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Generalized dynamics and fluctuation-dissipation theorem for a parabolic potential
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This article revisits the fluctuation-dissipation relationship of a generalized Brownian particle constrained in a
harmonic potential and immersed in a thermal bath whose degrees of freedom also interact with the external field.
The generalized Langevin equation put forth herein keeps its original form. The different terms now depend on a
compound strength related to those of the field and bath oscillators. The resulting theorem keeps Kubo’s original
form with the memory kernel depending on the frequency of the field. It has the consequence that friction is not
a constant but is a function of the field frequency as predicted by molecular dynamics simulations. The position
particle distribution and the Fokker-Planck equation associated with the generalized Langevin equation are also
derived.
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I. INTRODUCTION

Relevant investigations have been carried out on the theory
of Brownian motion of a particle in contact with a ther-
mal bath and subjected to external potentials. The results
inevitably lead to a reformulation of Kubo’s fluctuation-
dissipation theorem (FDT) [1], mainly because its derivation
must include the effect of the external field on the dynamics of
the thermal reservoir. The most relevant work involves molec-
ular dynamics (MD) simulations. Thus, Daldrop et al. [2]
showed that for methane in a Lennard-Jones (LJ) water bath
subjected to a harmonic potential, the kernel depends on both
time and field strength because the friction is not a constant
but is a function of the latter.

Therefore, from a theoretical point of view, it is essential
to include the interaction between the field and the degrees
of freedom of the reservoir. It has been deduced mainly for
the harmonic potential. Effectively, in a short article, Lisý
and Tóthová [3] found an expression for the kernel. It is
not formally calculated but expressed as an integral over the
frequency of the bath oscillators.

It is also worth mentioning the work of Olivares-Rivas and
the present author [4], where it was shown that for a constant
field, the noise correlation depends on its squared strength,
and that of Costa et al. [5], where it is even inconsistent
in the linear regime of superdiffusive processes. Seifert and
Speck [6] even discovered that the dynamics of Markov pro-
cesses driven into nonequilibrium steady states lead to writing
the FDT as the equilibrium process and an additive correction.

Tóthová and Lisý [7] expanded their previous work [3]
using a modified version of the Zwanzig-Caldeira-Leggett
particle-bath Hamiltonian model.1 They obtained a modified
generalized Langevin equation (GLE) in which the FDT was
the same as in their previous work [3]. The kernel decreased

*gochocol@gmail.com
1For more information, see the references cited in [7].

and oscillated with time for various arbitrary combinations of
the system parameters. The authors did not provide any infor-
mation about the frequency-dependent friction coefficient.

Generalization to time-dependent fields was performed by
Cui and Zaccone [8] for a charged particle-bath system sub-
jected to a combination of a general external electric force
acting on the dynamics of the particle and the thermal bath.
The FDT is Kubo’s relation plus an additional contribution
proportional to the electric-field intensity squared as found
in Ref. [4] for a constant field. They found that the mean
of the stochastic force is not zero but directly proportional
to the static friction and the electric field, so the process is
skewed where excursions away from the initial position at
any t > 0 occur with different probabilities [9]. Likewise, the
authors also wrote at the beginning of the Introduction an
extensive review of the historical evolution of the FDT and its
importance in Brownian dynamics. An extension of this work
to determine the velocity correlation function of the particle
was performed by Tóthová et al. [10].

Recently, Vroylandt and Monmarché [11] extended the
theory to the nonlinear case. They applied the Zwanzig-Mori
formalism [12] to derive the GLE in terms of a nonlinear
effective mean force and friction linear in the velocity if the
kernel is allowed to depend on the position. The MD simu-
lation of two Lennard-Jones dimers confirms the prediction.
Previously, Straub et al. [13] had shown that the memory
kernel is position dependent for a pair of particles in a simple
liquid using MD. Thus, for a parabolic potential, MD results
dictate that the bath Hamiltonian must have a term describ-
ing the interaction of the field with the reservoir degrees of
freedom to obtain a more realistic physical description of the
phenomenon.

