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Self-oscillatory instability of the driven phase front propagation induced by liberation of latent heat
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We theoretically address crystals exhibiting first-order phase transformations subjected to a steadily propa-
gating temperature gradient. The latter drives a nonisothermal propagation of a phase front. We theoretically
demonstrate that for the phase transformations of the displacive type, the phase front always steadily follows the
isotherm. In contrast, in the case of the order-disorder or hybrid phase transformations in a crystal containing
pinning defects, one finds a velocity of the isotherm, the first critical velocity, at which the steady front motion
becomes unstable, and a stick-slip front propagation starts. Upon reaching the second critical velocity, the
stick-slip behavior vanishes, and the motion becomes steady again. Our results enable one to determine the
activation energy of the leading order-disorder process from the measurements of the driven motion of the phase
front. In light of these results, we discuss experimental findings for PbTiO3 and NaNbO3
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I. INTRODUCTION

In crystals exhibiting first-order phase transitions, the
transformation process involves the motion of phase fronts.
The front propagation liberates the transformation heat. Since
the phase front velocity depends on temperature, evolving of
the heat influences the front dynamics, its action representing
feedback, positive or negative. The positive feedback may
give rise to the instability of the phase front’s steady motion
giving rise to a propagation mode during which the front
velocity exhibits self-oscillations. One refers to this mode as
the self-oscillating, stick-slip, or jerky motion.

Experiments with the phase front motion require control-
ling its thermodynamic driving force. A specially designed
furnace developed by Burfoot and Parker [1] fulfills this chal-
lenging task. The furnace generates a temperature gradient,
J = ∇�, along the sample, where � is the temperature. One
drives the isotherm along the crystal with a velocity V by
cooling or heating the sample’s butt ends with a prescribed
rate (see Sec. II for details). So far, experiments with such a
furnace have been performed on two crystals: PbTiO3 [2–8]
and NaNbO3 [5,8,9].

In experiments with PbTiO3, the dynamics of the interface
between the cubic (Pm3m) and tetragonal (P4mm) phases
have been studied. They revealed a velocity interval V∗1 <

V < V∗2 within which the phase front exhibits the stick-slip
motion. It transforms into relaxational oscillations at V close
to V∗2. At V < V∗1 and V > V∗2, the phase front steadily
follows the isotherm. Upon increasing the heat sink, the jerky
mode vanished [3–7].

In NaNbO3, the phase front between Pnmm and Pbma
phases exhibited the self-oscillating motion at 0 < V < V∗2

and the steady one otherwise [5,8,9].

*aboulbitch@gmx.de

In addition to the dynamics of the crystal-crystal phase
transformations, one observes self-oscillations of the front
in two other classes of phenomena in solids: (1) explosive
crystallization and (2) gasless fuel combustion.

Explosive crystallization represents a fast transformation
from the amorphous to the crystalline phase, taking place in
some amorphous semiconductors, amorphous metallic alloys,
amorphous metals, and dielectrics. In experiments, one often
drives the explosive crystallization front by a scanning laser
spot. The self-oscillations manifest themselves in a generation
of alternating crystalline and amorphous layers, their shape
and spatial regularity varying depending on the experimental
conditions [10]. Using high-resolution dynamic transmission
electron microscopy, Egan and coauthors observed the inter-
nal structure of the layers and the dynamics of its formation in
amorphous germanium during the laser-driven crystallization
[11].

Gasless combustion represents a chemical reaction in the
solid phase involving no oxygen or other gases. If the acti-
vation energy is high, the reaction localizes within a narrow
region, which one regards as a combustion front. The trans-
formation of the steady regime to the self-oscillating one first
observed by Merzhanov, Filonenko, and Borovinskaya [12]
takes place during the gasless combustion of various fuels
[13].

A limited number of theoretical works address the front
motion in areas as different as explosive crystallization, gas-
less combustion, and crystal-crystal phase transformation.
These three phenomena exhibit, however, the same insta-
bilities, and one describes them by similar mathematical
apparatus.

Shklovskii has studied the amorphous-to-crystal transition
[14] as well as Kurtze, van Saarloos, and Weeks [15–18]. This
transition requires overcoming an energetic barrier. Thus, the
front velocity obeys the Arrhenius law. The latter acts as a
mechanism for positive feedback: the velocity dramatically
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increases with the growing temperature. Kurtze, van Saarloos,
and Weeks demonstrated that under certain conditions, both
self-sustained and driven by a propagating laser spot, the
front motion passes into a self-oscillating regime [15–18].
Makhviladze and Novozhilov have theoretically described
self-oscillations of the reaction front during the gasless com-
bustion [19,20].

Gordon studied the first-order transition dynamics during
the crystal-crystal phase transformation within the framework
of the time-dependent Ginzburg-Landau equation. He demon-
strated its exact solution. The latter describes the phase front
propagating with a constant velocity in an overcooled or over-
heated crystal [21]. Gordon and coauthors used this approach
to describe the transition kinetics of various types of solids:
ferroelectrics, magnetics, improper ferroelectrics, and others
[22,23]. Gordon’s solution is, however, isothermal; it neglects
heat liberation.

Umantsev and Roitburd were the only ones who studied the
phase front motion accompanied by the heat liberation during
the crystal-crystal phase transformation [24]. Based on the
time-dependent Ginzburg-Landau theory with a temperature-
independent kinetic factor, they derived the heat transfer
equation valid in this case. Below, we start with their result.
They further studied the effect of heat liberation on the steady
propagation of the phase front and concluded the front self-
oscillations to be impossible [24,25].

It is a common opinion that instability of the steady motion
during the explosive crystallization qualitatively differs from
that during crystal-crystal transition [14–18]. In both cases,
the front propagation is followed by a heat release. In the
former case, it is the heat of the glass state decay; in the
latter, it is the latent heat of the transformation. The velocity
of the explosive crystallization front is highly nonlinear in
temperature since it obeys the Arrhenius law. Therefore, the
transition heat release accelerates the front propagation in the
former case. The evolving heat, thus, acts as positive feedback
leading to steady motion instability.

In contrast, in the case of the transitions from the high-
to low-temperature phase in PbTiO3 and NaNbO3 [2–9] the
phase front propagation requires overcooling. The latent heat
release decreases the overcooling, thus, slowing the front
down. That is, the heat evolving generates negative feed-
back. These arguments led one to the belief that crystal-melt
or crystal-crystal front propagation must always be steady
[14–18]. The latter contradicts, however, the experimental
observations [2–9].

Thus, since its experimental discovery in 1975 [2], one has
to do with an unexplained paradox. It motivated us to study
the dynamics of the phase interface in crystals exhibiting
structural phase transformations.

This paper theoretically studies a crystal exhibiting the
first-order phase transition between two crystalline phases
placed into the gradient furnace. We describe the transition
within the Ginzburg-Landau approach supplemented with the
heat transfer equation. We propose to apply the Arrhenius
kinetics to the time-dependent Ginzburg-Landau equa-
tion such that it describes both displacive and order-disorder
transitions.

Our approach reveals two opposite cases. In the case of
the displacive type of phase transformations, the phase front

propagation is always steady. The same situation occurs for
the order-disorder transition in an ideal (defectless) crystal.

However, the behavior may radically change during order-
disorder transformations in a crystal containing pinning
defects. We show that, in this case, equations exhibit a bi-
furcation at a certain velocity of the isotherm V = V∗1. At
V∗1, the self-oscillatory motion of the phase front branches
off from the steady one. We argue that the stick-slip phase
front motion is a fingerprint of the order-disorder or hybrid
nature of the phase transformation. We predict that with the
further increase of the isotherm velocity, as soon as it achieves
a second critical velocity V = V∗2 (V∗2 > V∗1), the stick-slip
front motion vanishes, and at V > V∗2 the front only propa-
gates steadily. We establish a relation between the activation
energy ε and the second critical velocity V∗2. Based on our
results, we further discuss the observations of the stick-slip
front propagation in PbTiO3 and determine the correspond-
ing activation energy ε ≈ 0.59 eV. Also, we derive simple
analytical relations between the crystal parameters and the
front velocity and its critical values. Our results show that
measuring the phase front motion can become an additional
experimental tool for studying polymorphic phase transitions
and extracting their parameters.

The paper is organized as follows. Section II describes the
temperature distribution within the oven and introduces the
heat transfer equation as well as the time-dependent Ginzburg-
Landau one. In Sec. III we move to dimensionless variables
and derive the dependence of the velocity on the temperature.
In Sec. IV we derive an integro-differential equation describ-
ing the phase front motion. We find its solution describing
steady front motion. At the end of Sec. IV, we discuss four
possible scenarios of the front motion. Section V analyzes the
emergence of the self-oscillation motion mode. Section VI
discusses the application of our results to the experimental
findings obtained on PbTiO3. Finally, Sec. VII provides an
overall discussion of our results, and the paper is summarized
in Sec. VIII. To support our analysis, some essential steps
involved in our calculations are provided in four Appendixes.

II. EQUATIONS OF MOTION AND THERMAL REGIME
OF THE PHASE FRONT

A. The temperature distribution within the empty oven

The gradient furnace schematically displayed in Fig. 1(a)
maintains distinct values of the temperature, �1,2 at two butt
ends, 1 and 2 of the sample. These temperatures vary with
time T in a controlled fashion. Detailed description of the
furnace construction one finds in [1] and [5]. During the
measurements, one steadily decreases the temperatures �1,2

with the time:
∂�1,2

∂T
= −R, (1)

where R > 0 is the rate of the temperature decrease. Experi-
ments [2–9] take place during the regime in which the relation
(1) holds.

The Péclet number, Pe, for this configuration takes the
following form:

Pe = V d1

χ
, (2)
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FIG. 1. (a) Schematic view of the oven design. 1 and 2 indicate
the heaters with the temperatures �1 and �2 with �2 > �1. 3 shows
the glass substrate, and 4 indicates the crystalline sample. The gra-
dient of the color of its image reflects its temperature gradient. The
camera is shown by 5. 6 indicates the housing and 7 the optical win-
dows. (b) Schematic of the temperature distribution �furn(z) (i, right
vertical axis indicated by the right arrow) and the order parameter
η(z) (ii, left vertical axis, indicated by the left arrow) following the
temperature distribution with the lag H . Both propagate from left to
right.

where d1 is the sample length [Fig. 1(a)], V is the isotherm
velocity,

χ = k

cρ
(3)

is the temperature diffusivity of the crystal, k is its thermal
conductivity, ρ is its mass density, and c is the specific heat
of the sample. Let us denote a temperature gradient along
the furnace as J = ∇� and a spatial coordinate along the
sample, X . If Pe � 1, with good accuracy, one can regard
the temperature distribution within the furnace as a linear
function:

�furn(X, T ) = �b + J (X − V T ), (4)

and J = (�2 − �1)/d1. Let us stress that J describes the part
of the temperature gradient only generated by the gradient
furnace. It does not account for the heat evolving. We regard
J and R as parameters controlled in the experiment.

