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Model of membrane deformations driven by a surface pH gradient
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Many cellular organelles are membrane-bound structures with complex membrane composition and shape.
Their shapes have been observed to depend on the metabolic state of the organelle and the mechanisms that
couple biochemical pathways and membrane shape are still actively investigated. Here, we study a model
coupling inhomogeneities in the lipid composition and membrane geometry via a generalized Helfrich free
energy. We derive the resulting stress tensor, the Green’s function for a tubular membrane, and compute the
phase diagram of the induced deformations. We then apply this model to study the deformation of mitochondria
cristae described as membrane tubes supporting a pH gradient at its surface. This gradient in turn controls the
lipid composition of the membrane via the protonation or deprotonation of cardiolipins, which are acid-based
lipids known to be crucial for mitochondria shape and functioning. Our model predicts the appearance of tube
deformations resembling the observed shape changes of cristea when submitted to a proton gradient.
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I. INTRODUCTION

Lipid membranes are fundamental components of cells
as they compartmentalize space. Notably, many organelles
important for cellular function such as the endoplas-
matic reticulum, the Golgi apparatus, or mitochondria are
membrane-enclosed structures. For this last case, the lipid
membrane also takes part in biochemical processes that it
encloses by facilitating the two-dimensional (2D) diffusion of
reactants (protons) [1]. Physical descriptions of membranes
as two-dimensional sheets with a mechanical energy given by
the Helfrich model [2], which in addition to surface tension
assumes a quadratic dependence of the energy on the intrinsic
mean curvature of the surface, have been very successful in
capturing the rich variety of shapes observed for in vitro sys-
tems [3]. Since Helfrich’s seminal work, many extensions to
his model were proposed to take into account internal degrees
of freedom of the membrane such as variations of membrane
mass density and/or composition by way of introducing addi-
tional terms in the Hamiltonian [4–6]. Beyond scalar degrees
of freedom, vectorial fields such as a local lipid tilt can be
considered with this approach [7,8].

At a first glance, Gaussian Hamiltonians for membrane me-
chanics are simple functionals that can be constructed using a
Landau-Ginzburg expansion of the surface energy. However,
obtaining the equilibrium shape of the surface by a straightfor-
ward minimization of the Hamiltonian can become very tricky
and sometimes proves impractical. The variational calculus
expressed in terms of differential geometry (characterizing
the surface by its intrinsic basis, metric, curvature tensors,
etc.) becomes quickly complex and cumbersome. Illustrating
these difficulties, the “shape equation” associated with the
Helfrich Hamiltonian was derived more than 10 years after
the introduction of the Helfrich model [9]. In an important

development, Guven and co-workers made the minimization
process much more elegant and easy by the introduction of
a constrained functional [10,11]. In short, the geometrical
relations imposed by surface continuity are enforced using
Lagrange multipliers, one of which is the surface stress ten-
sor [12]. The general identification of the stress tensor for
any Helfrich-type model and arbitrary geometry now makes
the exploration of resulting membrane shapes considerably
simpler.

Besides lipid membranes, the cell cortex is another
fundamental cellular surface. Remarkably, a stochastic chemi-
comechanical energy conversion driven by ATP hydrolysis
can lead to a local increase of its mechanical tension and
internal torque [13,14]. From a more general point of view,
the mechanics of these out-of-equilibrium surfaces can be
described via constitutive relations for tensions, torques, and
surface chemical fluxes including so-called active terms that
would not exist in passive surfaces [13,14]. This coupling
between active agent concentration and surface mechanics
gives rise to the spontaneous formation of nontrivial shapes
[15]. Lipid vesicles can also deform or divide in response
to chemical stimuli and the development of such minimal
models for biological self-reproduction has gained attention
in past decades [16]. In particular, pH variation was shown to
affect the bending modulus of bilayers and to generate tubular
invaginations [17].

Proton diffusion along biological membranes is essential
for in cellulo energy production and the role of the membrane
composition in this mechanism is a domain of active research
[18,19]. In mitochondria, the shape of the inner membrane
invaginations (cristae) enclosing ATP production varies with
the rate of ATP synthesis which itself is coupled to a flux of
protons diffusing on the membrane [20,21]. Inspired by this
observation, a model of a tubular membrane described by a
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FIG. 1. (a) Representation of a 3D surface, a local basis (e1, e2 ),
a normal vector n, and the stress tensor showing the three possible
stresses one can apply on a surface cut. (b) Cylinder of radius R
deformed by the field u = unn + uses. (c) Sketch of a cylindric (blue)
lipid that converts into a conic (green) lipid by the association (or
disassociation) of a proton and of a membrane with a curvature
induced by composition inhomogeneity.

phenomenological pH-dependent Helfrich Hamiltonian and
submitted to a spatially modulated proton flux was proposed
[22]. It could reproduce some qualitative observations of the
coupling between cristae shape and metabolic state of the
organelle.

