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We consider a system of noninteracting particles on a line with initial positions distributed uniformly with
density ρ on the negative half-line. We consider two different models: (i) Each particle performs independent
Brownian motion with stochastic resetting to its initial position with rate r and (ii) each particle performs run-
and-tumble motion, and with rate r its position gets reset to its initial value and simultaneously its velocity gets
randomized. We study the effects of resetting on the distribution P(Q, t ) of the integrated particle current Q up to
time t through the origin (from left to right). We study both the annealed and the quenched current distributions
and in both cases, we find that resetting induces a stationary limiting distribution of the current at long times.
However, we show that the approach to the stationary state of the current distribution in the annealed and the
quenched cases are drastically different for both models. In the annealed case, the whole distribution Pan(Q, t )
approaches its stationary limit uniformly for all Q. In contrast, the quenched distribution Pqu(Q, t ) attains its
stationary form for Q < Qcrit (t ), while it remains time dependent for Q > Qcrit (t ). We show that Qcrit (t ) increases
linearly with t for large t . On the scale where Q ∼ Qcrit (t ), we show that Pqu(Q, t ) has an unusual large deviation
form with a rate function that has a third-order phase transition at the critical point. We have computed the
associated rate functions analytically for both models. Using an importance sampling method that allows to
probe probabilities as tiny as 10−14 000, we were able to compute numerically this nonanalytic rate function for
the resetting Brownian dynamics and found excellent agreement with our analytical prediction.
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I. INTRODUCTION

In a nonequilibrium open system, where there is typically a
flow of particles or energy from one region of space to another,
one of the central observables is the current fluctuation at a
fixed point in space [1–17]. For example, in a one-dimensional
setting, one measures the current Q(t ) denoting the number
of particles that have passed through a fixed point in space
(say, from left to right) up to a fixed time t , starting from a
given initial condition. The current Q(t ) of course is a random
variable with a distribution P(Q, t ) = Prob[Q(t ) = Q] and
it has two sources of randomness [7,8]: (i) from the noise
dependence of the trajectories up to time t and (ii) from the
randomness of the initial condition. If the distribution of Q(t )
is averaged over both sources of randomness simultaneously,
then this situation is referred to as the “annealed case” (in
analogy with disordered systems). This gives us the infor-
mation about the average fluctuations of Q(t ) in the system,
due to the randomness in the initial conditions. However,
the typical fluctuations of Q(t ) due to the initial conditions
are not captured by the annealed average. To extract these
typical fluctuations, one needs to perform a “quenched aver-
age,” where one first averages the logarithm of the distribution
of Q(t ) over the initial positions and then re-exponentiates
it. As in the case of disordered systems, these two proce-
dures give quite different answers for the current fluctuations.

Derrida and Gerschenfeld studied these current fluctuations
both for the noninteracting diffusive (Brownian) particles and
the symmetric simple exclusion process in one dimension
[7,8]. They considered the step initial condition, where par-
ticles are uniformly distributed to the left of the origin with a
uniform density ρ > 0, while the right of the origin is empty.
In this setting, they were able to calculate both the annealed
and the quenched current distribution. More recently, these
results were generalized to other noninteracting particles in
one dimension undergoing a variety of stochastic processes
[13,15], including, in particular, independent run-and-tumble
particles (RTPs).

Another class of stochastic processes that have created
much recent interest is stochastic resetting (for recent reviews
see Refs. [18–20]). Under stochastic resetting, the natural
dynamics of a particle gets interrupted at random times and
its motion restarts from the initial position. Generically, this
resetting drives the system into a nonequilibrium stationary
state where the detailed balance is manifestly violated due to
the resetting moves and the stationary state carries a nonzero
probability current [21,22]. In addition, resetting also has
rather drastic effects on first-passage properties [18,21,22],
but we will not be concerned in this paper with first-passage
aspects, but rather with the steady-state properties of the sys-
tem under resetting [18–45]. In particular, our goal is to study
the effect of stochastic resetting on the current distribution
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in a many-body system. One may anticipate, and as we will
demonstrate shortly, that under resetting the current distribu-
tion also becomes stationary at long times.

In this paper we again consider the setup with a step-initial
condition (all particles distributed uniformly on the negative
half-line), but now the dynamics of each particle undergoes
independent stochastic resetting to its initial position. We
consider two dynamical models with stochastic resetting: (i)
diffusive particles and (ii) RTPs. In model (i), each particle
diffuses with diffusion constant D and resets to its initial
position xi at a constant rate r. In model (ii), we consider
the independent RTP dynamics for each particle starting and
resetting at xi. The RTP dynamics has generated much cur-
rent interest in the context of active systems [46–63]. The
dynamics of a single RTP in one dimension, in the absence
of resetting, consists of alternating runs and tumbles. During
a run, the particle moves ballistically with a constant velocity
+v0 during a run time τ with exponential distribution p(τ ) =
γ e−γ τ , where γ −1 > 0 is the persistence time. At the end of
the run, the particle tumbles instantaneously, i.e., changes its
velocity from +v0 to −v0 and then a new run starts. Thus v0

and γ are the two parameters of the RTP model. Here in model
(ii), we consider N independent RTPs, with initial positions
distributed independently and uniformly with density ρ on
the negative semi-infinite axis (the same step initial condition
mentioned above for the diffusive dynamics). Furthermore,
we choose the initial velocities to be ±v0 with equal proba-
bility, independently for each particle. At every reset event,
the position gets reset and the velocity gets randomized.