In this case, one determines the isotherm velocity V by the
ratio of the temperature rate and its gradient:

V = R

J
. (5)

In the present paper, we always assume that the inequality
Pe � 1 holds.

The expression (4) describes the isotherm propagating
from left to right with the constant velocity V [the line (i)
in Fig. 1(b)]. We selected the form of Eq. (4) such that
in the initial moment (T = 0), the sample has the binodal
temperature �b in the point X = 0. The propagation of the
isotherm forces the phase front to follow it [the line (ii) in
Fig. 1(b)]. The optical windows [Fig. 1(a), 7] provide one with
the registration of the front motion by the microscope or video
camera [Fig. 1(a), 5] and the backlighting.

The temperature �(X, T ) in the point X of the crystal in
the moment T consists of the furnace temperature �furn (4)
and its perturbation δ�(X, T ) caused by the heat evolved in
the course of the phase transformation. One finds

�(X, T ) = �b + J (X − V T ) + δ�(X, T ). (6)

In the next section, we discuss the equation for the tempera-
ture perturbation δ�(X, T ).

B. The time-dependent Ginzburg-Landau equation

One describes the propagation of the phase front along
the crystal forced by the temperature gradient by the system
of two equations. The first of them is the time-dependent
Ginzburg-Landau equation imposed on the order parameter
η = η(X, T ) [26]:

K
∂η

∂T
= G

∂2η

∂X 2
− α0[�(X, T ) − �c]η + βη3 − γ η5, (7)

where � = �(X, T ) is the temperature in the point X of the
sample, in the time moment T , �c is the Curie temperature,
and G > 0, α0 > 0, β > 0, and γ > 0 are the coefficients of
the Landau potential. Let us note that we have chosen the sign
of β in Eq. (7) such that β > 0 (7) describes the first-order
phase transformation. The classical Landau theory regards the
coefficients G, α0, β, and γ as temperature-independent ones;
we also accept this assumption.

Further, K > 0 is the kinetic coefficient. Let us recall that
one divides all structural phase transformations into two large
classes: of the displacive and order-disorder types. The kinetic
coefficient K in these classes dramatically differs from one
another.

In crystals belonging to the displacive transitions, atoms
move in potentials possessing a single minimum. Be-
low the transition point, the minimums of these potentials
continuously displace from their original positions in the
high-symmetry phase. One can regard the latter process as
a condensation of one of the optical phonon modes. For the
transitions of the displacive type, K = K0 ∼ 10−13s.

In contrast, during the transitions of the order-disorder
class, atoms of the elementary cell move within a multimini-
mum potential and have to overcome an energetic barrier, ε.
The frequency of their jump attempts has a typical value ∼K0.
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Taking this into account, we express the kinetic factor as
follows:

K = K0 exp

(
ε

kB�

)
, (8)

where kB is the Boltzmann’s constant. In this form, Eqs. (7)
and (8) describe both the order-disorder phase transformations
(ε > 0) as well as those of the purely displacive class (ε = 0).

The first-order phase transformation between two crys-
talline phases exhibits hysteresis. Within the hysteresis, two
phases η = 0 and η �= 0 coexist. One of them, say, η �= 0
is stable, while the phase η = 0 is metastable. The lower
spinodal bounds the hysteresis from below at the temperature
�low. The upper one limits it from above at � = �up. The
binodal lies between the spinodals: �low < �b < �up.

In this paper, we are interested only in the lower hysteresis
part ��h between the binodal and the lower spinodal: ��h =
�b − �low. Various phase transitions typically exhibit the
hysteresis from a few to a few tens of degrees, though, in
some solids (such as, e.g., martensites), ��h achieves several
hundred of degrees [27].

It is generally believed that the spinodal cannot be achieved
in statics. During the isotherm motion, however, one can
achieve a spinodal locally. In such a case, spinodal decom-
position will occur under the temperature gradient near the
phase front. The thin phase front then turns into a relatively
wide layer containing multiple nuclei of the phase η �= 0
surrounded by the phase η = 0.

On the one hand, achieving the spinodal in dynamics can
represent a significant scientific interest. On the other hand,
however, for the studies performed in [2–9] formation of such
a regime means a failed experiment. Indeed, in this case, the
abrupt phase boundary does not exist anymore and cannot
be followed. The heterophase layer that emerges in its place
exhibits strong fluctuations, excluding registration of its posi-
tion. For this reason, one selects experimental parameters in
such a way as to exclude this possibility. From the theoretical
point of view, if

Jd1 � ��h, (9)

the spinodal cannot be reached within the sample. Aiming to
address the experiments [2–9] in this paper, we assume that
the inequality (9) holds.

C. The thermal conductivity equation

The temperature δ�(X, T ) is subjected to the thermal
equation. If the Biot number

Bi = d2
3

χ
(10)

is small, it is correct to regard the sample as a thin rod.
One characterizes the latter by its longitudinal temperature
diffusivity χ . The second parameter characterizing the model
is the inverse time, , of the heat exchange between the sam-
ple and the environment (including the surrounding air and
substrate):

 = 2ks

d3cρ
, (11)

where ks is the heat transfer coefficient between the sample
and the surrounding, d3 is the sample height [Fig. 1(a)], and
d2 is its width [not shown in Fig. 1(a)], and we assume that
d3 � d1, d2 [28].

In general, the values of parameters χhigh and high in the
high-temperature phase differ somewhat from χlow and low

in the low-temperature one. We neglect, however, their differ-
ence and assume χhigh = χlow ≡ χ and high = low ≡ .

Assuming that both (2) and (10) hold one finds that the
relation (6) and the thin rod approximation are valid. The heat
transfer equation takes the following form:

∂δ�

∂T
= χ

∂2δ�

∂X 2
− δ� + �V

c
δ[X − Xf(t )]. (12)

Here � is the heat evolving due to the phase transition in the
point at the current phase front position X = Xf, and δ(z) is the
δ function. Making use of Landau theory of phase transitions
[26] one finds

� = 3α0β

8γ
�b. (13)

Equations (7) and (12) provide the complete description of
the forced propagation of the phase boundary.

III. DIMENSIONLESS EQUATIONS OF THE FORCED
DYNAMICS OF THE PHASE FRONT

A. Rescaling

Let us introduce several dimensionless variables and pa-
rameters. Below we use the dimensionless coordinate x and
time t defined as follows:

x = X ×
(



χ

)1/2

, t = T . (14)

Further, we use the dimensionless dependent variables, such
as temperature θ (x, t ), its perturbation caused by the heat
evolving δθ (x, t ), the phase boundary position xf(t ), and the
spatial lag h(t ) between the isotherm and the phase front. They
correspond to the original temperature �, its perturbation δ�,
the phase front position Xf, and lag H :

θ (x, t ) = �(X, T )

�b
, δθ (x, t ) = δ�(X, T )

�b
,

xf(t ) = Xf(T )

(


χ

)1/2

, h(t ) = H (T )

(


χ

)1/2

. (15)

One further introduces 11 dimensionless parameters

v = V√
χ

, j = J

�b

√
χ


, r = R

�b
,

λ = �

c�b
, θc = �c

�b
, (16)

φ = ε

kB�b
, ω = �


, κ = K, κ0 = K0,

g = G

χ
, n = 0.3

βK0

α0�b

(
χ

Gγ

)1/2

. (17)

In the following, the capital letters stay for the original
values, and the small letters for the rescaled, dimensionless
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ones. In particular, x, v, j, r, λ, φ, ω, κ , and g are the rescaled
dimensionless coordinate along the crystal, velocity, temper-
ature gradient, temperature rate, parameter characterizing the
temperature rise at the phase boundary, energetic barrier nor-
malized by kB�b, frequency, and coefficients of the rescaled
Ginzburg-Landau equation, respectively.

The exceptions are the order parameter η and the coeffi-
cients of the Landau potential α0, β, and γ . We did not rescale
these parameters and used the small letters to denote their
original values throughout the paper.

Finally, the dimensionless parameter n plays an essential
role in our equations below. Let us point out that n is a compo-
sition of three dimensionless parameters: α0�b, K0

√
χ/G,

and β/
√

γ . However, in the present theory, one meets them
only as the combination entering n.

Let us note that the extraordinary complexity of this prob-
lem is related to the fact that it depends on 11 dimensionless
parameters [(16) and (17)], let alone Pe and Bi.

The rescaled equation for the order parameter one obtains
straightforwardly by substitution the replacements (14), (16),
and (17) into Eq. (7).

One finally comes to the rescaled equations in the follow-
ing form:

κ
∂η

∂t
= g

∂2η

∂x2
− α0�b[1 + j(x − vt ) + δθ (x, t ) − θc]η

+ βη3 − γ η5, (18)

where η is now regarded as η(x, t ). This equation oper-
ates with the rescaled time t and coordinate x, but we did
not rescale the order parameter η. The factor α0�b[1 +
j(x − vt ) + δθ (x, t ) − θc] in front of η in (18) comes from
the factor α0[�(X, T ) − �c] of Eq. (7). It originates from
the temperature-dependent coefficient α = α0(� − �c) of the
Landau potential. Further, j is the rescaled temperature gra-
dient, and j(x − vt ) describes the temperature distribution
propagating along the sample. δθ (x, t ) is the increase of the
rescaled temperature due to the liberated transformation heat,
and θc is the rescaled Curie temperature. Generally, the phys-
ical sense of the terms of Eq. (18) is the same as that of the
corresponding terms of (7).

Details on the further derivation of the rescaled thermal
equation imposed on the rescaled temperature δθ = δθ (x, t )
are found in Appendix A. The rescaled equation reads

∂δθ

∂t
= ∂2δθ

∂x2
− δθ + λẋf(t )δ[x − xf(t )], (19)

where ẋf(t ) ≡ dxf(t )/dt .

B. Equation of motion of the phase front

The order parameter η(x, t ) = η[x − xf(t )] obeys the dy-
namic equation (18).