This article aims to present an algebraic derivation of the
FDT to account for the above consideration. It is inspired
by the methodology of the work by Adelman on the Fokker-
Planck equation (FPE) for non-Markovian systems [14]. The
method used here has not explicitly appeared in the litera-
ture as it does not appeal to linear response theory [15,16].
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The theorem, given by Eq. (30), is identical in structure to
Kubo’s original but now the friction coefficient depends on the
frequency. The main results of this proposal are the analytic
kernels given by either Eq. (38) or (40), which are quite
simpler than those of Refs. [3,7] in which the kernels were
given in terms of the bath parameters in addition to Drude’s
spectral density being invoked in the calculation. Furthermore,
in [3] no calculations were provided and the same kernel
was used in [7] despite the authors starting their derivation
from a different Hamiltonian. They only present results for the
kernels without any mention of the dependence of the friction
on the field frequency. We show instead in this paper that our
kernel is always positive because it requires the redefinition
of the lower limit of its frequency integration. It allows for
determining the friction coefficient as a frequency-dependent
function. When the bath-field interaction is off, our FDT re-
duces to Kubo’s original theorem. It will be shown that the
kernel and friction share some general attributes with those
determined by MD simulations.

The paper is organized as follows. Sections II and III cover
the derivation of the GLE and the corresponding FDT, respec-
tively, where the total Hamiltonian includes the interaction
of the bath particles with the field. The calculation of the
effective strength experienced by the particle and an analysis
of the new dissipation kernel and friction follows in Sec. IV.
Section V deals with deriving the particle distribution function
(PDF) to subsequently get its FPE. We show that the diffusion
term is a function of the FDT. We summarize in Sec. VI and
conclude with some general observations.

II. THE GLE

The system is composed of a tagged particle of mass M
immersed in a bath of N harmonic oscillators (HOs) held at
temperature T . The whole system is subjected to the parabolic
potential V (q) = Mω2q2/2.

The Hamiltonians for the particle HS and for the bath
HB are given as in the classical literature [17,18] with the
difference that the latter includes the interaction with the field.
They read

HS = p2

2M
+ V (q), (1)

HB = 1

2

N∑
j=1

⎡
⎣ p2

j

m j
+ mjω

2
j

(
q j − λ jq

mjω
2
j

)2

+ Mω2q2
j

⎤
⎦, (2)

where λ j is the intensity of the bilinear coupling between the
particle and each of the HOs in the bath. The last term in HB

is the aforementioned field-bath interaction.
The equations of motion for the particle read

q̇ = p

M
, (3)

ṗ = −Mω2q +
N∑

j=1

λ j

(
q j − λ j

m jω
2
j

q

)
, (4)

and for the thermal bath degrees of freedom (BDF)

q̇ j = p j

mj
, (5)

ṗ j = −Ajq j + λ jq, (6)

where Aj = mjω
2
j + Mω2. Solving the BDF set of equa-

tions gives [19]

q j = q j (0) cos(α jt ) + p j (0)

β j
sin(α jt )

+ λ j

β j

∫ t

0
dy q(y) sin[α j (t − y)], (7)

with compound parameters α j = (Aj/mj )1/2 and β j =
(Ajmj )1/2. The integral on the right-hand side of Eq. (7) can
be written as∫ t

0
dy q(y) sin[α j (t − y)]

= − 1

α j

∫ t

0
dy q(y)

∂

∂y
cos[α j (t − y)], (8)

which can be integrated by parts. Substituting the resulting
expression in Eq. (7) to later be used in Eq. (4) gives the GLE
in terms of velocity v(t ). It reads

v̇(t ) = −�q(t ) −
∫ t

0
dy v(y)��(t − y) + R�(t ), (9)

where � is the effective strength experienced by the particle
due to the field corrected by that coming from the bath oscil-
lators. This is given by