In this work, we study the shapes of inhomogeneous
membranes composed of two types of lipids, whose ratio
is influenced by an external surface chemical flux. We then
apply this model to describe mitochondria cristae shapes as
a function of a varying proton flux. The work is organized
as follows. We start by introducing a Helfrich Hamiltonian
which, in addition to the geometrical terms, includes a contri-
bution related to the lipid composition and mass density based
on a Landau-Ginzburg approach. In particular, we take into
account coupling terms between the local curvature and these
physical parameters. We then derive the stress tensor of this
model in an intrinsic surface reference frame. We consider
the case of a cylindric geometry and compute the Green’s
function of the system, defined as the expression for the de-
formation field for a punctual perturbation in the membrane
composition. The richness of the phase diagram suggests that
such a model could be relevant to describe in vivo membranes.
We finally apply our formalism to model the shape of the
mitochondrial membrane invaginations, the cristae, as finite
tubes driven by a proton flux of varying intensity. We show
that this model reproduces qualitatively the shape observed
in vivo and the shape change between “active” mitochondria
(state III) and mitochondria in a rest state (state IV) [20]. We
conclude with a summary and a discussion of our results.

II. INHOMOGENEOUS MEMBRANES:
LANDAU-GINZBURG HAMILTONIAN

AND RESULTING SHAPES

A. Helfrich model with composition-dependent free energy

We consider a curved surface, the Cartesian coordinates
of which are given by the 3D vector field X(s1, s2). The
surface is parametrized by two generalized coordinates s1, s2.
One can then obtain the local intrinsic basis of X (e1, e2),
defined as ea = ∂aX (a = 1, 2), and the normal vector n =
e1 × e2/|e1 × e2|, a vector of unit length perpendicular to the
surface; see Fig. 1(a). We can furthermore define the two

fundamental forms of the surface, i.e., the metric tensor gab =
ea · eb and the curvature tensor Kab = ea · ∂bn. The surface el-
ement dA is equal to dA = √

gds1ds2, where g = det gab is the
determinant of the metric tensor. For the tensorial calculations
below, we recall the Einstein summation convention and the
passage from covariant to contravariant coordinates, such that
T a

b = Tbkgka = ∑
k=1,2 Tbkgka, with gab = g−1

ab , for T a tensor
of rank 2.

Let us now consider a membrane composed of two lipids
L1 and L2 linked by a chemical reaction L1 � L2, with re-
spective surface mass densities ρL1(s1, s2) and ρL2(s1, s2). We
introduce two scalar fields to describe the internal degrees of
freedom of this inhomogeneous membrane: the mass density
ρ(s1, s2) = ρL1 + ρL2 of the two lipids and the relative mass
fraction φ(s1, s2) = ρL2/ρ of the lipid L2, which gives the
local lipid composition. We then define a homogeneous ref-
erence state (φ0, ρ0) for the system. In this state, the mass
density ρ0 and the composition φ0 are constant along the
surface. Finally, we characterize inhomogeneous states of the
membrane using

r(s1, s2) = ρ(s1, s2) − ρ0

ρ0
, ψ (s1, s2) = φ(s1, s2) − φ0

φ0
,

(1)
where r(s1, s2) and ψ (s1, s2) denote the deviations from the
reference state density and composition, respectively. The
fields φ and ψ take values comprised between 0 and 1. Us-
ing the fields introduced above, we propose the following
Hamiltonian to govern the equilibrium shape of such an in-
homogeneous membrane:

H =
∫

�

dA

[
1

2
κ (C − C0)2 + σ0 + σ1rψ + α1ψ (C − Ceq)

+α2

2
ψ2 + β1r(C − Ceq) + β2

2
r2

]
. (2)

This functional includes the standard Helfrich energy den-
sity in the first two terms, with C(s1, s2) = Tr(Kb

a ) being the
mean local curvature of the surface. κ is the surface bend-
ing rigidity and σ0 the membrane surface tension. The terms
C0 and Ceq(s1, s2) are respectively the spontaneous and the
equilibrium curvature of the reference state (ψ = 0, r = 0)
and are equals for a free membrane. We note that a similar
Hamiltonian would be obtained by considering a spontaneous
curvature as a linear function of r and ψ , following stan-
dard descriptions of two-component membranes [23–26]. The
shape of the reference state is obtained by minimizing the
classical Helfrich Hamiltonian. The Gaussian bending rigidity
has been neglected here for the sake of simplicity. Note that
in the case of a constant Gaussian bending rigidity, the contri-
bution of the Gaussian curvature to the total surface energy
would be constant according to the Gauss-Bonnet theorem
and not influence membrane shape. More complex models,
in particular with a composition-dependent Gaussian bending
rigidity in which case the Gauss-Bonnet theorem would not
apply, could in principle be considered using the formalism
presented below [27] but are beyond the scope of this study.