The first step of our derivation is to formulate the
equation imposed on the phase front’s coordinate xf(t ).
To derive an approximate, though accurate, equation on
xf(t ), let us use the approach of Gordon [21]. Within this
approach, one expresses the phase front velocity, ẋf, as

follows:

ẋf = β

κ

√
g

γ

1 + √
1 − 4ζ − 8ζ√

6(1 + √
1 − 4ζ − 2ζ )

≈ 3.32
β

κ

√
g

γ

(
3

16
− ζ

)
, (20)

where we introduced the following dimensionless parameter
ζ :

ζ = α0γ

β2
(� − �c). (21)

Let us mention that for the Ginzburg-Landau equation (7),
the hysteresis is at 0 � ζ � 1/4, and the binodal position is
ζ = 3/16. More details on the phase diagram can be found
e.g., in [26]. The solution (20) is valid at 0 � ζ � 3/16 be-
tween the lower spinodal (ζ = 0) and the binodal (ζ = 3/16).
Let us note that the difference between the exact and approx-
imate expressions is at most 14%, and both expressions turn
into zero at the binodal at ζ = 3/16, as it should be. One finds

ẋf = ς (�b − �), ς ≈ 3.32α0
√

gγ

βκ
, (22)

where one can regard ς (�b − �) as a driving force for the
phase front.

Taking (8), (15), and (17) into account one finds the front
velocity ẋf(t ) in the following form:

ẋf(θ ) = 1

n
(1 − θ ) exp

(
−φ

θ

)
. (23)

Let us orient the x axis along the normal to the phase front
plane coinciding with the temperature gradient’s direction. Let
us further regard the temperature at the phase boundary as
θf = θf(xf, t ):

θf(xf, t ) = 1 + j[xf(t ) − vt] + δθ. (24)

Substituting this into (23), one finds the equation of the
front motion in the following form:

ẋf(t ) = −1

n
{ j[xf(t ) − vt] + δθ}

× exp

{
− φ

1 + j[xf(t ) − vt] + δθ

}
. (25)

Together (25) and (19) describe the nonisothermal propaga-
tion of the phase front.

We will analyze this system of equations in the following
sections.

IV. NONISOTHERMAL PROPAGATION
OF THE PHASE FRONT

A. Integro-differential equation of motion of the phase front

Solving (19), we obtain the temperature perturbation
δθ (xf(t ), t ) ≡ δθ (t ) in terms of the phase front velocity ẋf(t )
as follows:

δθ (t ) = λ

∫ ∞

0
dt ′

∫ ∞

−∞

dq

2π
ẋf(t − t ′)

× exp{−(q2 + 1)t ′ + iq[xf(t ) − xf(t − t ′)]}, (26)
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where i is the imaginary unit. The derivation of this expression
the reader finds in Appendix B.

Substitution of (26) into Eq. (25) yields the equation of
motion of the phase front:

ẋf(t ) = −A(x, t )

n
[ j[xf(t ) − vt] + J(x, t )], (27)

where J(x, t ) and A(x, t ) are expressed as follows:

J(x, t ) = λ

∫ ∞

0
dt ′

∫ ∞

−∞

dq

2π
ẋf(t − t ′)

× exp{−(q2 + 1)t ′ + iq[xf(t ) − xf(t − t ′)]}, (28)

A(x, t ) = exp

{
− φ

1 + j[xf(t ) − vt] + J(x, t )

}
. (29)

Equations (27)–(29) represent a highly nonlinear integro-
differential equation with retardation.

B. The steady motion of the phase front

Let us first assume that the isotherm propagates with the
dimensionless velocity v > 0, while the phase front steadily
follows it with the dimensionless lag h0 > 0:

xf(t ) = vt − h0. (30)

In this case, integrals in (26) are solved exactly yielding

δθ = δθ0 = vλ√
v2 + 4

. (31)

Let us define the reduced temperature θs on the steadily
propagating front as θf (24) with xf obeying Eq. (30):

θs = 1 − jh0 + δθ0. (32)

Using (23) one obtains the equation

v = 1

n
(1 − θs) exp

(
− φ

θs

)
. (33)

One can regard it as the dependence of θs on v and φ in the
parametric form. Its visualization is displayed in Fig. 2(a).
One observes that θs is a double-valued function of v and φ.
Its smaller value corresponds to the front running at a larger
distance, while the higher value is at a smaller distance from
the isotherm.

Regarding the cross section of this surface at a fixed φ, one
obtains the curve v = v(θs) shown by the solid line in Fig. 2(b)
with the maximum in the point

θmax = 1

2
(
√

φ2 + 4φ − φ),

vmax = 1

n
exp

(
− φ

θmax

)
(1 − θmax). (34)

One, further, needs an analytical expression θs = θs(v) but
cannot solve Eq. (33) exactly. In the following we are inter-
ested only in the ascending branch of the curve (33) shown in
Fig. 2(b). One observes that the expression

v ≈ vmax exp[−p(φ)(θs − θmax)2] (35)

accurately approximates the ascending behavior of v = v(θs)
[as is shown by the dashed line in Fig. 2(b)], provided the

FIG. 2. Dependence of the temperature at the phase front θs on
v and φ. (a) A 3D image showing θs = θs(v, φ). (b) The solid line
displays the cross section of the surface (33) shown in (a) by the
plane φ = 10 showing v = v(θs ). The dashed line demonstrated the
run of the expression (35) accurately approximating the expression
(33) at the ascending branch.

function p(φ) reads as follows:

p(φ) ≈ 5.8φ − 7.2.

The latter we obtained by the least square fitting within the
physically reasonable interval of the energy barriers 0.3 eV <

ε < 0.8 eV. According to (17) with �b = 766K (see Table I
below) it yields the interval 5 � φ � 12.

Using (35), one finds the explicit expression θs(v, φ) at the
ascending branch:

θs(v, φ) ≈ θmax −
[

1

p(φ)
ln

(vmax

v

)]1/2

. (36)

Using (32) one finds the lag h0 during the steady propaga-
tion at the ascending branch:

h0 = 1

j

[
1 − θs(v, φ) + vλ√

v2 + 4

]
, (37)

where θs(φ) is defined by (36).

C. Scenarios of the transformation dynamics

Figure 2(b) displays the v = v(θs) dependence comprising
the ascending branch (to the left from the point of maximum)
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TABLE I. Experimental data for PbTiO3.

α0 (K−1) β ( cm3

erg ) γ ( cm6

erg2 ) �b (K) �low (K)
3.67 × 10−4 [4,29] 3.58 × 10−13 [29] 2.14 × 10−23 [29] 766 [4,29] 741 [4]

G (cm2) K0 (s) d1 (mm) d2 (mm) d3 (mm)

1.6 × 10−16 [7] 1.0 × 10−13 2 [3,6,7] 1 [6,7]
0.2 [6,7]
0.03 [3]

µ (g/mol) ρ (g/cm3) � (erg/g) λ c ( erg
gK )

3.03 × 102 7.52 [30] 2.14 × 108 [31] 0.067b 4.2 × 106 [33]

k ( erg
cmgs ) χ (cm2/s) V∗1 (μm/s) V∗2 (μm/s) V ( exp )

max (µm/s)
4 × 105 [32] 0.019a 110 [5] 500 [5] 500c

aCalculated according to (3).
bCalculated according to the expression from (16).
cObtained by us by fitting of the experimental data taken from [6] as shown in Fig. 8.

and the descending one. Qualitatively, it has a form closely
resembling the one that has been first analyzed by Shklovskii
[14]. For the explosive crystallization, Kurtze, van Saarloos
and Weeks demonstrated that the ascending branch gives rise
to the stick-slip phase front propagation [15–18].

The kinetics of the first-order phase transformation be-
tween crystalline phases essentially differs from the explosive
crystallization due to its interplay with hysteresis. The phase
front discussed here can exist only if the sample is in the
lower hysteresis part �low � � � �b. The combination of the
latter inequality with the specific dependence of the velocity
on temperature shown in Fig. 2(b) defines the variety of the
scenarios of the front propagation. We qualitatively address
these scenarios below in the present section.

We derived the relation between the rescaled phase front
velocity ẋf and rescaled temperature θ (23). For the discussion
that follows, we write it in original variables:

Ẋf(�) = α0�b
√

Gγ

βK0

(
1 − �

�b

)
exp

(
− ε

kB�

)
. (38)

1. The displacive transitions

In the case of the displacive transition (ε = 0) the function
Ẋ = Ẋ (�) (38) becomes linear [Fig. 3(a)]. In this case, Ẋf(�)
represents an interval of the straight line [Fig. 3(a) ii]. It turns
into zero at � = �b [Fig. 3(a) i] and ends up at � = �low

[Fig. 3(a) iii].
As the first step of the analysis, let us assume that the

sample is subjected to the motionless temperature gradient
R = 0 yielding V = 0. In this case, the phase front temper-
ature coincides with the isotherm � = �b, and its velocity is
Ẋ = 0. This state is shown by the arrow (i) in Fig. 3(a).

Next, let us assume that the isotherm moves forward with
the velocity V , and the front falls back, allowing the isotherm
to run forward over the lag H0. The lag “translates” into
overcooling. At a certain lag, the phase front becomes over-
cooled enough to propagate, keeping pace with the isotherm.
This state of motion is shown by (ii) in Fig. 3(a).

If one increases the isotherm velocity V further, the point
showing the state of motion displaces to the left, upwards
along the line (ii) in Fig. 3(a).

2. The order-disorder transitions (ε > 0)

In this case, the curve Ẋ = Ẋ (�) (38) exhibits maximum
at � = �max < �b as is shown in Figs. 3(b)–3(d). The two
cases are possible in this situation: Fig. 3(b) �max < �low and
Figs. 3(c) and 3(d) �max > �low.

The case (b) �max < �low. If �max < �low and ε > 0,
the front velocity Ẋ (�) exhibits ascending and descending

FIG. 3. Illustration for possible scenarios of the phase front prop-
agation. (a) The case of the displacive transitions (ε = 0). Panels
(b), (c), and (d) correspond to the order-disorder transitions (ε > 0)
and demonstrate possible ways of the hysteresis interplay with the
velocity dependence on temperature Ẋ (�). Panel (b) illustrates the
phase front propagation if �low > �max. Panels (c) and (d) display
the opposite case: �low < �max. Panel (c) attributes to the phase front
motion in a defect-free crystal. Panel (d) relates to the phase front
initially pinned down by surface defects. In all the panels, (i) shows
the point of the binodal. At this point the front is at rest V = 0. (ii)
indicates the state of the motion with V > 0. (iii) shows the point
�low. (iv) points out the ascending branch, (v) marks the point of
maximum of the curve, and (vi) shows the place where the front
achieves the second critical velocity V∗2. The scenarios are described
in the text.
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branches separated by the point of maximum at � = �max.
Figure 3(b) shows this situation. The lower spinodal point
finds itself at the descending branch indicated by the arrow
(iii).