� = ω2

⎡
⎣1 + 1

Mω2

N∑
j=1

λ2
j

(
1

mjω
2
j

− 1

α jβ j

)⎤
⎦ (10)

= ω2

⎛
⎝1 +

N∑
j=1

λ2
j

A jmjω
2
j

⎞
⎠. (11)

The memory kernel ��(t − y) and colored noise R�(t ) are
defined as

��(t − y) = 1

M

N∑
j=1

λ2
j

α jβ j
cos[α j (t − y)], (12)

R�(t ) = 1

M

N∑
j=1

λ j

[(
q j (0) − λ j

β jα j
q(0)

)
cos(α jt )

+ p j (0)

β j
sin(α jt )

]
, (13)

where the subscript � emphasizes the dependence on the
frequencies of the external field and bath oscillators.

Without the field-bath interaction term, βi = mjω j . Thus,
the second term on the right-hand side of Eq. (10) van-
ishes and along with the kernel and noise functions
properly reduced, the GLE agrees with the standard expres-
sion [14,17,19]. Since q(t ) = q0 + ∫ t

0 dy v(y) and defining
	�(t − s) = ��(t − s) + �, the GLE can be rewritten as

v̇(t ) = −�q0 −
∫ t

0
dy v(y)	�(t − y) + R�(t ), (14)
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whose solution is obtained through its Laplace transform (LT),
it reads

v(t ) = v0χ (t ) − �q0

∫ t

0
dy χ (y) + ϕv(t ), (15)

χ (t ) = L−1

{
1

k + 	̂�(k)

}
, (16)

ϕv(t ) =
∫ t

0
dy χ (t − y)R�(y), (17)

where 	̂�(k) is the LT of 	�(t ).
A complete statistical description of the noise requires

knowing its equilibrium distribution conditioned on the par-
ticle’s initial position is its actual position. It is given by [19]

ρB({p j, q j} | q(0) = q) = 1

Z
exp

(
−HB(p j, q j, q)

kBT

)
, (18)

where Z is the partition function and kB is Boltzmann’s con-
stant. Therefore, the noise is Gaussian, so its first moment
〈R�(t )〉 = 0. The correlation is of Kubo’s kind since the our
GLE has the same structure as the original GLE [17] with the
difference that all terms now depend on �. Nonetheless, we
present its derivation in the next section without appealing to
the average over the bath distribution ρB(·).

III. THE FDT

Before proceeding to derive the FDT, we need some useful
expressions evaluated at equilibrium, such as 〈v0〉 = 〈q0〉 = 0,
〈v2

0〉 = kBT/M, and

〈q2
0〉 = kBT

M�
, (19)

according to the equipartition theorem [20]. Thus, from
Eq. (15) we get

〈v(t )v0〉 = kBT

M
χ (t ), (20)

〈v(t )q0〉 = −kBT

M

∫ t

0
dy χ (y). (21)

Likewise, from Eq. (14) and using Eq. (20) we get

〈v̇(t )v0〉 = −kBT

M

∫ t

0
dy 	�(t − y)χ (y), (22)

and from Eq. (20) and using Eq. (22),

χ̇ (t ) = −
∫ t

0
dy 	�(t − y)χ (y), (23)

where the averaging is performed over the noise distribution
and R�(t ) is uncorrelated with v(t ). These relations will be
used in the derivation of the FDT that follows.

Let us define

Q(t ) =
〈(

v(t ) − v0χ (t ) + �q0

∫ t

0
dy χ (y)

)2
〉
. (24)

Expanding the term in large parentheses and making the above
substitutions gives

Q(t ) = kBT

M

[
1 − χ2(t ) − �

(∫ t

0
dy χ (y)

)2
]
. (25)

Thus, the time derivative of Q(t ) renders

Q̇(t ) = 2
kBT

M
χ (t )

∫ t

0
dy ��(t − y)χ (y), (26)

where Eqs. (22) and (23) are used along with the definition of
	�(t ).

