larger values of
N can be studied at this σ value.
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VIII. SUMMARY AND CONCLUSIONS

In this paper, we have studied the phase transitions in the
one-dimensional power-law diluted XY spin glass, both in
the zero-field limit and in the presence of a magnetic field
random in the component directions. Whether or not an AT
line exists for various values of the parameter σ is a question
of fundamental interest. To address this, we have performed
large-scale Monte Carlo simulations using a new heatbath al-
gorithm, described in the Appendix. This algorithm hopefully
speeds up equilibration, so cutting computational costs. We
certainly do gain some advantage in terms of computational
time due to the smaller number of components of XY spins
compared to those of the Heisenberg model. Alas, the heatbath
algorithm for XY spins suffers from an intrinsic disadvantage.
Because our algorithm has to generate two random numbers
during each Monte Carlo step, the benefits of the smaller
number of components are largely counterbalanced by the
additional labor involved in the heatbath step. We were unable
to go to larger system sizes than in the corresponding work
with Heisenberg spins [18]. The largest system sizes that we
are able to simulate are: N = 16384 for σ = 0.6, N = 32768
for σ = 0.75, while the largest N for σ = 0.85 was 4096.
The total CPU time spent in generating all the data that we
presented at fixed hr and varying T was 1 183 636.2 h, which
is 135.12 years. The total CPU time consumed in generating
the data at fixed T and varying hr was 96 101.6 days which
is 263.29 years. Thus, despite the algorithm not producing
significant dividends, we are able to study fairly large system
sizes owing to the expenditure of a large amount of computer
time.

The results from our work are broadly in accord with
those for the corresponding Heisenberg spin-glass model. For
σ = 0.6, which is in the mean-field regime, we find a phase
transition in the absence of an external magnetic field, and in
the presence of a magnetic field, which indicates the existence
of an AT line. The location of the AT line is close to the
mean-field predictions. For σ = 0.75, which is in the non-
mean-field regime, the conventional data collapse suggests the
existence of an AT line, but the behavior of the intersections
as a function of N indicate that the data is not close to its
large N asymptotic form. The estimated location of the AT
field based upon intersections that we get from our data at
σ = 0.75 is strikingly smaller than estimates based on the
mean-field theory formulas. For σ = 0.85, which is deep in
the non-mean-field regime and corresponds to a space dimen-
sion of about 3, our data are consistent with the absence of
an AT line. In this case there is no crossing of the curves of
χSG/N2−η versus T at various N values. But confusingly inter-
sections h∗(N, 2N ), as a function of hr , seem to exist, whereas
intersections T ∗(N, 2N ) are absent at least for σ = 0.85.

However, for σ = 0.75 and for σ = 0.85 we found that the
droplet picture provided a much better description of our data
from that obtained assuming the existence of an AT transition
line. The Imry-Ma formula for the field dependence of ξSG

works well until ξSG becomes comparable to the system size.
A similar behavior was reported for the Ising spin glass at
σ = 0.75 in Ref. [49]. A finite-size-scaling formulation was
developed to treat the data at small fields when ξSG is compa-
rable to the system size N , and with it an excellent collapse

of all our data on ξSG and χSG was obtained. We showed
that droplet scaling predicts the existence of the intersections
h∗(N, 2N ). Our data unfortunately does not extend to values
of N large enough to be in the asymptotic region where the
N-dependence of h∗(N, 2N ) is simple. Fortunately there exists
a way of testing whether the intersections are due to an AT
transition or are just those predicted by droplet scaling, which
is to study the N dependence of R = χSG/N2σ−1, calculated at
h∗(N, 2N ), and this test supports the droplet picture provided
N > 1024 at σ = 0.75. Thus, it is only for large systems that
one can obtain good evidence for the droplet picture.

We now summarize our main results. The strongest ev-
idence for droplet scaling is the success of the Imry-Ma
formula for the field dependence of ξSG for σ = 0.75 and
σ = 0.85 [see inset Figs. 10(e) and 10(f)]. If droplet scaling
works, then no AT line is to be expected. When ξSG ∼ N there
are visible sizable corrections to the Imry-Ma formula which
are related to TNT effects. However, for σ = 0.85 there is ten-
tative evidence in Fig. 14(b) that if even larger systems could
be studied then the TNT effects might be absent, and so there
could exist a length scale L∗ above which TNT effects become
unimportant (see Ref. [3]). If instead of droplet scaling one
assumes that there is an AT phase transition, then the usual
finite-size-scaling plots used to determine hAT as in Fig. 5(c)
for σ = 0.75 are unsatisfactory: for example, the values of
hAT which would be derived from the crossings of ξSG and
χSG as N becomes large look to be significantly different. In
the equivalent data plot for σ = 0.60 [see Fig. 3(c)] they are
in good agreement. Furthermore, the quantity R of Eq. (35)
should approach a constant as N → ∞ if there is a genuine
AT transition, but instead for the cases σ = 0.75 [Fig. 12(b)]
and 0.85 [Fig. 12(c)], it is increasing with N once N becomes
large enough.