The subsequent terms were obtained by following a
Landau-Ginzburg approach to take into account the ef-
fect of a variation in the membrane composition on its
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shape [26,28,29]. They include a self-energy contribu-
tion,

∫
(α2ψ

2/2 + β2r2/2 + σ1rψ )dA, depending only on the
chemical state of the membrane [30] and of phenomenolog-
ical parameters α2, β2, and σ1, and terms that couple the
geometry, via the curvature, to the density, β1r(C − Ceq), or to
the compositional inhomogeneity, α1ψ (C − Ceq). These terms
illustrate that L1 or L2 lipid can prefer a more (or less) curved
membrane [26,29]. This effect can originate when lipids L1

and L2 have different shapes (see Fig. 1 for an illustration of
such shapes). The strengths of these couplings to the mem-
brane shape are captured by the parameters β1 and α1. Note
that α2, β2 > 0 for the energy to be well defined, whereas
α1, σ1, and β1 can be either positive or negative. When one
considers a membrane at a reference state defined as fol-
lows: C = C0, r = 0, and ψ = 0, a homogeneous change of
r, respectively ψ , will induce a change of curvature to C =
C0 − β1/κr, respectively C = C0 − α1/κψ . Positive values of
α1, β1 induce thus a decrease of the spontaneous curvature for
positive values of the fields (r, ψ ).

B. Stress tensor, force balance, and the shape equation

The stationary shape of a membrane described by a
Helfrich-like Hamiltonian can be obtained from the shape
equation, i.e., the force balance along the surface projected
on the normal vector n (see Fig. 1). Following Guven and co-
workers [10,11], we start with the derivation of the membrane
stress tensor by introducing the constrained Hamiltonian

Hc = H +
∫

�

λab(gab − ea · eb)dA

+
∫

�

�ab(Kab − ea · ∂bn)dA +
∫

�

fa · (ea − ∂aX)dA

+
∫

�

λa
⊥(ea · n)dA +

∫
�

λn(n2 − 1)dA. (3)

Here, the Lagrange multipliers λab, �ab, fa, λa
⊥, and λn have

been introduced to enforce the local definitions of the metric,
the curvature tensor, the intrinsic basis, and the normal vector,
respectively.

Previously, the Lagrange multiplier fa has been identified
as the stress tensor of the system [10,11]. Its expression can be
obtained via the variational minimization of Hc with respect
to the now 12 independent functions X, ea, n, Kab, gab, and r.
Note that we do not minimize with respect to the composition
field ψ , which we consider to be an input of our model. We
eventually obtain the following set of equations:

X : 0 = ∇afa, (4)

ea : 0 = −fa + (
�acKb

c + 2λab
)
eb − λa

⊥n, (5)

n : 0 = (∇b�
ab + λa

⊥)ea + (2λn − �abKab)n, (6)

Kab : 0 = �ab + Hab, (7)

gab : 0 = λab − 1

2
T ab, (8)

r : 0 = β2r + β1(C − Ceq) + σ1ψ. (9)

Here, Hab and T ab are the functional derivatives of
the Hamiltonian density H [defined according to H =∫

dAH(s1, s2)] with respect to the two fundamental forms Kab

and gab:

Hab = δH
δKab

, (10)

T ab = − 2√
g

δ
√

gH
δgab

, (11)

and ∇a is the covariant derivative. When H depends explicitly
only on the local mean curvature C, these derivatives can be
expressed as

T ab = −Hgab + 2
∂H
∂C Kab, (12)

Hab = ∂H
∂C gab. (13)

From Eqs. (4)–(9), one can obtain the membrane stress
tensor fa

fa =
(

−Hgab − Kab ∂H
∂C

)
eb − ∇b

(
∂H
∂C gab

)
n, (14)

which expressed in the intrinsic basis is a 3 × 2 matrix.
With this definition, in the absence of external forces, the

force balance equations read

∇a f a
⊥ − Kab f ab = 0, (15)

∇a f ab + Kb
a f a

⊥ = 0, (16)

where f ab = (T ab − HacKb
c ) and f a

⊥ = −(∇bHab) are the tan-
gential and normal components of the stress tensor such that
fa = f abeb + f a

⊥n [see Eq. (14)]. Equation (15) corresponds
to the force balance along the tangential directions. The force
balance along the normal direction, given in Eq. (16), is gen-
erally referred to as the shape equation.

C. Green’s function for a tubular membrane and phase
diagram of deformed shapes

We now apply this two-dimensional general framework
to the simpler one-dimensional problem of an axisymetric
deformation of an infinite cylinder. We consider an infinite
cylindrical membrane of radius R. We consider the reference
state to be a cylinder with ψ0 = 0 and r0 = 0. For vanish-
ing inhomogeneities, the system is described by the standard
Helfrich model. Note that if ψ = 0 and C = Ceq, then r = 0
follows from Eq. (9). Using Eqs. (12)–(14), we derive the
tangential stress tensor for the reference state. We express
it in the intrinsic coordinates: θ = s1, the revolution angle,
and s = s2, the arclength, associated with the intrinsic basis
(eθ , es, n). Note that this coordinate system coincides with the
cylindrical basis for the undeformed state. It reads

f ab
0 =

(
κ (1−X 2 )−2σ0R2

2R4 0
0 − κ (1−X )2

2R2 − σ0

)
, (17)
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where we have introduced the dimensionless parameter