Once Q̇(t ) is identified with an integral of the kernel,
we proceed to find an equivalent expression in terms of the
colored noise correlation. This is achieved by setting Q(t )
in Eq. (24) equal to the last term on the right-hand side of
Eq. (15) using the definition of ϕv(t ) given by Eq. (17), that
is,

Q(t ) =
∫ t

0
dy χ (t − y)

∫ t

0
dz χ (t − z)〈R�(y)R�(z)〉, (27)

which after changing the limits of integration gives

Q(t ) = 2
∫ t

0
dy χ (y)

∫ y

0
dz χ (z)〈R�(y − z)R�(0)〉. (28)

Then, taking its time derivative and switching z �→ y, we get

Q̇(t ) = 2χ (t )
∫ t

0
dy χ (y)〈R�(t − y)R�(0)〉. (29)

Finally, setting this equation equal to Eq. (26), we get for the
noise correlation function

〈R�(t − s)R�(0)〉 = kBT

M
��(t − s). (30)

Equation (30) is the required FDT for the GLE completing the
statistics of the Gaussian colored noise.

IV. CALCULATION OF EFFECTIVE STRENGTH,
MEMORY KERNEL, AND FRICTION

The strength �, memory kernel, and friction depend on
the parameters defining the reservoir. We can dispense of
them by switching the discrete description to an integral
by considering the bath containing an infinite number of
oscillators [21].

To begin with, we use Eq. (12) as a prototype to exemplify
the derivation. It can be written as

��(t ) = 1

M

N∑
j=1

λ2
j

m jω̃
2
j

cos(ω̃ jt ), (31)

with ω̃ j = (ω2
j + κω2)1/2 and κ = M/μ, where each of the

oscillators has a mass μ = mj . Furthermore, the equation is
equivalent to

��(t ) = 1

M

∫ ∞

−√
κω

dω̃

N∑
j=1

λ2
j

m jω̃ j

cos(ω̃t )

ω̃
δ(ω̃ − ω̃ j ). (32)

Choosing the lower bound to be zero gives the same result
as −√

κω. However, choosing −√
κω makes the kernel more

physically significant than choosing zero. Next we will ex-
plain this issue in more detail.

Because of the shift, the choice of the negative bound
−√

κω can be justified in the following way. The frequency
of the oscillators is upshifted by the amount of

√
κω as seen

in the definition of ω̃ j . For the system to resonate in phase
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with the external field and to get meaningful physical feed-
back, we have to choose the negative value of the upshifting
as the lower bound to increase the signal-to-noise ratio of
the oscillator and achieve a low interference in the response.
Otherwise, if the lower bound is equal to or greater than zero,
the overall effect is similar to if the frequencies of the field and
of the bath are out of phase and therefore generating a function
out of bounds with a nonphysical meaning. Additionally, the
concept of negative frequency has a mathematical basis. It is
defined by the phasor e−iωt rotating clockwise in the complex
plane. Thus, according to Euler’s equation, cos(ωt ) is equal
to (eiωt + e−iωt )/2 or, equivalently, to two phasors rotating in
different directions.

From Eq. (32) we define the spectral density (SD) J (ω̃)
as [21,22]

J (ω̃) = π

2

N∑
j=1

λ2
j

m jω̃ j
δ(ω̃ − ω̃ j ). (33)

Then the kernel in terms of the bath parameters reduces to

�ω(t ) = 2

πM

∫ ∞

−√
κω

dω̃
J (ω̃)

ω̃
cos(ω̃t ), (34)

where the subscript � is switched to the more specific ω.
We use Drude’s SD for the coupling with the environ-

ment [21]

J (ω̃) = Mγ0ω̃
τ−2

ω̃2 + τ−2
, (35)

where γ0 is the static value of the friction coefficient and τ−1

is a cutoff frequency, that is, frequencies above the order of
τ−1 are suppressed. This choice of SD makes it unnecessary
to specify the bath parameters {mj, ω j, λ j} in the calculation
of the kernel.