The simulations of this paper provide numerical evidence
that the AT line and hence RSB is absent in spin glasses
below six dimensions. What is now needed is an explanation
of why this might be the case. Better still would be a rigorous
proof that the lower critical dimension for replica symmetry
breaking is six. Our work indicates that showing that σ = 2/3
is the precise value of the critical value of σ will be chal-
lenging using simulations as finite-size effects are large in its
vicinity.
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APPENDIX: THE SIMULATION METHOD

We now give some technical aspects of how the simulations
are run. In the simulations we start with a random initial con-
figuration and allow it to evolve according to the prescription
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TABLE IV. Parameters of the simulations done at fixed temperature T and varying field hr . N (hr ) is the number of values of field taken in
the range hr (min,max). The equilibration times are different for different values of the field hr , which lie in the range Nsweep (min,max). The
number of disorder samples for different fields lie in the range Nsamp (min,max). ttot is the total CPU time consumed in hours to generate data
for a particular system size.

σ T N hr (min,max) N (hr ) Nsweep (min,max) Nsamp (min,max) ttot (h)

0.6 0.6 128 (0.010,9.000) 32 (2048,2048) (2000, 64 000) 11.44
0.6 0.6 256 (0.010,9.000) 32 (4096,4096) (2000, 48 000) 55.5
0.6 0.6 512 (0.010,9.000) 32 (8192,16384) (2000, 80 000) 163.91
0.6 0.6 1024 (0.010,9.000) 32 (4096, 65 536) (2000, 80 000) 2375
0.6 0.6 2048 (0.010,9.000) 32 (16 384, 131 072) (1200, 60 000) 10 259.8
0.6 0.6 4096 (0.010,9.000) 32 (65 536, 2 097 152) (960, 28 600) 92 052.1
0.6 0.6 8192 (0.010,9.000) 32 (65536,4194304) (400, 19 428) 310 948
0.6 0.6 16 384 (0.010,9.000) 32 (131072,4194304) (488, 10 689) 1 021 481
0.7 0.6 128 (0.010,9.000) 31 (1024,1024) (4000,4000) 1.86
0.7 0.6 256 (0.010,9.000) 31 (2048,2048) (1000,8000) 8.53
0.7 0.6 512 (0.010,9.000) 31 (4096,4096) (1000,8000) 39.46
0.7 0.6 1024 (0.010,9.000) 31 (8192,8192) (1500,8000) 288.41
0.7 0.6 2048 (0.010,9.000) 31 (16 384, 16 384) (500,8000) 559.99
0.7 0.6 4096 (0.010,9.000) 31 (32 768, 32 768) (400,8000) 3020.62
0.7 0.6 8192 (0.010,9.000) 31 (16 384, 131 072) (2000,6800) 17 500.2
0.7 0.6 16 384 (0.010,9.000) 31 (32 768, 262 144) (640,6400) 77 734.3
0.75 0.55 128 (0.001,9.000) 42 (512,1024) (2000,40000) 6.59
0.75 0.55 256 (0.001,9.000) 42 (1024,2048) (2000,40000) 56.67
0.75 0.55 512 (0.001,9.000) 42 (4096,4096) (1000,24000) 165.51
0.75 0.55 1024 (0.001,9.000) 43 (8192,8192) (1000,12000) 255.75
0.75 0.55 2048 (0.001,9.000) 43 (16 384, 16 384) (1000, 12 000) 1000.52
0.75 0.55 4096 (0.001,9.000) 43 (32 768, 32 768) (800, 12 000) 5269.11
0.75 0.55 8192 (0.001,9.000) 42 (65 536, 65 536) (800,8000) 21 410.3
0.75 0.55 16 384 (0.001,9.000) 42 (131 072, 131 072) (760,6280) 62 062
0.75 0.55 32 768 (0.001,9.000) 42 (131 072, 262 144) (512,4995) 146 627
0.85 0.3 128 (0.001,9.000) 36 (32 768, 131 072) (2000, 30 000) 264.97
0.85 0.3 256 (0.001,9.000) 36 (65 536, 262 144) (1000,25000) 1052.21
0.85 0.3 512 (0.001,9.000) 36 (131 072, 524 288) (1000,34800) 6161.52
0.85 0.3 1024 (0.001,9.000) 36 (262 144, 1 048 576) (1000,20000) 17668
0.85 0.3 2048 (0.001,9.000) 36 (524 288, 8 388 608) (320,3372) 68 933.6
0.85 0.3 4096 (0.001,9.000) 36 (262 144, 16 777 216) (312,5760) 439 004