At the zero isotherm velocity V = 0 one finds � = �b

and Ẋ = 0 [arrow (i) in Fig. 3(b)]. Increasing the isotherm
velocity forces the front to fall back over the lag H0 behind
the isotherm. The latter gives rise to the local overcooling
until the front’s velocity equals the isotherm velocity V [arrow
(ii) in Fig. 3(b)]. One concludes that the motion takes place
only at the descending branch. Here any increase in the front
velocity gives rise to an increase in its temperature. The latter
decreases its velocity. If the front velocity decreases, its tem-
perature decreases, increasing its velocity. Thus, the negative
feedback takes place at the descending branch. Therefore, the
motion at this branch exhibits no instability.

With the further increase of the isotherm velocity V , the
front finds itself close to the spinodal point [arrow iii in
Fig. 3(b)] with the effect of the spinodal decomposition like
the one mentioned previously (Sec. II B].

The case (c) �max > �low, an ideal crystal. If �max >

�low and ε > 0 the Ẋ (�) dependence exhibits a maximum
[Fig. 3(c)] and the lower spinodal hits the curve at the ascend-
ing branch [arrow iii in Fig. 3(c)].

As in the previous cases, at V = 0, one finds � = �b, and
the front is at rest (Ẋ = 0), the isotherm staying at the left
butt end of the crystal. The arrow i in Fig. 3(c) indicates this
state. As soon as the isotherm starts slowly moving (V > 0),
the phase front easily slips off from the butt end, staying at the
distance H0 behind the isotherm. The slowly moving isotherm
is shown by ii at the descending branch in Fig. 3(c).

The form of the curve shown in Fig. 3(c) does not suggest
that the phase front can move with the velocity V > Vmax

corresponding to the maximum point [v at Fig. 3(c)] of Ẋ (�)
curve. Indeed, despite the physical possibility of driving the
isotherm with any velocity, no temperature value corresponds
to V > Vmax. The latter contradiction resolves as follows. The
form Ẋ (�) shown in Figs. 3(b)–3(d) we obtained within the
framework of Gordon’s solution. One derived the latter using
the automodel assumption: η(X, T ) = η(X − V T ) [21], de-
scribing the translation of the order parameter distribution as
a whole from left to right with the velocity V . The absence of
the states of motion with V > Vmax means that at V > Vmax,
the automodel solution fails. The front, nevertheless, also
exists at V > Vmax. However, in addition to its translation from
left to right, a simultaneous relaxation occurs here: η(X, T ) =
η(X − V T, T ). One concludes that a new type of bifurcation
must occur somewhere at V � Vmax where the automodel type
of behavior transforms into a nonautomodel one. Looking
ahead, let us point out that the bifurcation from the self-
oscillating motion to the steady one takes place shortly before
the velocity achieves the value V = Vmax, as one can see from
Fig. 5 (ii) and (iii). The complete solution of the problem
accounting both for the automodel and nonautomodel behav-
iors should show a continuous curve also at Ẋ > Vmax, the
velocity increasing with decreasing the temperature. We do
not consider here the nonautomodel regime.

One concludes that in the ideal crystal, the motion’s state
always appears at the descending branch, the feedback is
always negative, and self-oscillations never occur.

The case (d) �max > �low, a nonideal crystal. Let us now
consider a crystal with ε > 0 and �max > �low containing
pinning defects at the left butt end surface of the crystal able to
arrest the phase front. To break loose from the pinned state, the
thermodynamical driving force, ∼�b − � > 0, must reach a
critical value. The latter “translates” into a considerable value
of the lag H0, arranging the possibility that the state of the
front motion corresponds to the ascending branch of the curve
[arrow iv Fig. 3(d)]. At small velocities [arrow ii in Fig. 3(d)],
the phase front propagates steadily analogously to those we
described in cases (a)–(c) with a somewhat more significant
lag H0. The self-oscillations start as soon as V achieves the
first critical velocity V∗1 [point iv in Fig. 3(d)]. With the in-
crease of the isotherm velocity, the self-oscillations gradually
assume a relaxational character. The latter exhibits a period
comprising a time interval during which the motion is slow.
The fast motion interval follows the slow one [34]. During the
former interval, the phase front falls back behind the isotherm.
It rapidly accelerates to catch up with it during the latter one.
Upon achieving the second critical velocity V∗2 [point vi in
Fig. 3(d)], the stick-slip motion vanishes.

Let us stress the difference between cases (c) and (d). In
case (c) of the defect-free crystal, at the beginning of the mo-
tion (small V ), the front finds itself at the descending branch
[ii in Fig. 3(c)]. In contrast, in crystals with surface defects
(case d), they pin the front down, forcing it to the ascending
branch [ii in Fig. 3(d)]. Thus, pinning plays a crucial role. Let
us also mention that distributed weak bulk pinning defects
have the same effect on the front motion as discussed in
Sec. VII B 3.

Below, we focus on case (d) and study the formation of the
self-oscillating motion at the ascending branch.

V. THE OSCILLATORY INSTABILITY OF THE STEADY
MOTION

A. Condition of instability

In the following, let us look for the solution xf(t ) in the
following form:

xf(t ) = vt − h0 + h1(t ), (39)

where we will assume the dimensionless variable h1(t ) to be
small: h1(t ) � 1, while h0 satisfies (37). Let us rewrite the
integro-differential equation (27) in terms of h1(t ). It takes the
following form:

L̂h1 = N (h1). (40)

Here N (h1) comprises all terms nonlinear in h1(t ) and its
derivatives, and N (0) = 0. We do not use it in this paper;
therefore, we do not write its cumbersome explicit form here.

L̂ is the linear integro-differential operator acting on h1(t )
defined as follows:

L̂h1 = μv−1ḣ1(t ) − jh1(t ) − λ

2π

∫ ∞

0
dt ′

∫ ∞

−∞
dq

× �(h1, ḣ1, t, t ′, q) exp[−(q2 + 1 − iqv)t ′], (41)

where

�(h1, ḣ1, t, t ′, q) = iqv[h1(t ) − h1(t − t ′)] + ḣ1(t − t ′).

014114-8



SELF-OSCILLATORY INSTABILITY OF THE DRIVEN … PHYSICAL REVIEW E 108, 014114 (2023)

Furthermore, we introduced a dimensionless parameter μ:

μ = θs exp
(

φ

θs

)
φ − φθs − θ2

s

. (42)

One can see that μ is positive at θs < θmax and negative other-
wise. Using the approximate solution (36), one finds

μ ≈ 1

2
√

p(φ) ln (vmax/v)
. (43)

Equation (40) has the trivial solution h1(t ) ≡ 0.
As soon as the parameters j, λ, and v take such values that

the equation

L̂ψ = 0 (44)

has a nontrivial solution ψ , Eq. (40) exhibits a bifurcation
[35]. The eigenfunction ψ of Eq. (44) has the following form:

ψ (t ) = exp(iωt ), (45)

where ω is the dimensionless frequency introduced in
(17). Substitution of (45) into (44) yields the relation
imposed on the parameters v, μ, j, and λ, which one
should regard as the equation to determine the eigenvalue
of Eq. (44):

�(ω, j, λ, v) = 2 j

λ
− 2i

μω

λv
+ v2 + 2iω√

v2 + 4iω + 4

− v2

√
v2 + 4

= 0. (46)

As soon as the equality (46) holds at some frequency value
ω0, the nonlinear integro-differential equation (40) exhibits
a bifurcation. At this point, the trivial solution h1 = 0 be-
comes unstable, and the periodic solution h1(t ) ∼ exp(iω0t )
branches off from the trivial one [35].

The existence of the solution of (46), however, imposes a
relation on the parameters j, λ, φ, and v. In the parametric
space, this relation specifies a bifurcation hypersurface. Below
we address the analysis of the bifurcation condition (46).

B. Analysis of the instability conditions

1. The spectral equations

One observes that (46) is a complex equation, and, there-
fore, it is equivalent to a system of two real ones: f1 =
Re[�(ω, j, λ, v)] and f2 = Im[�(ω, j, λ, v)]. Expanding (46)
in series at |ω| � 1, one finds the following equations:

f1(ω) ≈ j

λ
− (v2 − 8)

(v2 + 4)5/2 ω2 + 5(3v2 − 16)

(v2 + 4)9/2 ω4 = 0

f2(ω) ≈
(

4

(v2 + 4)3/2 − μ

λv

)
ω + 4(v2 − 6)

(v2 + 4)7/2 ω3 = 0.

(47)

By direct comparison of the curves shown in Fig. 4 with plots
of Re[�(ω)] and Im[�(ω)] (not shown) at various ranges of
ω, one finds that up to ω � 10 the curves Re(�) and Im(�)
have qualitatively the same form. Quantitatively they are rea-
sonably close to those for f1(ω) and f2(ω). This fails above
ω = 10. Thus, up to ω ∼ 10 Eqs. (47) still give a reasonable
approximation of (46).

FIG. 4. The run of the curves f1(ω) (solid, blue) and f2(ω)
(dashed, red). (a) The generic case with the different roots of the
equations f1(ω) = 0 and f2(ω) = 0. (b) The case of the coinci-
dence of the root of f2(ω) = 0 with the smaller root ω1 of the
equation f1(ω) = 0. (c) The coincidence of the root of the equa-
tion f2(ω) = 0 with the larger root ω2 of the equation f1(ω) = 0.
The dot-dashed line indicates the root position.

2. Relations between f1(ω) and f2(ω) leading to the bifurcation

It is easy to plot f1(ω) and f2(ω), helping one to understand
the behavior of Eqs. (47) qualitatively.

Figure 4(a) displays a generic view of f1(ω) and f2(ω)
behavior as the functions of the dimensionless frequency ω

when j, λ, and v are not related to one another. In this case,
(46) as well as (47) have no solution.