This procedure can be adapted to any calculation involv-
ing the discrete description of the thermal bath. As the first
illustration, we can get a closed expression for the effective
strength � in which the summation renders

N∑
j=1

λ2
j

A jmjω
2
j

=
N∑

j=1

λ2
j

m2
jω

2
j

(
ω2

j + κω2
)

= P
2

πμ

∫ ∞

−√
κω

dω̃
J (ω̃)

ω̃

1

(ω̃2 + κω2)

= − γ0

2ω(κτ 2ω2 − 1)

×
[

3
√

κ − 2κτω

(
1 + 2

π
arctan(

√
κτω)

)]
,

(36)

where P denotes the Cauchy principal value and J (ω̃) is
replaced by Eq. (35). The resulting effective strength expe-
rienced by the tagged particle and given by Eq. (11) is shown
in Fig. 1 for the parameters described in the caption. Thus,
Eq. (36) allows us to write the GLE as a closed expression of
the system parameters and field frequency.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 1. Strength � as a function of the field frequency for γ0 = 1
and {κ, τ } = {2, 12}.

Continuing with the analysis, the integral (34) gives �(t ) =
(t/τ ) exp(−t/τ ) for ω = 0 corresponding to the free parti-
cle with a symmetrical Fourier transform. For finite positive
values of ω, the substitution of Drude’s SD in Eq. (34) gives

�ω(t ) = 2γ0τ
−2

π

∫ ∞

−√
κω

dω̃
cos(ω̃t )

ω̃2 + τ−2
, (37)

whose solution is instead2

�ω(t ) = γ0

τ

{
e−t/τ − 1

π
sinh

(
t

τ

)[
Si

(
H−

t

τ

)

+ Si

(
H+

t

τ

)]
+ i

π
cosh

(
t

τ

)[
Ci

(
−i

t

τ

)

− Ci

(
i
t

τ

)
− Ci

(
H−

t

τ

)
+ Ci

(
H+

t

τ

)]}
, (38)

H± = κτω ± i, (39)

or, equivalently, using Euler’s identity,

�ω(t ) = γ0

τ
e−t/τ

(
1 + e2t/τ + i

2π

{
Ei

(
G−

t

τ

)

− Ei

(
G+

t

τ

)
+ e2t/τ

[
Ei

(
−G−

t

τ

)

− Ei

(
−G+

t

τ

)]})
, (40)

G± = 1 ± i
√

κτω, (41)

where Si(·), Ci(·), and Ei(·) are the sine, cosine, and expo-
nential integral functions of the argument, respectively [23].
Either of the kernels is an elaborate function whose complex-
ity lies in the intertwined dependence on ω and t . In particular,
they present high fluctuations at a given field strength with no
physical justification for times outside the experimental in-
terest, which will be defined below. This circumstance forces

2Because of the complexity of the integrand of this equation, we use
the computer package Mathematica [23] to execute the integration.
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FIG. 2. Memory kernel for ω of 0.05 (black solid line), 0.1 (red
dashed line), and 0.2 (blue dotted line) as a function of time. The
parameters are {γ , τ, κ} = {1, 12, 2}.

us to truncate it to get acceptable vanishing values. Note that
the kernels are in units of the inverse of time squared and
depend only on four parameters: the field ω and cutoff 1/τ

frequencies, the static friction constant γ0, and the mass ratio
κ . All of the above equations are the principal results of this
investigation.

Regarding this observation, the calculations will include a
final time t f of 200, which is sufficiently large for calculation
purposes, and arbitrary system parameters, such as γ0 = 1,
τ = 12, κ = 2, and field frequencies of 0.05, 0.1, and 0.2. For
higher frequencies, there are no major changes in the figure.
Figure 2 shows the result with either of the solutions given
by Eq. (38) or (40) up to t = 100, so the figure can show the
relevant dependence on time. The frequencies are identified
by the black solid, red dashed, and blue dotted curves, respec-
tively. The kernels are nonexponentially decaying, exhibiting
relatively small shoulders at specific times and presenting
small negative values, as seen in the inset. They could be
categorized as spurious numerical data since their contribution
to the total area is too small to be considered important in the
numerical calculation. The spurious area decreases further for
higher frequencies.