X = RC0. (18)

The normal part of the stress tensor, ( f θ
⊥0, f s

⊥0), vanishes.
The force balance in the direction eθ , Eq. (15), vanishes

for symmetry reasons. The remaining force balance, along the
normal direction, for the undeformed cylinder, Eq. (16), reads

1

2

κ

R3
(1 − X 2) − σ0

R
= 0. (19)

Assuming positive values for the tension σ0, the domain of
stable solutions for Eq. (19) is X ∈] − 1, 1[ and one eventually
obtains the following solution for the equilibrium radius R in
the reference state:

R = 1

Ceq
= 1√

C2
0 + 2σ0/κ

, (20)

where we have used the knowledge that the curvature of a
cylinder (here Ceq) is 1/R. Note the curvature at the equi-
librium equals the spontaneous curvature only for vanishing
tension. We use this relation to express the bending rigidity κ

in terms of R, σ0, and X in the following.
We next derive the shape of a deformed cylinder in

response to a ringlike perturbation of the composition obey-
ing the rotational symmetry of the cylinder, ψ (θ, s) = ψ (s),
with ψ (s) = δψδ(s), where δψ is a magnitude and δ(s) a
Dirac delta for the surface coordinate s; see Fig. 1(b). To
describe the deformations induced by the perturbation, we
introduce the deformation field u(s) = un(s)n + us(s)es with
radial and tangential components un(s) and us(s), respectively
[see Fig. 1(b)], where s is now the arclength associated with
the deformed shape. The differential geometry elements asso-
ciated with the deformed tube, i.e., the intrinsic basis eθ , es,
n, as well as the metric and mean curvature of the surface,
are given in Appendix 1. We derive them up to first order in
the response fields, i.e., the deformation fields (un, us) and the
density inhomogeneity r, which are assumed to be small—i.e.,
un/R, us/R, and r � 1.

The surface stress tensor in the deformed state is written as
f = f0 + f1 and f ab

1 can be decomposed into a mechanical
part that depends on (un, us) and a chemical part that is a

function of (r, ψ) such that f ab
1 = f ab

1,M + f ab
1,C , where

f ab
1,M =

(
− 2σ0

R3(1−X 2 ) (un + XR2u′′
n ) 0

0 2σ0
R(1+X ) un + 4σ0

1+X u′
s

)
,

(21)

f ab
1,C =

(
1

R3 (β1r + σ1ψ ) 0
0 0

)
. (22)

The same decomposition can be applied to the normal part of
the stress tensor, f a

⊥ = f a
⊥1,M + f a

⊥1,C , with

f a
⊥1,M =

(
0,

2σ0

1 − X 2
(u′

n + R2u′′′
n )

)
, (23)

f a
⊥1,C = (0, −β1r′ − α1ψ

′). (24)

As can be seen from Eqs. (21)–(24), the coupling of the
membrane curvature and the internal degrees of freedom r
and ψ lead to extra lateral tensions and extra bending forces
proportional to the coupling coefficients. Using the expression
of the stress tensor and the force balance along es and n and
using r(s) = − β1

β2
[C(s) − 1

R ] − σ1
β2

ψ (s) according to Eq. (9)
in the force balance along n, one gets the following shape
equation for the system:

β2
1

β2R2
(un + 2R2u′′

n + R4u′′′′
n )

− 2σ0

1 − X 2
(un + 2XR2u′′

n + R4u′′′′
n )

=
(

α1 − σ1
β1

β2

)
(ψ + R2ψ ′′). (25)

The left-hand part is the differential equation controlling the
normal deformation field un; the right-hand part corresponds
to the source term in ψ . One sees here the predominant role
played by the coupling between density and curvature propor-
tional to β1. The prefactor of the higher-order derivative term
in u′′′′

n is equal to (β2
1/β2 − κ )R2.

For a nonvanishing coupling (β1 �= 0), one can define an
effective bending constant based on the prefactor of u′′′′

n in
the shape equation (25). Let us now define the Green’s func-
tion of the system, G⊥(s), according to un(s) = ∫

ds′G⊥(s −
s′)ψ (s′). Performing a Fourier transform of Eq. (25), one
gets

G̃⊥(q)

R
= δψ

2
√

2π

Z (1 − X 2)(R2q2 − 1)

[Y (1 − X 2) − 1]R4q4 − 2[Y (1 − X 2) − X ]R2q2 + Y (1 − X 2) − 1
, (26)

where we have furthermore introduced the two additional
dimensionless parameters

Y = β2
1

2σ0β2R2
, Z = 1

Rσ0

(
α1 − σ1

β1

β2

)
. (27)

Note that we used the convention of the Fourier transform
ũ(q) = 1/

√
2π

∫
ds eiqsu(s).