Two examples of the situation with the solution of the
system of Eqs. (47) are shown in Figs. 4(b) and 4(c). One con-
cludes that to give a solution to Eq. (46), the functions f1(ω)
and f2(ω) must exhibit at least one pair of roots ±ω0 �= 0
each.

The root ω = 0 of the system (47) corresponds to the
formation of the constant overcritical solution, independent
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FIG. 5. Dependence of the dimensionless isotherm velocity of
the bifurcation v∗ on the dimensionless temperature gradient j. The
solid line corresponds to φ = 10, the dot-dashed line to φ = 11, and
the dashed one to φ = 12. One separates the lower, first bifurcation
velocity v∗1 indicated by (i) and the upper, second one v∗2 indicated
by (ii). The periodic solution takes place only at v∗1 � v � v∗2. The
upper branch of the curve φ = 10 ends up in the point v = vmax

indicated by (iii). In the other cases, such points also exist, situated
outside of the field shown in the image.

of t . The formation of such a solution does not describe any
bifurcation, and we disregard it.

The bifurcation condition requires that two equations,
f1(ω0) = 0 and f2(ω0) = 0, are satisfied at some value of the
frequency ω0 �= 0. That is, a pair of the roots ±ω0 of f1(ω)
must coincide with those of f2(ω).

Figures 4(b) and 4(c) show the particular cases of the
coincidence of the roots. The latter imposes a condition on
the parameters j, λ, v, and φ.

C. The critical velocities

Solving the system (47) one obtains two pairs of solutions:

j∗
λ

= 4(v2 − 8)(v2 − 6)(v2+ 4)A − 5(v2+ 4)5/2(3v2 −16)A2

16(v2 − 6)2

ω2
∗ = (v2 + 4)2

4v(v2 − 6)

[
(v2 + 4)3/2

2λ
√

p(φ) ln(vmax/v)
− 4v

]
. (48)

For brevity, we introduced A as follows:

A = 1

2λv
√

p(φ) ln(vmax/v)
− 4

(v2 + 4)3/2
.

In principle, the first equation (48) yields the value of the
dimensionless temperature gradient j∗ corresponding to the
bifurcation at a given isotherm velocity v. The second equa-
tion (48) gives the frequency of the solution (45) branching
off in this point.

In experiments, however, the convenient parameter con-
trolling the bifurcation is the isotherm velocity v, the
bifurcation taking place at v = v∗. One can consider the first
Eq. (48) as the dependence v∗ = v∗( j/λ) in the parametric
form. Figure 5 shows such a dependence for φ = 10, 11 and
12.

One observes that each curve v∗( j) has a form of a hairpin.
One distinguishes its lower branch, v∗1, and the upper one,
v∗2. In the following, we refer to them as the first and the
second critical velocities. In Fig. 5 the former and the latter are
indicated by (i) and (ii) correspondingly. The periodic solution
(45) is possible only within the interval v∗1 � v � v∗2.

Further, the upper branch ends up in the point v∗2 = vmax

(34). This point is visible only in Fig. 5, at the curve φ =
10 indicated by the arrow (iii). The upper branch does not
continue beyond this limit point. In the cases φ = 11 and
12, such limit points also exist at the upper branches of the
corresponding curves. However, they are situated outside the
image and, therefore, are invisible in Fig. 5.

At v∗1 < vmax/10, in the region indicated by the arrow
(i) Fig. 5, the first critical velocity exhibits the asymptotic
behavior:

v∗1 ≈ (m1 + m2φ
5/2) j−0.574, (49)

where m1 ≈ 2.04 and m2 ≈ 3.8 × 10−3. We obtained this
approximate analytical expression by numerical least square
fitting as described in Appendix C in detail. Returning to
the original variables (16) and (17) one finds the following
expression for the first critical velocity:

V∗1 ≈ (m1 + m2φ
5/2) × 0.787�0.574

b χ0.213

J0.574
. (50)

From our solution Fig. 5, one can notice that the relation
v∗2 ≈ vmax gives a good approximation for v∗2. In the origi-
nal variables, the second critical velocity takes the following
form:

V∗2 ≈
√

χ

n
(φ + 2 −

√
φ(φ + 4)) exp

[
− 2φ√

φ(φ + 4) − φ

]
(51)

taking place at

�max = �b

2
(
√

φ(φ + 4) − φ). (52)

As we described in Sec. IV C at V > Vmax the conditions of
bifurcation (46) are not valid anymore. Therefore, it is this
point that corresponds to the second critical velocity V∗2 ≈
Vmax at which the stick-slip motion vanishes.

D. The necessary conditions of the bifurcation

Several inequalities yield the necessary conditions for
bifurcation. They are derived in Appendix D. The most im-
portant is the following one:

v � 2
√

2. (53)

Its consequences we discuss here.

1. The second critical velocity and the restriction placed on �

As we have already discussed in Sec. IV C, the bifurcation
takes place in the automodel regime, that is, at v � vmax. The
latter requires vmax > 2

√
2. Together with (51) this yields the

condition

n � 1

4
√

2
(φ −

√
φ2 + 4φ + 2) exp

(
− 2φ√

φ2 + 4φ − φ

)
.

(54)
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FIG. 6. The bifurcation occurs only within the plane’s shaded
domain (φ, n).

Figure 6 shows the shaded domain in which the inequality
(54) holds. According to (17) the condition (54) imposes the
limitation on the value of , namely,

 � 0.35

(
α0�b

K0β

)2
γ G

χ
(φ −

√
φ2 + 4φ + 2)2

× exp

(
− 4φ√

φ2 + 4φ − φ

)
.

The latter conclusion qualitatively agrees with the experimen-
tal observation on PbTiO3 reported in [4] according to which
with passing from glass to metallic substrate (that is, from
a smaller to a considerably large ), the jerky phase front
motion vanishes.

The necessary condition for the instability related to
hysteresis. One can formulate another significant inequal-
ity restricting the phase transformation’s thermal parameters,
making the bifurcation possible. It is related to the condition
of scenario (d): �max > �low. One can rewrite it in a more
convenient form,

(�b − �max)/��h > 1. (55)

Using (52) one finds

�b − �max

��h
= �b

2��h
[φ + 2 −

√
φ(φ + 4)]. (56)

Recalling the φ definition (17) and making use of (56) and
(55) one separates out the domain in the space (�b,��h, ε)
where the stick-slip instability is possible. It is shown in
Fig. 7(a). The necessary condition of the bifurcation (55)
holds in its shaded domain.

Figure 7(b) shows the cross sections of the surface dis-
played in Fig. 7(a) by the planes �b = 100, 300, and 700 K.
The domain below the corresponding curve admits the bifur-
cation.

2. The first critical velocity

Let us apply the inequality (53) to the first critical velocity.
If v∗1 > 2

√
2 and the bifurcation is supercritical (soft), the

FIG. 7. (a) The domain of the parametric space (�b, ��h, ε)
where the scenario (d) can take place. �b and ��h are given in
degrees Kelvin, and ε is in electronvolts. (b) Cross sections of the
3D domain are shown in (a) by the planes �b = 100 K, 300 K, and
700 K.

solution (48) holds, and the first critical velocity is accurately
described by the approximate expression (50).

If (m1 + m2φ
5/2) j−0.574 < 2

√
2, the bifurcation can take

place only at v = v∗1 = 2
√

2. In this case, the bifurcation
becomes subcritical (hard). One describes the first critical
velocity during this subcritical bifurcation as follows: v∗1 =
2
√

2, yielding

V∗1 = 2
√

2χ. (57)

Let us observe that the expression for the first critical
velocity is independent of any parameters of Landau potential
or, equivalently, anyone characterizing the Ẋ (�) curve. More
precisely, its single relation to this curve is that this instability
occurs only if the process belongs to the ascending rather than
the descending branch.

Thus V∗1 in (57) depends only on χ and  defining the heat
removal rate. The latter points out the instability mechanism
at V = V∗1. Namely, provided at the ascending branch, insta-
bility occurs as soon as the heat has no time to evacuate.
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E. The role of the activation energy

In Appendix D we give rigorous proof that the bifurcation
with the formation of the self-oscillating solution is possible
only for μ > 0. Since at φ = 0 one finds μ = −n < 0, the
inequality μ > 0 can hold only at ε > 0. The value φ = 0 cor-
responding to ε = 0 describes the transitions of the displacive
type. The latter qualitatively differs from the case φ > 0 (ε >

0) characteristic for the order-disorder transformations.
This brings us to the most important conclusion of the

present work: the stick-slip propagation of the phase front is
the fingerprint of the order-disorder phase transition.

VI. COMPARISON OF THE THEORETICAL
AND EXPERIMENTAL RESULTS

A. Displacive versus order-disorder transitions

For many years, research has insisted that perovskites (in-
cluding the lead titanate) exhibit the phase transformation
of the displacive type [36,37]. During the last few decades,
however, modern experimental techniques have enabled one
to unequivocally establish a pronounced order-disorder com-
ponent in many materials which were previously believed to
exhibit the displacive transitions. The order-disorder transi-
tion has been revealed, for example, in perovskites, such as
BaTiO 3 [38–41], KNbO3 [40–42], PbZrO3 [43], and KCaF3

[44]. It has also been discovered in some ferroelectrics-
semiconductors, such as GeTe [45], PbTe, PbS [46], and SnTe
[47] as well as in borocites [48]. Though the microscopic
transition mechanisms in these materials are still a subject of
vivid debates, the common opinion is that the order-disorder
component plays a vital role in these transformations. For
this reason, all these transformations of the order-disorder or
hybrid types inevitably involve activation processes.

In particular, the order-disorder nature has been discov-
ered in the classical ferroelectric PbTiO3 [49]. As such,
this material must exhibit nonzero activation energy. We
discuss it in detail in Sec. VI B below. NaNbO3 also ex-
hibits the order-disorder phase transformation [50] with ε ≈
0.5 eV [51]. These findings agree with our conclusion that the
self-oscillatory phase front motion can occur only during an
order-disorder or hybrid transition.

The above discovery makes one expect more other materi-
als exhibiting such a feature. For such materials, one can use
the model developed in the present paper as an alternative ap-
proach to proving the existence of a suspected order-disorder
component. Indeed, the rise of the oscillational dynamics of
the phase front makes sure that the transition inevitably pos-
sesses, at least, an order-disorder component. Also, our results
offer an accurate method for independent measurement of the
activation energy’s value. We discuss this approach in the next
section.

B. Experiments with PbTiO3 in the light of the present theory

In experiments [2–8] the key material parameter  has not
been measured, and hinders the possibility of comparing these
observations with our results.