In general, the friction coefficient is given by an integral
of the equilibrium autocorrelation function of the instan-
taneous microscopic force experienced by the Brownian
particle [24]. The equation for a free particle reduces to Ein-
stein’s relationship, which in turn is related to the mean-square
displacement [25–27]. Daldrop et al. in their MD simula-
tion [2] corroborate the former for the parabolic potential
and the latter for a vanishing field frequency. Because in our
case the kernel is a function of time and frequency, friction
is given as the time integral of the kernel for nonvanishing
field frequencies [2], providing as a consequence a function
depending on ω.

It is a well-defined real expression, equal to γ0 plus a long
term, not displayed for presentation purposes, depending on
the original integral functions and the hyperbolic Shi and Chi,
as well as the natural logarithm. Their arguments are com-
plex numbers involving combinations of {√κ, τ, t f , ω} [23].
The result is displayed in Fig. 3 for κ = 2, where the black

10 4 0.001 0.010 0.100 1
1

2

3

4
5
6
7

FIG. 3. Friction as a function of the field frequency and κ = 2 for
the kernels of Fig. 1. The dashed red line is for γ = 3 and τ = 20.

solid curve is for γ0 = 1 and τ = 12 and the red dashed
curve is for 3 and 20, respectively. Surprisingly, it is a
saturation curve with small fluctuations after the maximum
due to the invoked approximation on the final time. Their
origin is due to the small oscillations in the memory ker-
nel. The result makes sense because the greater the ω, the
greater the confinement, and the friction will increase to
reach a maximum value. As mentioned in the Introduction,
Daldrop et al. [2] simulated with MD a methane molecule
in a parabolic potential surrounded by a fixed number of
LJ water molecules in the simulation box. Their memory
kernel is an intricate decaying function of time where un-
expected prominent shoulders appear for intermediate field
strengths, similar to the results for the diatomic kernel spec-
trum in LJ fluids [28]. Likewise, they found that friction
as a function of field strength is a sigmoidlike curve. At
very low field intensity, the friction is equal to its static
value.

Next we contrast our approach with that of MD sim-
ulation. The parameters are those from Ref. [2], setting
the mass of the tagged particle to M = 1 Kg. Therefore,
the friction γ0 = 2.2 ps−1, the mass ratio κ = 0.89, and the
relaxation time τ = 0.4 ps, corresponding approximately to
the middle value between of the two timescales of the con-
finement limit. Frequencies of {1, 2, 3} ps−1 will be identified
by black solid, red long-dashed, and blue short-dashed curves,
respectively. The ω = 0 case will be used as a reference
and displayed as the black dash-dotted curve. The calcu-
lation of the memory kernel is up to t f = 6 ps, being an
order of magnitude higher than τ , to get a meaningful value.
Figure 4 displays the prediction, where we note that the ker-
nels do not converge to a unique value at t = 0 and friction
at a frequency sufficiently big is double that of γ0. They
share behavior similarities with those calculated with arbitrary
parameters.

Therefore, with the proper definition of the lower limit in
Eq. (34) and companion approximations, we can conclude
that our frequency-dependent kernel is an acceptable approx-
imation having some of the attributes of the MD simulation
concerning its temporal dependence. Regarding friction, we
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FIG. 4. Memory kernel and friction using the MD data of Dal-
drop et al. for methane in water [2]. See the text for details.

found a similar topology for its dependence on the field fre-
quency. For purposes of comparison, the friction function for
a system without an external field shows a decay with the
natural system frequency [29,30].