The Green’s function is a function of the three dimension-
less parameters X , Y , and Z that obey −1 < X < 1, Y � 0,
and Z unbounded. While X [defined in Eq. (18)] depends only
on the geometric parameters, Y and Z are nontrivial func-
tions of the parameters introduced in the Landau-Ginzburg
expansion of the Hamiltonian given in Eq. (2). Z determines
the amplitude and sign of the response. The four poles,
(±q+,±q−), of G⊥(s) are functions of X and Y (see expres-
sion in Appendix 2).
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FIG. 2. (a) Phase diagram of the deformed cylinder in the (X , Y )
plane. Region A (green): decaying oscillation deformation; region B
(orange): decayig deformation; region C (blue): buckling instability.
Decaying (R/λ) and oscillation (R/ω) lengths as a function of X for
(b) Y = 0.5 and (c) Y = 1.2.

The Green’s function allows us to study the phase space
of the model, i.e., the shape of the mechanical response un as
a function of X and Y . The shape phase diagram is shown in
Fig. 2 and presents three distinct regions defined as follows. In
region A [shown in green in Fig. 2(a)] the roots are complex
with nonvanishing real and imaginary parts,

A : 0 < Y <
1

2

1

1 − X
, Rq± = ωA ∓ iλA. (28)

In this region, deformations oscillate with spatial period (os-
cillation length) 2πR/ωA and decay over a characteristic
decay length R/λA > 0.

The Green’s function in the real space reads

GA
⊥ (s) = ϒ

e−λA |s|
R

2

[
1

λA

(
1 − 1

λA 2 + ωA 2

)
cos

(
ωA |s|

R

)

− 1

ωA

(
1 + 1

λA 2 + ωA 2

)
sin

(
ωA |s|

R

)]
, (29)

where ϒ = δψ

4
1−X 2

Y (1−X 2 )−1 Z . The tube plotted in region A
[Fig. 2(a)] gives an illustration of the shapes obtained in this
zone.

For region B [shown in orange in Fig. 2(a)] the poles are
purely imaginary,

B :
1

2

1

1 − X
< Y <

1

1 − X 2
, Rq± = iλB

±, (30)

with λB
+ > λB

− > 0, and deformations are associated with two
decay lengths R/λB

±, according to

GB
⊥(s) = ϒ

λB 2+ − λB 2−

(
λB 2

+ + 1

λB+
e−λB

+
|s|
R − λB 2

− + 1

λB−
e−λB

−
|s|
R

)
.

(31)
Finally, the region C [blue in Fig. 2(a)] is associated with

four real poles,

C :
1

1 − X 2
< Y, Rq± = ωC

± > 0. (32)

This region corresponds to a buckling instability zone. Com-
petition between tangential and normal forces in tubular
membranes can produce peristaltic shapes with wavelengths
that depends on the system [31]. Here, a local perturbation
induces a nondecaying response that is given by

GC
⊥(s) = ϒ

ωC 2+ − ωC 2−

[
1 − ωC 2

+
ωC+

sin

(
ωC

+
|s|
R

)

−1 − ωC 2
−

ωC−
sin

(
ωC

−
|s|
R

)]
, (33)

which involves two oscillating lengths 2πR/ωC
±.

The characteristic lengths—the inverses of real and imagi-
nary parts of the poles given above—rescaled by the cylinder
radius R are plotted in Figs. 2(b) and 2(c) as functions of
X for two fixed values of Y . When Y = 0.5 [Fig. 2(c)], one
sees that for X < 0, corresponding to region B, the two de-
cay lengths 1/λB

± (shown in orange solid and dotted lines)
remain finite with 1/λB

+ > 1(orange solid line) and 1/λB
− < 1

for −1 < X < 0, while both take the value of 1 at X = −1
(the edge of the valid domain for X) and X = 0. For X > 0,
i.e., in region A, the oscillation length 1/ωA (blue dashed
line) diverges at X = 0 but decreases monotonically with X
to reach 1 for X = 1. On the contrary, the decay length 1/λA

(red dashed line) monotonically increases from 1 for X = 0 to
diverge in the limit X → 1, indicative of a buckling instability
at X = 1. Figure 2(b) shows the characteristic lengths as a
function of X for Y = 1.2. The behavior of the characteristic
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lengths in regions A and B is similar to the one previously
described, but a domain pertaining to region C is intercalated
in region B (at −0.48 < X < 0.48), in which the oscillation
length 1/ωC

+ (blue solid line) reaches a minimum between its
two positive diverging limits on the borders between regions B
and C. Finally, 1/ωC

− (blue dotted line) vanishes on the borders
between regions B and C and reaches a maximum in between.
The analysis of the Green’s functions on the transition lines is
presented for completeness in Appendix 3.

To conclude, in this section we have derived the shape
equation for an inhomogenous membrane and determined the
phase diagram of the model in a cylindrical geometry. We
have shown that the coupling of geometry and internal degrees
of freedom can generate a rich variety of responses. In the
next section, we apply this model to the mitochondrial inner
membranes, or cristae.

III. APPLICATION TO THE CRISTAE MEMBRANE

In this section, we use our model to describe the defor-
mation of the mitochondrial cristae induced by a surface pH
gradient.