As a work around, on the one hand, from the available
experimental data, we can estimate the possible value of .
On the other hand, for one of the experimentally measurable

FIG. 8. Examples of the relaxational oscillations of the phase
front motion in PbTiO3. Dots are taken from the experiment [6].
The legend gives the isotherm velocity. (i) indicates the slow and (ii)
the fast motion phase. The solid lines (a) and (b) fit the high-speed
regime of the front motion. Fitting of (a) yields Ẋ ≈ 544 µm/s, and
(b) gives Ẋ ≈ 556 µm/s.

values, we have found a theoretical expression containing no
. The latter enables us to estimate the activation energy of the
order-disorder component using available experimental data.

1. Parameters of PbTiO3

In Table I we collected parameters of PbTiO3 available
from various experiments.

C. The bifurcation in PbTiO3 is subcritical

Using the parameters summarized in Table I and assuming
that the bifurcation is soft, we failed to solve Eqs. (48) nu-
merically or graphically. To the best of our knowledge, such
a solution with the parameters from Table I does not exist. In
the following, we treat the bifurcation as a subcritical one. The
latter means that Eqs. (48)–(50) are not applicable. Instead one
should use (51) and (57).

1. On the relation of V∗2 to Vmax

On the one hand, a sequence of measurements with in-
creasing isotherm velocities reported in [5] enables one to
roughly estimate V∗1 and V∗2 in PbTiO3. They revealed that
the stick-slip motion first shows up at the isotherm velocity of
about 100 µm/s. This value, thus, approximately corresponds
to the first critical velocity. With further velocity growth, the
jerky motion vanishes as soon as the isotherm velocity reaches
about 500 µm/s. The latter value, thus, corresponds to the
second critical velocity.

On the other hand, away from the bifurcation point, the
self-oscillations necessarily take the relaxational character
[34]. Figure 8 displays the experimental points of the phase
front position Xf vs time T from the experiment of Dec [6]. It
gives two typical examples of the relaxational oscillations of
the phase front motion.

The relaxational process consists of a periodic repetition of
two phases of motion: starting with the slow one (Fig. 8 i) and
followed by a fast one (Fig. 8 ii). The solid lines (a) and (b)
shown in Fig. 8 fit the fast relaxational phase by the formula
Xf = X0 + VfT , where the initial position of the front X0 and

014114-12



SELF-OSCILLATORY INSTABILITY OF THE DRIVEN … PHYSICAL REVIEW E 108, 014114 (2023)

its velocity Vf during the fast phase are the fitting parameters.
The fitting shown by Fig. 8(a) yields Vf ≈ 544 µm/s, while
the fitting shown in (b) gives Vf ≈ 556 µm/s. We also fitted
other portions of these curves with the fast relaxation phase
to different processes reported in [6] but not shown here, as
well as those reported in [7]. In all cases, we obtained the
Ẋ values, close to 500 µm/s, presumably deviating from one
another within the experimental error.

Let us stress that we obtained the values of the veloc-
ity of the fast relaxational phase close to 500 µm/s for the
experiments made with the isotherm speed varying between
43 µm/s, and 313 µm/s as reported in [6]. The latter suggests
that the velocity of the fast relaxational phase is independent
of the isotherm speed. In contrast, it is determined by the
intrinsic properties of the crystal.

During the initial, slow phase of the relaxational oscilla-
tion, the front moves slowly over the distance �Xs during the
time �Ts. The following fast phase lasts the time �Tf and the
front displaces over �Xf. The period �T is �T = �Ts + �Tf.
The condition that the front average velocity is equal to the
isotherm speed V ,

V = �Xs + �Xf

�Ts + �Tf
, (58)

is necessary for the phase front to keep pace with the isotherm.
Let us denote �Xs,f = Vs,f�Ts,f, where Vs,f is the average front
velocity during the slow and fast phases correspondingly. One
finds the following ratio:

�Ts

�Tf
= Vf − V

V − Vs
. (59)

Equation (59) shows that with increasing V the ratio �Ts/�Tf

decreases. One sees the example of such behavior in Fig. 8.
As soon as V = Vf the ratio �Ts/�Tf turns into zero; that is,
at V∗2 = Vf, one finds the bifurcation point where the relax-
ational stick-slip motion transforms into the steady one.

To obtain the value of Vf and, correspondingly, of V∗2, one
must solve the system of the nonlinear integro-differential
equations (25) and (26). Nevertheless, we can qualitatively
reveal its value also without such a solution. During the slow
phase, the front stays behind the isotherm, and its lag H0

gradually becomes considerable. At the beginning of the fast
phase, the front accelerates to the velocity Vf somewhat below
Vmax to keep up with the isotherm. As we already discussed,
the latter does not exceed Vmax, since at V > Vmax the motion
takes a nonautomodel form, and its character changes. Ana-
lyzing the behavior of the second critical velocity (Fig. 5 ii)
and comparing it with the position of the point Vmax (Fig. 5 ii)
one infers that V∗2 ≈ Vmax.

This conclusion enables us to estimate the activation en-
ergy of the order-disorder component PbTiO3, which we
discuss in the next section.

2. Activation energy of PbTiO3

Comparing the maximum front velocity according to the
prediction of Gordon’s theory [21,22] with his measurements
Dec estimated the kinetic factor of PbTiO3 as K ≈ 6.2 ×
10−11s [7]. Using the relation (8), K0 ≈ 1. × 10−13s, and the
�b value taken from Table I, one finds the activation energy
ε ≈ 0.42 eV.

The theory of Gordon, however, does not account for the
temperature inhomogeneity, but the latter gives rise to the self-
oscillating phase front motion. Thus, this theory can give only
a rough estimate of the activation energy. Below we estimate
ε using the theoretical value V∗2.

Let us denote the maximum velocity achieved during the
relaxational oscillations of the front velocity in the experiment
as V (exp)

max . Equating V∗2 (51) to V (exp)
max one obtains the following

relation:[
1 + 1

2
(φ −

√
φ(φ + 4))

]
exp

(
2φ

φ − √
φ(φ + 4)

)
= n√

χ
V (exp)

max . (60)

Using (17) one finds that the ratio n/
√

χ takes the following
form:

n√
χ

= 0.3K0β

α0�b
√

Gγ
.

The relation (60) is, thus, independent of , enabling us to
estimate φ from the experimental data.

From the paper [6] by fitting, one obtains the value V (exp)
max ≈

500 µm/s (Table I). Making use of the data from Table I one
finds V (exp)

max n/
√

χ ≈ 2.94 × 10−7. With this value, solving
Eq. (60) numerically with respect to φ, one finds φ ≈ 11.51,
yielding

ε ≈ 0.59eV.

3. The first critical velocity and �

Self-oscillations starting at zero velocity.. In Sec. V D 2
we have seen that the first critical velocity V∗1 (57) depends
only on the parameters χ and  defining the rate of the heat
evacuation. In turn,  depends on several parameters of the
sample, such as its thickness, heat capacity, and conductivity.
It is different for different samples, let alone different mate-
rials. If the product χ is small, one finds a small V∗1 value.
If it is beyond the experimental resolution, one will observe
the self-oscillation regime at all experimentally measurable
velocity values within the interval 0 < V < V∗2. It is this case
that plausibly takes place in NaNbO3 [5,8,9].

Estimate of  in PbTiO3. Let us apply the limitation im-
posed on  to PbTiO 3. Using the data from the Table I one
finds n ≈ 9.01 × 10−7

√
s1/2. Taking the value φ ≈ 11.51

obtained in the previous section, one finds the following limi-
tations from the inequality (54):

0 �  < 0.014s−1.

Since the bifurcation is subcritical, one can use the expres-
sion (57) for the first critical velocity. This yields the following
 value:

 = V 2
∗1

8χ
. (61)

Substituting the V∗1 and χ summarized in Table I, one finds

 ≈ 0.0012s−1. (62)

The latter figure lies within limits established above.
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4. The thermodynamical condition of arising of the bifurcation

Substitution of φ ≈ 11.51 as well as �b and �� from
Table I into the expression (56) yields (�b − �max)/��h ≈
2.29. Thus, the necessary condition (55) holds.

5. The Biot and Péclet numbers

Using the value (62) obtained above and the definition (10)
one finds Bi ≈ 3 × 10−5. Thus, the condition Bi � 1 holds.

If the Péclet number is small (Pe � 0.1), the temperature
distribution has enough time to adapt to the temperature vari-
ation at the heaters. In this regime, one can regard �furn(X, T )
as a linear function, as written in (4). For the PbTiO3 crystal
studied in the experiments mentioned above, the condition
Pe � 0.1 (2) and the data from Table I yield the requirement of
V � 65 µm/s. However, most of experiments [2–8] employed
larger isotherm velocities.

At larger velocities, the distribution �furn(X, T ) must differ
from the linear dependence. Our numerical simulations (not
shown here) suggest that one expects that in this case, the
expression J = (�2 − �1)/d1 is valid for the average gradient
J , rather than for the exact one J . The exact gradient J = J (X )
is greater close to the butt ends of the sample but smaller at the
isotherm. In addition, it varies during the process. In general,
the problem becomes more complex and requires a numeric
solution.

VII. DISCUSSION

A. Admissibility of using Gordon’s velocity expression

To derive Eq. (23), we used Gordon’s expression for veloc-
ity of the phase front (20). This expression is exact only in the
case of the homogeneously overcooled crystal. We, however,
study a crystal subjected to the temperature gradient J . The
use of Gordon’s velocity is justified, provided the temperature
gradient causes a small variation of the order parameter.

One estimates the temperature difference between the
phase front and the left sample butt end as follows: �� ∼
Jl ∼ Jd1. Here l is the distance from the left sample end to
the phase front. The typical value of the gradient J used in
[3,6] is about a few degrees per millimeter. The typical size d1

of the crystal is a few millimeters. With such values, one finds
the temperature variation �� � 1 K.

Let us estimate the value of the order parameter at the left
butt end of the sample. It yields the boundary condition for
Eq. (7). One obtains the latter assuming ∂η/∂T ≈ ∂η/∂X =
0 in (7):

α0(� − �c)η − βη3 + γ η5 = 0

yielding

η2(�) = β +
√

β2 − 4α0γ (� − �c)

2γ
. (63)

At the isotherm, the temperature is equal to that of the binodal
�b. Therefore, one can estimate the temperature �butt at the
butt end as �butt ≈ �b + ��. From Table I, one sees that
�� � �b and �� � �b − �c. The latter enables one to
expand (63) in series in terms of ��. Using the binodal
position ζ = 3/16 and the explicit expression for ζ (21),
one finds η(�butt ) ≈ η0 + �η, where η0 = (3β )1/2/2γ 1/2 and

�η = −2α0��γ 1/2/31/2β3/2. Their ratio is

�η

η0
= 4α0γ

3β2
��.