V. PARTICLE PDF AND FPE

In Brownian dynamics, the diffusion coefficient no longer
satisfies the Stokes-Einstein relation of stationary motion [30].
It is a time-dependent function correctly predicted in the
FPE formalism. Its calculation requires first knowing the
PDF for the position of the Brownian particle described in
Sec. 3.1 of Ref. [4]. Adapting it to our problem, as shown
in the Appendix, gives a normal distribution with mean and
variance

q(t ) = q0

(
1 − �

∫ t

0
dy y χ (t − y)

)
, (42)

σ 2(t ) = 2
∫ t

0
dy

∫ y

0
dz〈ϕv(y)ϕv(z)〉

+ kBT

M

(∫ t

0
dy χ (y)

)2

, (43)

respectively. The noise correlation in Eq. (43), according to
the definition of ϕv(t ), is written as

〈ϕv(y)ϕv(z)〉 =
∫ y

0
dy′

∫ z

0
dz′χ (y − y′)χ (z − z′)

×〈R�(y′ − z′)R�(0)〉, (44)

which depends on the FDT. Since the Gaussian is a well-
defined function in terms of the model parameters, some
thermodynamic properties such as heat, work, and entropy, to
name a few, can be determined.

The next step is to devise an inverse process consisting of
deriving the FPE whose solution is the PDF mentioned above.
It is achieved by the general method originally designed by
Adelman and Garrison [20] and shown in detail in Ref. [31].
It renders

∂ p(q, t )

∂t
= −�(t )

∂

∂q
qp(q, t ) + 1

2
D(t )

∂2 p(q, t )

∂q2
, (45)

�(t ) = d ln q(t )

dt
, (46)

D(t ) = σ̇ 2(t ) − 2σ 2(t )�(t ), (47)

where D(t ) is the time-dependent diffusion. The structure of
the FPE for the GLE when the field-bath interaction is off
remains the same as Eq. (45) with the corresponding mean
position and standard deviation, respectively.

VI. CONCLUSION

We have presented in this article the derivation of the
fluctuation-dissipation relationship for the parabolic potential.
It is a well-defined expression that involves a frequency-
dependent memory kernel. When the field-reservoir interac-
tion is off, the FDT is Kubo’s. So far, the literature appearing
on this topic has always supposed the FDT is equal to Kubo’s
relationship even in the presence of the parabolic potential
except for those of Refs. [3,7] and the subject of this inves-
tigation. For the cases where the system is under the influence
of an external electric field, the FDT is Kubo’s plus a correc-
tion [8,10].

We based our calculations on recognizing the resonance
between the field and the system as a fundamental fac-
tor because the oscillators and the external field vibrate
at different frequencies. It requires changing the lower
bound of the integral defining the kernel to include this
effect.

In this circumstance, the memory kernel and friction
depending on time and the field frequency, respectively,
resemble, in a general way, the topology of MD simula-
tion’s curves. However, the theory needs some adjustments
to improve the prediction for the final time proposed in the
calculations. The oscillations of the kernel appearing at long
times could be prevented by numerically smoothing them to
get a positive lower value.

The noninertial or overdamped limit must be carefully
analyzed as demonstrated by Nascimento and Morgado [32].
By setting the inertial term to zero, they proved that the PDF
does not reach the stationary Gibbs-Boltzmann distribution.
The resulting dynamics underestimates the fast collisions of
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the oscillators with the particle, leaving the memory effect
of the friction kernel leading the dynamics. They proposed
adding extra white noise to the overdamped expression with
an intensity exceeding the memory effect to recover the cor-
rect stationary dynamics.

An alternative equation can be obtained to describe the
dynamics from the derived FPE. We rely on Itô’s formula to
derive a stochastic differential equation (SDE) knowing the
associated FPE [33] given by Eq. (47). Thus, according to
this rule, the dynamics can also be described by the first-order
SDE

q̇(t ) = �(t )q(t ) +
√

D(t )ξ (t ), (48)

mathematically equivalent to the GLE given by Eq. (9). It
describes the generalized diffusion of the particle as a time-
dependent Ornstein-Uhlenbeck process defined by a drift
�(t )q(t ) and a diffusion D(t ) driven by the zero-mean Gaus-
sian white noise ξ (t ).