Mitochondria are composed of two membranes, the so-
called outer and the inner membrane. While the outer
membrane provides the outer envelope of the mitochondrion
(as its name suggests), the inner membrane (IM)—enclosing
the matrix—contains the protein complexes necessary for en-
ergy production. More specifically, the IM forms tubular and
“pancakelike” invaginations named cristae that are the place
of ATP synthesis from ADP. This endothermic reaction is
catalyzed by ATP synthase, a transmembrane protein located
in the zones of high curvature of the cristae. ATP synthase
uses a gradient of the proton electrochemical potential be-
tween the two sides of the IM as a driving force. Protons
in the cristae are supplied by transmembrane proteins of the
electron transport chain (also referred to as respiratory chain),
which inject protons from the matrix in the cristae. As these
proteins are located in flat regions of the cristae, ATP synthase
and respiratory chain proteins are spatially separated and the
protons diffuse from one site to the other. Notably, the protons
are thought to diffuse along the cristae membrane and not in
the bulk [32–34].

The mechanisms that couple respiratory chain complexes
and ATP synthase proteins to ensure efficient ATP synthesis
are a very active field of research. Here, we focus on the cou-
pling between a proton gradient and the shape of the cristae
membrane which has been observed to change from a regular
cylinder to a bumpy irregular tubule when submitted to proton
gradients of increasing intensity [20].

A. Cristae membrane composition
and the importance of cardiolipins

The mitochondrial IM is partly composed of cardiolipin
(CL), an anion-acid lipid, found in the majority of membrane
organelles that enclose oxidative phosphorylation processes.
The value of CL’s second pKa, associated with the proton
exchange,

CL2− + H+ � CLH−, pKa = 8, (34)

suggests that at physiological conditions, pH = 7, the CL
carries a unique charge [35].

TABLE I. Values of the model parameters

L 50 nm kin [38] 6 × 106 s−1

R 10 nm kout [38] 3.24 × 105 proton−1 s−1

Ls 9.5 nm D [34] 107 nm2 s−1

�in 20 nm �out 5 nm
κ 10−10 N nm σ0 [30] 10−16 N nm−1

It has been speculated that this lipid could thus play the
role of a proton trap creating a surface proton reservoir inde-
pendently of the bulk pH in the cristae [33,35]. Moreover, in
vitro experiments suggest that the change of the protonation
state of CL could affect the membrane mechanical properties
[17].

In order to take into account the potential coupling of the
CL protonation state (related to the local proton concentra-
tion) to the membrane shape, we thus consider the density
field ρ and the composition field φ introduced in the model
[see Eq. (2)] to be given by the densities of the two cardiolipin
forms HCL− and CL2−, such that ρ(s) = ρCL2− + ρHCL− and
φ(s) = ρCL2−/ρ.

In the following, we model the cristae as a membrane tube
of length L, that is closed by a spherical cap which we will
not further consider here. The reference state corresponds to
a homogeneous CL distribution in the absence of catalytic
activity of the electron transport chain and ATP synthase, and
accordingly ψ = 0. We assume that the (cylindrical) reference
state is in mechanical equilibrium. Its internal tension is coun-
terbalanced by an external tension fext applied at s = 0, L.
Following Eq. (17), this external force is given by

fext (0) = −fext (L) = − 2σ0

1 + X
es. (35)

In isolated mitochondria, the cristae assume different shapes
depending on the state of ATP production and such reference
state cylinder, (r, ψ ) = (0, 0) is chosen to model the state IV
low rate of proton injection and ATP production [20].

In order to determine the compositional profile ψ (s) of
the CLs in the catalytically active state, we first consider the
surface concentration gradient of protons along the cristae
membrane and then infer the local shift in CL2− and HCL−

concentrations based on the protonation rate constants. The
surface concentration profile of protons can be written as
[H+] = h0 + h(s). The homogeneous proton concentration
h0, associated with the reference state, corresponds to the den-
sity of protons trapped by the CL in the undeformed cylinder,
for which both the respiratory chain proteins and the ATP
synthase do not present catalytic activities. Note that this state
is also referred to as state IV of the organelle [20]. We denote
by h(s) the perturbation of the surface proton field due to the
catalytic activities of the proteins that inject and consume H+.
To determine h(s), we model the system as follows [see sketch
in Fig. 3(a)]. At one end of the cylinder (s = 0), we assume a
reflecting barrier for the proton flux, dh/ds|s=0, modeling the
role of the cristae junction proteins [37]. At the other end of
the cylinder (s = L), a ring-shaped proton sink with a spatial
extension of �out models the proton consumption of ATP
synthase proteins. At s = Ls, a ring-shape proton source, with
a spatial extension of �in, models the proton insertion of the
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FIG. 3. (a) Finite cylinder of length L on which is included a surface source Sin and sink Sout of protons. (b) Proton profile h(s)/h0

and consequent lipid composition ψ (s). Solutions of Eqs. (36) and (39) for parameters given in Table I. (c) Contribution to the density
inhomogeneity proportional to the curvature (C − Ceq ) [red (dark) plot corresponds to shape (e); orange (light) plot to shape (d)]. (d) Example
of a solution of Eq. (25) for h0 = 30 protons nm−1, φ0 = 0.5, X = 0.21, Y = 0.5, and Z = 17. (e) Example of a solution for the same
parameters as (d) except for X = −0.25, Y = 1.1, and Z = 40. (f) Reproduction of a graphical scheme of a Cryo-ET of isolated Polytomella
sp. mitochondria, scale bar 100 nm [36].