Using the data from Table I and the above estimate for ��,
one finds �η/η0 � 10−1. Thus, in the experiments we ad-
dress, the maximal variation of the order parameter due to the
temperature spatial inhomogeneity is relatively small. The lat-
ter justifies the application of Gordon’s velocity for derivation
(23).

B. The instability mechanisms

1. The thermal instability

In this paper, we analyzed the thermal mechanism of form-
ing the stick-slip instability of the front propagation. The
possibility of the instability is related to two independent
conditions: (1) the V = V (�) dependence must have the as-
cending and descending branches and (2) the conditions at
the beginning of the motion must place the system onto the
ascending branch.

The slope dV/d� of the ascending branch is low at a
small temperature [as in point ii Fig. 3(d)] but increases with
increasing �. It decreases again in the vicinity of the point of
maximum of the curve V = V (�) [the point v Fig. 3(d)]. The
thermal conductivity has enough time to evacuate the liberat-
ing heat at a shallow slope. As a result, the front propagates
steadily. In Fig. 3(d) the steady propagation takes place be-
tween the points indicated by iii and iv. At the latter point, the
slope becomes so steep that the heat has no time to dissipate.
The latter has the effect of accelerating the front: instability
occurs.

If the instability is soft, the front acceleration vanishes as
soon as it achieves point vi in Fig. 3(d), where the slope
dV/d� becomes small again. Here the liberating heat be-
comes smaller and, thus, again has time to dissipate.

At V∗1 < V < V∗2, the oscillations can gradually take a
relaxational character. The latter exhibits slow and fast phases.
During the fast phase, the front velocity Vf is close to Vmax.
At V∗2 = Vf ≈ Vmax the relaxational stick-slip front motion
transforms into the steady one.

2. The surface pinning

Under generic conditions, we hypothesized that pinning of
the phase front by the surface defects at the left butt end of the
crystal represents the necessary condition to observe the regu-
lar stick-slip motion. It is the pinning that represents the most
probable mechanism for placing the process on the ascending
branch of V (�) during the first-order phase transformations.

Indeed, Dec reported that he observed the front starting its
motion from the state of rest with the finite velocity [5,6].
The plots X = X (T ) reported in [3,9] also testify to such
behavior. These observations directly confirm the pinning at
the surface or in bulk, close to the left butt end surface. The
initial velocities reported in [5,6] were considerably smaller
than those observed in [3]. This is due to the difference in
the surface defect structure of the crystals studied in these
experiments.
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3. The stick-slip motion due to pinning in the bulk

Let us briefly discuss the qualitative influence of stationary
bulk defects on the front dynamics.

First, let us recall that to set the phase front in motion,
one has to apply to it a driving force F = ς (�b − �f ) related
to the overcooling �b − �f with the front temperature �f

smaller than the binodal temperature �b [cf. Eq. (22)]. Apply-
ing an infinitesimally small overcooling to a defectless crystal
(�b − �f → +0) gives rise to phase front propagation with
an infinitesimally low speed (Vf → +0). It gradually increases
with overcooling. In crystals containing bulk pinning defects,
the front behavior is different.

One finds the following picture in crystals containing uni-
formly distributed weak pinning defects. These hinder the
front motion, their effect resembling a dry friction force. In
other words, to break the front free from such defects, one
has to apply a driving force F exceeding a critical value Fp.
The front, thus, starts propagating only at �f < �b − Fp/ς

with a finite velocity. One observes that if F > ς (�b − �max)
(or equivalently �f < �max), the front is overcooled such
that one finds it at the ascending branch of the V (�) curve.
Such a situation brings one to the scenario discussed in
Sec. VII B 2.

One expects a different scenario in dirty crystals containing
strong, loosely distributed pinning defects. If there are no
strong surface pinning defects, the front slips off from the
crystal butt end unimpeded and starts following the isotherm.
One concludes that this mechanism allows the stick-slip mo-
tion to start with an infinitely small isotherm velocity. The
front propagates until it hits the first pinning center. Such a
center with one or a few defects can completely arrest the
phase front. The latter dwells on the center until F exceeds Fp.
After that, the front leaves the center. No first critical velocity
takes place in this scenario. According to (22), the overcooling
increases with the isotherm velocity: F = ς (�b − �f ) = V .
The front breaks free as soon as the driving force becomes
equal to the force of pinning Fp. At this moment, one finds it at
a distance �X behind the isotherm. To overtake the isotherm,
the front develops stronger overcooling such that the speed Vf

exceeds V . The distance �X in this scenario is equal to the
front spatial jump.

Let us note that both positions of the pinning centers and
the values of their pinning force Fp are scattered. This implies
that the lag �X , the time intervals �T between the front
arrests, and the velocities Vf also take the nonequal values.
However, the values �X and �T may considerably differ,
while all Vf values, though different, lie close to the max-
imal value V∗2 the front can achieve. The arbitrary values
of �X and �T make the stick-slip process irregular and
aperiodic. Further, the amount and distribution of the defects
unpredictably vary from sample to sample. One can expect,
therefore, the stick-slip front motion of this origin to be ob-
servable in some samples and absent in others.

References [5] and [9] reported the observation of strongly
scattered �X and �T values and less scattered Vf values on
NaNbO3. These observations agree with the picture of strong
bulk pinning defects.

One concludes that both mechanisms act in a concerted
fashion. In PbTiO3, the transformation heat is high, while

in NaNbO3, it is relatively low. Consequently, the thermal
mechanism dominates the instability in the former, while the
defect mechanism in the latter.

C. Relationship to the previous results

In the papers of Roitburd and Umantsev [24,25] as well
as in those of Gordon [21–23] no temperature gradient has
been accounted for. As the immediate cause of the phase
front propagation, these works regarded only the homoge-
neous overcooling or overheating of the whole sample. This
distinguishes the papers [21–25] from the studies of Kurtze,
van Saarloos, and Weeks [17,18], and the present one where
the temperature gradient role is explicitly accounted for.

Umantsev has found that the front propagation’s oscillatory
regime can never occur in all solids without exceptions. This
conclusion relates to the limitation of the model studied in
[25]. Umantsev and Roitburd derived the V (�) dependence
in the framework of the weakly nonequilibrium thermody-
namics, the dependence of kinetic coefficients on temperature
assumed to be negligible. The latter excludes any activation
process [24,25]. Translating into our language, they analyzed
the case of the transformation of the displacive type ε = 0.
For these materials, our conclusions coincide with those of
Umantsev, while the necessary condition of the stick-slip mo-
tion is ε > 0.

In a series of papers [15–18], Kurtze, van Saarloos and
Weeks studied directional crystallization of amorphous semi-
conductors. They analyzed both the case of no external
temperature gradient and its presence. In the latter case, it was
generated by the laser spot. The latter scanned the sample with
a fixed velocity V . Like in [14], they used a phenomenological
algebraic relation of the activation type between the front
velocity and temperature.

In these papers, conditions of self-oscillations emergence
during the explosive crystallization have been established, and
its characteristics were determined [15–18]. In many respects
our results resemble their findings.

Indeed, the origin of the instability at low isotherm
velocity V = V∗1 during the explosive crystallization and
crystal-crystal phase transformation are the same; namely, the
process occurs under the propagating temperature gradient in
both cases. The laser spot generates the gradient during ex-
plosive crystallization. In the crystal transformation case, one
forms it by the furnace. Further, in both cases, the instability
source is the positive feedback: the bifurcation requires the
existence of the ascending branch of V (�). The process must
belong to this branch. In particular, we obtained the expression
for the first critical velocity V∗1 (57) identical to that obtained
in [16]. It is the expected coincidence since this instability
is independent of the transition nature (see the discussion in
Sec. V D 2).

However, the nature of the crystal-crystal transformations
dramatically differs from the transition from the amorphous to
crystal phase.

Indeed, first, the amorphous-to-crystal transition exhibits
no hysteresis. Second, only the ascending V (�) branch ex-
ists for the amorphous-to-crystal transition [see Fig. 1(a) in
[17]]. Third, in [15–18] (as well as in [14]) the curve V (�)
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expression has been hypothesized from the phenomenological
considerations, rather than derived.

Contrary to that, we derived the specific relation V = V (�)
(23) valid for the first-order crystal-crystal phase transfor-
mations. It establishes V (�) in terms of the coefficients of
Landau potential already determined for many materials [52].
This enabled us to apply our theory to discuss experiments
[2–8] on PbTiO3. Our results also apply to many other crystals
with experimentally known Landau coefficients.

Further, during the structural phase transitions, the process
takes only place within the hysteresis region. The interplay of
the hysteresis width and the specific V (�) form gives rise to
four different scenarios of the phase transformation kinetics,
rather than the single fast mode of the explosive crystallization
behavior.

Next, for the transitions of the order-disorder type, one
finds both the ascending and the descending V (�) branches
[see Figs. 3(b)–3(d)], separated by the maximum point. The
latter is closely related to the instability at the second critical
velocity V∗2.

Let us briefly mention a few essential differences in the
physical nature between explosive crystallization and crystal-
crystal transformation.

First, in glass, only the ascending branch is available.
Hence, the process automatically finds itself at the ascending
branch, prone to instability at V∗1. In contrast, the gradient
furnace always brings the process to the descending part of
V (�). This excludes positive feedback and instability.

The process can occur only at the ascending branch, pro-
vided something forces the phase front to stay motionless at
the sample boundary until the driving force becomes consid-
erable. In this case, it further moves along the ascending V (�)
branch and exhibits the instabilities.

This brings us to the hypothesis of the crucial role of sur-
face pinning defects. We argue that without such defects one
cannot explain the experimental observations [2–9]. Second,
in these two classes of transformations, the increase of the
temperature at the front differ by about two orders of magni-
tude. This difference gives rise to a significant discrepancy
in the values of the phase front velocities. In particular, in
the case of explosive crystallization, the front velocities reach
several meters per second. At the same time, during the struc-
tural phase transitions, they are several orders of magnitude
lower (see Table I).