The physical application of the our findings for systems
already analyzed in previous works is straightforward. It al-
lows a more formal investigation of several thermodynamical
properties such as heat, mechanical work, optimal protocols,
and entropy.
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APPENDIX: PROBABILITY DENSITY FOR THE POSITION

For a given realization of ϕv(t ), the temporal evolu-
tion for the density of the flow in q space described by
Eq. (15) is given by the stochastic Liouville equation [34],
that is,

∂ f (q[ϕv], t )

∂t
= − ∂

∂q

[
f (q[ϕv], t )

dq[ϕv]

dt

]
. (A1)

As was pointed out by van Kampen [35,36], averaging
this flow over all realizations of the noise then results in
〈 f (q[ϕv], t )〉 = P(q, t, v0, q0). Therefore, replacing Eq. (15),
we find

∂P(q, t, q0, v0)

∂t
= −v(t )

∂ p(q, t, q0, v0)

∂q

− ∂

∂q
〈 f (q[ϕv], t )ϕv(t )〉ϕv , (A2)

v(t ) = v0χ (t ) − �q0

∫ t

0
dy χ (y), (A3)

where the subindex ϕv is a reminder that the PDF of the
colored noise has to be employed in the calculation of the
average. It can be determined by the formula of differentiation
derived independently by Furutzu [37], Novikov [38], and

Donsker [39] for Gaussian noises. It reads

〈 f (q[ϕv], t )ϕv(t )〉ϕv =
∫ t

0
dy〈ϕv(t )ϕv(y)〉

×
〈
∂ f (q[ϕv], t )

∂q[ϕv]

δq[ϕv]

δϕv(t )

〉
ϕv

(A4)

= −1

2
Dq(t )

∂P(q, t, q0, v0)

∂q
, (A5)

Dq(t ) = 2
∫ t

0
dy〈ϕv(t )ϕv(y)〉. (A6)

The functional derivative inside the average is obtained by
integrating first Eq. (15),

q(t ) = q(t ) + v0

∫ t

0
dy χ (y) +

∫ t

0
dy ϕv(y), (A7)

q(t ) = q0

(
1 − �

∫ t

0
dy y χ (t − y)

)
, (A8)

where from Eq. (A7) it is equal to 1. The average of the partial
derivative of the flow is just the variation of the PDF with the
position according to van Kampen’s definition. Equation (A8)
is just the average position appearing in Eq. (42).

Then, carrying out the proper substitutions, we get the FPE

∂P(q, t, q0, v0)

∂t
= −v(t )

∂ p(q, t, q0, v0)

∂q

+ 1

2
Dq(t )

∂2P(q, t, q0, v0)

∂q2
. (A9)

Setting s = q − ∫ t
0 dy v(y) and r = ∫ t

0 dy Dq(y), the FPE re-
duces to a diffusionlike equation [40]

∂P(s, r, q0, v0)

∂r
= 1

2

∂2P(s, r, q0, v0)

∂s2
. (A10)

Its solution for the initial condition δ(s − s0) is a Gaussian
centered at s = 0, which in the original variables is given by

P(q, t |q0, v0) = 1√
2πσ 2

q (t )
exp

(
− [q − q̃(t )]2

2σ 2
q (t )

)
, (A11)

q̃(t ) = q(t ) + v0

∫ t

0
dy χ (y), (A12)

σ 2
q (t ) =

∫ t

0
dy Dq(y). (A13)

Averaging this equation over the initial velocity Maxwell dis-
tribution renders the PDF for the position of the particle, that
is,

P(q, t |q0) = 1√
2πσ 2(t )

exp

(
− [q − q(t )]2

2σ 2(t )

)
, (A14)

σ 2(t ) = σ 2
q (t ) + kBT

M

(∫ t

0
dy χ (y)

)2

. (A15)

Substituting σ 2
q (t ) in terms of ϕv(t ) gives the standard devia-

tion described by Eq. (43).
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