respiratory chain. The profile h(s) then satisfies the following
stationary diffusion equation:

D
∂2h

∂s2
(s, t ) + Sin(s) − Sout (s) = 0, (36)

where D is the proton diffusion constant and

Sin(s) = kin√
2π�2

in

exp

(
− 1

2�2
in

(s − Ls)2

)
, (37)

Sout (s) = kout[h0 + h(s)]√
2π�2

out

exp

(
− 1

2�2
out

(s − L)2

)
(38)

are the expressions for the source and sink injection and
consumption rates, respectively. The numerical values of the
parameters introduced here are specified in Table I.

The ratio h(s)/h0—with the h(s) solution of Eq. (36)—is
shown in Fig. 3(b) (blue line). The proton concentration pro-
file indicates an excess of protons in the zone of the respiratory
chain (modeled by the proton source) and a lack of protons in
the zone of ATP synthase enrichment (modeled by the proton
sink), in agreement with in vivo pH measurements [38].

The inhomogeneity in the proton profile will induce an
inhomogeneity in the lipid composition due to a shift in the
chemical equilibrium between the two forms of CL. In the ref-
erence state, the lipid composition is φ0 = ρCL2−,0/ρ0. Using
the conservation of matter, the variation in the composition
can be expressed to the first order in h as

ψ (s) = −(1 − φ0)
h(s)

h0
. (39)

See Appendix 4 for details. The profile ψ (s) for an initial
φ0 = 0.5 is plotted in Fig. 3(b) (red line). As expected, one
can observe an enrichment in protonated CLs (corresponding
to ψ < 0) close to the proton source and in deprotonated CLs
close to the proton sink.

B. Mitochondrial cristae shape in
the presence of catalytic activity

Based on our simple model of a CL composition gradient
in the cristae membrane, we now solve the shape equation (25)
given the inhomogeneous field ψ (s) and assuming that the
mechanical boundary conditions remain unchanged, i.e., we
still consider a pinned protrusion with fixed (reference state)
curvature in s = 0 and s = L.

The latter leads to the following conditions on the radial
deformation field:

un(0) = 0, un(L) = 0, u′′
n (0) = 0, u′′

n (L) = 0. (40)

The solutions to the shape equation subject to these boundary
conditions were obtained by numerical integration.

In Figs. 3(d) and 3(e), we show the membrane shapes
obtained for two sets of parameters, one belonging to region
B of the shape phase diagram [Fig. 3(e)] and one to region
C [Fig. 3(d)]. Both present a bulge close to the proton sink
and a narrow bottleneck around the proton source. For the
parameters belonging to region B [Fig. 3(e)], the overall shape
is smooth, whereas for parameters of region C [Fig. 3(d)],
the shape presents a succession of oscillations modulating the
major bulge and narrow signature of the buckling instability
observed in this region. In general, the shapes are in qualita-
tive agreement with recent electron microscopy observations.
A Cryo-ET image of mitochondry is reproduced from [36] in
Fig. 3(f) and one can identify the necks and bulges in cristae.
Finally, we consider the density inhomogeneity r(s) induced
by the composition perturbation ψ (s). The expression given
in Eq. (9) shows that r(s) is the sum of a term proportional to
ψ and a term involving the curvature. When the coupling be-
tween r and ψ dominates, quantified by the value of β2/σ1, the
inhomogeneity in mass density follows ψ . When the coupling
between r and the curvature is dominant, quantified by the
value of β1/σ1, the inhomogeneity in the density will be given
by the variation of the curvature (C − Ceq). This contribution
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is plotted in Fig. 3(c) for the two shapes we have considered
above and shown in Figs. 3(d) and 3(e). One retrieves the
unique narrow and bulge of the shape shown in Fig. 3(e)
[red line in Fig. 3(c)] and a succession of dense and sparse
zones remindful of the shape shown in Fig. 3(d) [orange
line in Fig. 3(c)]. Experimental measurements have quantified
the variation of density r when a CL-enriched membrane is
submitted to a pH change [17]. Such experiments could be
used for a complete parametrization of the model presented
here and identify the phase diagram region relevant for mi-
tochondrial membranes. Note that the “pancake”-like shaped
cristae could also be studied using this framework in a 1D
approximation, by considering axisymmetric oblate vesicles
[25] as a reference state associated with proton sources on the
poles of the vesicle and proton sinks on its equator.