given in this section. To incorporate parallel tempering, we
simultaneously simulate NT copies of the system over NT

different temperatures ranging from Tmin ≡ T1 to Tmax ≡ TNT .
To facilitate the computation of the observables outlined in
this section, it is convenient to simulate four sets of NT copies
(two for hr = 0), which we label (1), (2), (3), and (4). We per-
form overrelaxation, heatbath, and parallel tempering sweeps
over all these copies keeping track of the labels appropriately.
For every 10 overrelaxation sweeps we perform one heatbath
and one parallel tempering sweep, since the overrelaxation
sweep involves a significantly lower computational cost, and
is known to speed up equilibration. The parameters of the
simulations are shown in Tables III and IV. Once the system
reaches equilibrium, we perform the same number of sweeps
in the measurement phase, so Nsweep is the total number of
sweeps over which the simulation is run, inclusive of both
the equilibration and measurement phases. The last column
in the table shows the amount of computer time expended
to generate the data corresponding to the parameters in that
row. In the measurement phase, we perform one measurement
on the system for every four sweeps. The following sections

contain the details of our Monte Carlo simulation procedures.
To equilibrate the system as quickly as possible, we per-
form three kinds of sweeps: overrelaxation or microcanonical
sweeps, heatbath sweeps, and parallel tempering sweeps.

1. Overrelaxation sweep

We sweep sequentially through all the lattice sites and
compute the local field Hi = ∑

j Ji jS j + hi at a particular
lattice site. The new spin direction S′

i at the ith lattice site is
taken to be the mirror image of the vector Si about Hi, i.e.,

S′
i = −Si + 2

Si · Hi

H2
i

Hi. (A1)

Since S′
i · Hi = Si · Hi, the energy of the system does not

change due to these sweeps. Hence, these sweeps are also
called microcanonical sweeps. These sweeps help us in sam-
pling out the microstates with the same energy. The process
of equilibration speeds up when we include overrelaxation
sweeps along with the other sweeps [33,53].

014116-18



STUDY OF THE DE ALMEIDA–THOULESS LINE IN THE … PHYSICAL REVIEW E 108, 014116 (2023)

2. Heatbath sweep

The overrelaxation sweeps generate states with the same
energy and hence they cannot directly equilibrate the system.
Therefore, we also perform a heatbath sweep for every 10
microcanonical sweeps. Similar to the microcanonical case,
we sweep sequentially through the lattice.

To equilibrate the system, the angle θ between Hi and S′
i

should be sampled out from the Boltzmann distribution given
by

f�(θ ) = e−βEi

Z
= eβHiSi cos θ

Z
= ew cos θ

Z
, (A2)

where w = βHiSi and

Z =
∫ π

−π

eβHiSi cos θ dθ (A3)

is the normalizing constant. The simplest way to do this is to
equate the cumulative density function (CDF) of θ , F�(θ ), to
that of a uniform distribution:

F�(θ ) =
∫ θ

−π

f�(θ ′) dθ ′ = �(r1) = r1, (A4)

where r1 is a random variable sampled from a uniform distri-
bution in the interval (0,1). The value of θ can be obtained by
simply inverting this function to get

θ = F−1
� (r1). (A5)

This method works well with the Heisenberg spins as f�(θ )
is integrable, which gives an invertible CDF F�(θ ) [18,28].
Since the probability density function (PDF) f�(θ ) for the XY
spin glasses given by Eq. (A2) is not exactly integrable, this
method cannot be used.

To overcome this problem and to sample out θ from the
Boltzmann distribution [Eq. (A2)] in as few a number of
sweeps as possible, we develop a heatbath sweep based on
the rejection method [54]. We generate two random num-
bers r1 ∈ uniform(−π, π ) and r2 ∈ uniform(0, fmax). If r2 <

fθ (r1), then we accept the move, i.e., take θ = r1. Else, we
reject the move and generate another pair of random numbers
(r1, r2). This process is repeated until we find an acceptable
value of r1. A graphical representation for this method is
shown in Fig. 15. The new spin direction S′

i in Cartesian
coordinates is given by

S′
x = cos(θ + θH ), (A6a)

S′
y = sin(θ + θH ), (A6b)

where θH is the angle made by the Hi vector with the X
axis. Since the generation of random numbers is involved,
this sweep is computationally costlier than others. Hence, we
perform more microcanonical sweeps than heatbath sweeps.