Propagation of a reaction front during gasless fuel combus-
tion also represents a process comparable to those studied in
this paper as well as in [15–18]. During such combustion, one
has experimentally discovered a transition from the steady to
self-oscillatory flame propagation regime [12]. The theoretical
value for the instability threshold Vth of the combustion front
propagation has been obtained in [19]. “Translating” notations
of [19] into our “language,” one makes sure that the instability
thresholds are literarily identical: Vth = V∗1 (57), and also
equal to one found by Saarloos and Weeks [16]. We discussed
the origin of their coincidence in Sec. V D 2.

A more detailed comparison of the kinetics of the first-
order phase transformations, amorphous crystallization, and
gasless combustion is an extensive task out of the scope of
this paper.

VIII. SUMMARY

To summarize, we report a theoretical study of a non-
isothermal propagation of a phase front driven by a moving
temperature gradient. We prove that for the phase transforma-
tions of the displacive type, the phase front always steadily
follows the isotherm.

In the case of the order-disorder or hybrid phase trans-
formations, we argue that the stick-slip instability can show
up only provided surface defects have initially pinned down
the phase front at the beginning of its motion. We find the
first critical velocity of the isotherm at which the steady front
motion becomes unstable and the stick-slip motion arises.
We further determine the second critical velocity. The jerky
motion vanishes as soon as the isotherm velocity exceeds
the latter. We state that the self-oscillatory propagation is a
fingerprint of the order-disorder or hybrid transformations.
Our calculations enabled us to extract the activation energy of
the order-disorder degree of freedom responsible for the phase
transformation from the measurements of the driven motion
of the phase front. We further discuss the measurements per-
formed on PbTiO3 and NaNbO 3 in light of our results.

APPENDIX A: EVOLVING HEAT AND THE RESCALED
THERMAL EQUATION

Rescaling (16) transforms the thermal equation (12) as
follows:

∂δ�

∂t
= ∂2δ�

∂x2
− δ� + �

c
. (A1)

Following [24], one writes the evolving heat as the sum of
two terms::

� = �1 + �2 = α0�η
∂η

∂T
+ K

(
∂η

∂T

)2

. (A2)

The first term (A2) describes the transformation heat, and
the second one the heat generated due to the order parameter
evolution [24]. Assuming that the phase front propagates with
the velocity V one finds ∂η/∂T ∼ V ∂η/∂X ∼ V η/δ, where δ

is the phase front width. One estimates �1 = α0�η∂η/∂T ∼
α0�bV η2/δ and �2 = K (∂η/∂T )2 ∼ KV 2η2/δ2. Using the
parameters from Table I and δ ∼ 120 Å [7], one finds that at
K � 3 × 10−3s, the following inequality holds:

�1

�2
∼ α0�bδ

KV
 1. (A3)

Therefore, in the following, we omit the second term in (A2).
One finds

� ≈ −α0�Ẋ (T )η
∂η

∂X
. (A4)

Further, the width of the temperature distribution,
(χ/)1/2, may have any value. However, typically one finds

δ � (χ/)1/2. (A5)

In this limit, one can accurately approximate the order
parameter spatial distribution with the Heaviside function
θH(X ). That is, η(X, T ) ≈ η0{1 − θH[X − Xf(T )]}, where η0

is the solution (63) of the homogeneous Landau equation at
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the binodal, � = �b:

η0 =
(

β

2γ

)1/2

. (A6)

In this case, η∂η/∂X ≈ −η2
0δ(X − Xf(T ))/2 =

−η2
0(/χ )1/2δ[x − xf(t )]/2, where the δ function, δ(x)

should not be confused with the phase front width δ.

APPENDIX B: ELIMINATION OF δ�

Representing the solution δ�(x, t ) of the equation (19) in
terms of the Green function G(x, t ) one finds

δ�(x, t ) = �

∫ t

−∞
G[x − xf(t

′′), t − t ′′]ẋf(t
′′) dt ′′. (B1)

We replace the variable t ′′ by t ′ = t − t ′′, and calculate the
temperature perturbation (B1) δ�(xf(t ), t ) at the phase front
x = xf(t ). One finds

δ�(xf(t ), t ) = �

∫ ∞

0
G[xf(t ) − xf(t − t ′), (t − t ′)]

× ẋf(t − t ′) dt ′. (B2)

It is convenient to represent the Green function G(x, t ) in
the following form:

G(x, t ) =
∫ ∞

−∞
exp[−(q2 + 1)t + iqx]

dq

2π
. (B3)

That is, we applied the Fourier transform for the coordinate
x, but not the time t . Substituting (B3) into (B2) one obtains
Eq. (26).

APPENDIX C: A SEMIANALYTICAL SOLUTION
FOR THE FIRST CRITICAL VELOCITY

We look for the semianalytical solution for the lower
branch of the critical velocity at v∗1 < vmax/10. The solu-
tion v∗1 = v∗1( j) can be obtained parametrically from the
expression (48). Dots in Fig. 9(a) show the example of such a
solution in the case of φ = 12.

One can accurately approximate the lower branch of this
solution by the simple formula v∗1 ≈ m j−0.574, where m is the
fitting parameter. Figure 8(a) shows by the solid line the fit of
the part of this solution, where v∗1 < vmax/10. In this case, it
yields m ≈ 0.366.

We made such a fitting for φ = 5, 6, . . . , 12, and obtained
m = m(φ) in each case. Figure 9(b) displays the obtained
values m(φ) (dots) and their fitting by the expression m =
m1 + m2φ

5/2. This brings one to the expression (49).

APPENDIX D: PROOF OF SOME INEQUALITIES

1. The limitation imposed on the velocity

At small velocity values, the function f1(ω, v) has a single
minimum at ω = 0. As soon as v exceeds a critical value
vcr two sidewise minimums split away from the point ω = 0,
while this point becomes maximum (Fig. 8). The critical value
v = vcr one determines from the condition ∂ f1(ω)/∂ω = 0
together with ∂2 f1(ω)/∂ω2 = 0 taken at ω = 0. The former

FIG. 9. (a) The solution v∗( j) and its approximation by the ex-
pression (49). Dots show the parametric solution v∗ = v∗( j). This
example corresponds to φ = 12. The solid line displays the fit of
the part of this curve v∗ < vmax/10 by the function v∗1 ≈ m j−0.574

yielding m ≈ 0.366. (b) Dots show the values of m obtained by the
procedure described in (a) for m = 5, 6, . . . , 12. The solid line fits
these points by the formula m ≈ m1 + m2φ

5/2.

expression is automatically fulfilled due to the evenness of
f1(ω). The latter one yields

∂2 f1(ω)

∂ω2

∣∣∣∣
ω=0

= 4(v2 − 8)

(v2 + 4)5/2
= 0,

whence it follows vcr = 2
√

2. Thus, the bifurcation is possible
only at v > vcr.

2. The limit imposed on j

According to its definition, j > 0. Variation of the param-
eter j gives rise to the following behavior of f1(ω). We show
the run of the function f1(ω) at small j values in Fig. 10(b)
by the solid red line. In this case, f1(ω) exhibits two pairs of
roots ±ω1 and ±ω2. As soon as j achieves a value jcr two
pairs of the roots fuse [a black, dot-dashed line in Fig. 10(b)],
and at j > jcr one finds no roots of f1(ω). In this latter case,
the system of equations (47) has no solutions. In other words,
the bifurcation can happen only at j � jcr. Let us stress that
the condition j � jcr is necessary but not enough. It indicates
only the part of the parametric space where the bifurcation
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FIG. 10. (a) At small velocity f1(ω) exhibits a single minimum
at ω = 0 (blue dashed line). At v = vcr this minimum degenerates
(solid red line), and at v > vcr two minimums ω �= 0 split off (black
dot-dashed line). (b) Schematic view of the curves f1(ω) and f2(ω)
at μ = 0 (not in scale). (c) Variation of the dependence f1(ω) with
the increasing j value. At small j, one finds four roots of f1(ω). At
j = jcr the two pairs of the roots fuse, and at j > jcr f1(ω) exhibits
no roots.

is not possible, while the first equation (48) represents the
sufficient condition of the bifurcation.

One gets the value jcr by solving the following system:

f1(ω, jcr) = 0

f2(ω, jcr) = 0

∂ f1(ω, jcr)/∂ω = 0

yielding

jcr = λ(v2 − 8)2

10
√

v2 + 4(3v2 − 16)
. (D1)

One concludes that the bifurcation only takes place at
0 < j � jcr.

3. The inequality μ > 0

The requirement μ > 0 for the arising of the bifurcation
follows from the properties of the function f2(ω). Let us note
that above we analyzed the approximate equations (47) valid
only at |ω| < 2. For the present proof, we take the exact ex-
pression f2(ω) = Im[�(ω, j, λ, v)] (46). It has the following
form:

f2(ω) = −μω

λv
+ f (1)

2 (ω), (D2)

where for the convenience, we denoted f (1)
2 (ω) as follows:

f (1)
2 (ω) = 2ω cos

[
1
2 arctan

(
4ω

v2+4

)]−v2 sin
[

1
2 arctan

(
4ω

v2+4

)]
[(v2 + 4)2 + 16ω2]1/4

.

(D3)

Let us check the inequality f (1)
2 (ω) > 0. One reduces it to

the following expression:

4ω > v2 tan

[
1

2
arctan

(
4ω

v2 + 4

)]
. (D4)

Further, using the following identity:

tan

[
1

2
arctan(x)

]
≡

√
1 + x2 − 1

x

one comes via (D4) to the simple inequality:

2v2 + y2 > v4, (D5)

where y = 16ω2/(v2 + 4)2. From (D5) it follows that y >

v
√

v2 − 2. Since v > 2
√

2, one concludes that f (1)
2 (ω) > 0,

that is, it is strictly positive everywhere.
Therefore, at ω > 0 and v > 0, the function f2(ω) (D2)

can turn into zero only due to the first term, provided it is
negative. Since μ ≈ φ ln−2(nv), and φ > 0, the first term can
be negative only if μ > 0. At μ = 0, the function f2(ω) has
no roots ω �= 0, and the bifurcation is impossible.

Let us also note that at great values of ω, one finds the
following asymptotics:

f2(ω) ∼ −μω

λv
+ O(

√
ω).

Since μ > 0, it exhibits the following asymptotic properties:

f2(ω) → ∓∞ at ω → ±∞.

The behavior of the functions f1,2(ω) at μ = 0 is shown in
Fig. 10(c).
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