IV. CONCLUSION

In this work, we first presented a generalized Helfrich
model for inhomogeneous membranes with a coupling be-
tween membrane geometry and internal degrees of freedom
related to membrane composition. We showed that the shape
of such systems can easily be studied after derivation of
the stress tensor obtained via a constrained minimization of
the Hamiltonian. We show that, in the case of cylindrical
geometries, these systems present a rich phase diagram and
could explain deformations observed both for in vitro and in
vivo systems. This model could be applied to CL membranes
that are known to deform under pH variation [17]. Recently,
controlled microfluidic devices were developed to monitor the
vesicles’ response to a variation of chemical environment (salt
concentration or pH) [16,39]. Such protocols could be used to
validate the model.

We then applied this framework, combined with a simple
model of proton transport at the cristae surface, to describe
the shape deformations of mitochondrial cristae driven by the
surface proton flux established between proton sources and
sinks and that arise as a consequence of inhomogeneities in
the membrane composition downstream of the proton con-
centration gradient. Our model reproduces the characteristic
alternation between more constricted and wider regions typi-
cally associated with spatially varying rates of ATP synthesis
in the cristae [36].
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APPENDIX

We define the spontaneous curvature C0(r, ψ ) as a function
of the density and composition field. The curvature density
energy is written as

f = 1
2κ[C − C0(r, ψ )]2 (A1)

= 1
2κ[C − C0(0, 0) + r∂rC0 + ψ∂ψC0]2. (A2)

We expand C0(r, ψ ) as a function of r and ψ around (0,0). We
get the following.

1. Elements of differential geometry for a deformed cylinder

We use a standard parametrization for axisymmetric sur-
faces, s is the arclength, and θ is the revolution angle. X(θ, s)
gives the cylindric surface and the deformation components
are δX = u, assumed to be small so that all calculations in
this Appendix are performed up to first order in u. We assume
no deformations on the θ direction. Thus it gives

X =
⎛
⎝R cos θ

R sin θ

s

⎞
⎠, δX =

⎛
⎝un(s) cos θ

un(s) sin θ

us(s)

⎞
⎠, (A3)

where θ ∈ [0, 2π [ and s ∈ [0, L]; these are the curvilinear co-
ordinates on the surface of the undeformed cylinder of radius
R (see Fig. 1). The intrinsic basis is given by

e1 = eθ =
⎛
⎝−(R + un) sin θ

(R + un) cos θ

0

⎞
⎠,

e2 = es =
⎛
⎝u′

n cos θ

u′
n sin θ

1 + u′
s

⎞
⎠,

n =
⎛
⎝cos θ

sin θ

−u′
n

⎞
⎠, (A4)

where we use s1 = θ and s2 = s such that the normal vector
points to the outside of the tube and the prime means deriva-
tive with respect to s. The metric gab and the curvature Kab are
expressed to the first order in the deformation field

gab =
(

R2 + 2Run 0
0 1 + 2u′

s

)
, Kab =

(
R + un 0

0 −u′′
n

)
,

(A5)
where a and b are equal to s or θ . With this parametrization of
our system the area element is given by

dA = (R + un + Ru′
s)dθ ds. (A6)

Moreover, the normal and scalar curvatures are given by

C = 1

R
−

( un

R2
+ u′′

n

)
, R = −2

u′′
n

R
, (A7)

and the Christoffel symbols are

�θ
ab =

(
0 u′

n/R
u′

n/R 0

)
, �s

ab =
(−Ru′

n 0
0 u′′

s

)
. (A8)

2. Roots of Green’s function

We give here the general expressions of the four poles
(±Rq±) of the Green’s function:

R2q2
± = Y (1 − X 2) − X

Y (1 − X 2) − 1

±
√

[Y (1 − X 2) − X ]2 − [Y (1 − X 2) − 1]2

Y (1 − X 2) − 1
. (A9)
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3. Green’s function on lines A/B and B/C
The line separating the regions A and B, of equation Y =

1/[2(1 − X )], is associated with the Green’s function,

GA/B
⊥ (s) = δψZ

2R
(1 + X )|s|e−|s|/R. (A10)

The line separating the decay oscillating shapes, in region B
and the buckling region C, is associated with an unphysical
long-range Green’s function written as

GB/C
⊥ (s) = −δψRZ

4
(1 + X )(δ(s) + |s|

2R2
). (A11)

This behavior is due to the simultaneous cancellation of the
prefactor of the q4 term of the Green’s function denominator
(effective bending constant) and of the constant term of the
Green’s function.

4. Derivation of the composition expression, Eq. (39)

Consider the protonation of CL2−, Eq. (34), in the refer-
ence (undeformed) cylinder:

φ0 = [CL2−]0

[HCL−]0 + [CL2−]0
. (A12)

Using the equilibrium condition from pKa we have

Ka = h0
[CL2−]0

[HCL−]0
= h0φ0

1 − φ0
. (A13)

Applying the previous condition to the deformed state (up to
first order) one obtains

ψ (s) = −(1 − φ0)
h(s)

h0
. (A14)
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