3. Parallel tempering sweep

Spin glasses have a complex free energy landscape due
to which, at low temperatures, they tend to get stuck inside
metastable valleys, and true equilibration consumes a lot of

−2 0 2
θ

0.0
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0.3

0.4

f
Θ
(θ

)

fmax

(r1, r2)

(r1, fΘ(r1))

(r1, r2)

(r1, fΘ(r1))

w = βHS = 1.5

Rejected Accepted

FIG. 15. Graphical representation of the rejection method. We
randomly pick a point (r1, r2) within the rectangle from a uniform
distribution. If the point lies under the f�(θ ) curve given by Eq. (A2),
then the point is accepted, and θ is taken to be r1. Otherwise, the point
is rejected.

time. At high temperatures, the system can easily escape
the valley due to thermal fluctuations, and so equilibration
is quick. To equilibrate the system in as small a number of
moves as possible, we perform one parallel tempering sweep
for every 10 overrelaxation sweeps [28,33]. To benefit from
the parallel tempering algorithm [55,56], we simultaneously
run the simulation for NT copies of the system at NT different
temperatures T1 < T2 < T3 < · · · < TNT . The minimum tem-
perature T1 is the low temperature at which we are interested
in studying the behavior of the system, and the maximum
temperature TNT is high enough that the system equilibrates
very fast. We perform overrelaxation and heatbath sweeps
separately on each of the NT copies of the system. In the
parallel tempering sweep, we compare the energies of two
spin configurations at adjacent temperatures, Ti and Ti+1, start-
ing from the smallest temperature T1. We swap these two
spin configurations such that the detailed balance condition
is satisfied. The Metropolis probability for such a swap is

P(T swap) = min{1, exp(�β�E )} (A7)

=
{

exp(�β�E ), (if �β�E < 0),

1, (otherwise),
(A8)

where �β = 1/Ti − 1/Ti+1 and �E = Ei(Ti ) − Ei+1(Ti+1). In
this way, a given set of spins performs a random walk in
temperature space.

4. Checks for equilibration

To check whether the system has reached equilibrium, we
have used a convenient test [57] which is possible because of
the Gaussian nature of the interactions and the onsite external
magnetic field. The relation

U = zJ2

2T
(ql − qs) + h2

r

T
(q − |S|2) (A9)
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is valid in equilibrium. Here

U = 1

N
[〈H〉]av

= − 1

N

⎡
⎣∑

〈i, j〉
εi jJi j〈Si · S j〉 +

∑
i,μ

hμ
i 〈Sμ

i 〉
⎤
⎦

av

(A10)

is the average energy per spin, q = 1
N

∑
i

[〈Si〉 · 〈Si〉]av is the

Edwards-Anderson order parameter, ql = 1
Nb

∑
〈i, j〉[εi j〈Si ·

S j〉2]av is the “link overlap,” and qs = 1
Nb

∑
〈i, j〉[εi j〈(Si ·

S j )2〉]av is the “spin overlap,” where Nb = Nz/2, and εi j = 1 if
the ith and jth spins are interacting and is zero otherwise. The
[· · · ]av in Eq. (A10) is analytically evaluated by performing
integration over Ji j and hμ

i [58] since they have Gaussian
distributions. On evaluating this integral using integration by

parts, we get Eq. (A9). As the system reaches equilibrium,
the two sides of Eq. (A9) approach their common equilibrium
value from opposite directions.

In simulations, we evaluate both sides of Eq. (A9) for dif-
ferent number of Monte Carlo sweeps (MCSs), which increase
in an exponential manner, each value being twice the previous
one. The averaging is done over the last half of the sweeps.
We initially start with a random spin configuration, so the
left-hand side of Eq. (A9) is small and the right-hand side
is very large. As the system gets closer to equilibrium, these
two values come closer to each other from opposite directions.
When we notice that the averaged quantities satisfy Eq. (A9)
within error bars, consistently for at least the last two points,
we declare that our system has reached equilibrium. Once the
system reaches equilibrium, we perform the same number of
sweeps in the measurement phase, where we evaluate different
quantities (given below) used to study the possible phase
transitions of the system.
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