In this paper, we study the same observables for indepen-
dent diffusive particles and RTPs as above, but now in the
presence of stochastic resetting. We show that a stationary
current distribution emerges in both cases. For the symmetric
exclusion process in the presence of resetting and starting
from a step initial condition, the current fluctuation in the
annealed case was studied recently [12,16]. Here we restrict
ourselves to noninteracting particles but study the current
distribution both in the annealed and in the quenched case.
In particular, for the quenched case, the current distribution
turns out to be highly nontrivial even for noninteracting par-
ticles. At variance with the case without resetting, the current
distribution reaches a stationary form in the long-time limit
due to the resetting dynamics. However, the approach in time
of the current distribution to its stationary form is drasti-
cally different in the annealed and in the quenched cases for
both diffusive and RTP dynamics. In the annealed case, the
whole distribution Pan(Q, t ) approaches its stationary limit
at late times uniformly for all Q. In contrast, the quenched
current distribution Pqu(Q, t ) approaches its stationary form
in a nonuniform way. More precisely, we show that there
exists a critical value Qcrit (t ) that increases linearly with t . For
Q < Qcrit (t ), the quenched distribution Pqu(Q, t ) becomes in-
dependent of t , while it is still time dependent for Q > Qcrit (t ).
This critical current Qcrit (t ) acts as a separatrix between the
stationary and the transient regimes in the quenched case. In
addition, for both dynamics in the quenched case, we find
that this transition manifests itself in the large deviation form
of Pqu(Q, t ) ∼ e−t2�[Q/Qcrit (t )] when Q ∼ Qcrit (t ). We compute
the rate function �(q) analytically for both dynamics and
find that it has a third-order singularity at a critical value

q = qcrit where the rate function and its first two derivatives
are continuous but the third derivative is discontinuous.

Measuring numerically such a rate function is a formidable
technical challenge, which we also address in this paper by
using an importance sampling algorithm capable of access-
ing very small probabilities. Using this method we compute
numerically the rate function �(q) for the Brownian motion
with resetting and find remarkably good agreement with our
analytical prediction. Finally, while the large deviations of
resetting systems have been studied extensively in the recent
past [26,30,33,40,63], to the best of our knowledge the one
observed in this paper is the first instance of a third-order
phase transition for processes with stochastic resetting

The rest of the paper is organized as follows. In Sec. II, we
define precisely the two models (diffusive and the RTP) with
stochastic resetting and we summarize our main results. In
Sec. III, we recall the general setup to calculate the annealed
and the quenched current distributions. In Sec. IV, we discuss
in detail the current distribution for the Brownian particles
with stochastic resetting. Section V deals with the current
distribution for the run-and-tumble particles with stochastic
resetting. Details of numerical simulations for the Brownian
case are presented in Sec. VI. Finally, we conclude in Sec. VII
with a summary and perspectives.

II. THE MODEL AND THE MAIN RESULTS

A. The model

In this paper we would like to understand how the presence
of a stochastic resetting affects the current fluctuations in a
system of noninteracting particles. Our model is defined as
follows:

(i) There are N noninteracting particles on a line all mov-
ing with the same stochastic dynamics. We considered two
specific stochastic dynamics

(a) Brownian motion: Here the position of the ith par-
ticle evolves via the Langevin equation

dxi

dt
= ηi(t ), (1)

starting from xi(0) = xi. Here ηi(t )’s are independent
Gaussian white noises with mean 〈ηi(t )〉 = 0 and corre-
lator 〈ηi(t )η j (t ′)〉 = 2Dδ(t − t ′) δi j with D denoting the
diffusion constant.

(b) RTP particles: Here the position evolves via

dxi

dt
= v0 σi(t ), (2)

starting from xi(0) = xi. Here v0 is the intrinsic speed
during a run and σi(t ) = ±1 are independent (from particle
to particle) dichotomous telegraphic noises [46,48]. Each
σi(t ) flips from one state to another with a constant rate
γ . The effective noise ξi(t ) = v0 σi(t ) is colored with an
autocorrelation function,

〈ξi(t )ξ j (t
′)〉 = v2

0 e−2 γ |t−t ′| δi j . (3)

The timescale γ −1 is the “persistence” time of a run that
encodes the memory of the noise. In the limit γ → ∞,
v0 → ∞ but keeping the ratio Deff = v2

0/2γ fixed, the
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FIG. 1. A typical realisation of the trajectories of N = 4 parti-
cles, each undergoing diffusion with stochastic resetting to the initial
positions x1, x2, x3, and x4 (marked by vertical lines). The quantity
Q = 1 indicates the number of trajectories that have crossed the red
dashed vertical line at position 0 from left to right up to time t . In this
example, only the second trajectory, starting from x2, has crossed 0
up to time t . The horizontal arrows in the trajectories represent the
resetting events.

two-time correlator of the effective noises ξi(t )’s becomes

〈ξi(t )ξ j (t
′)〉 = v2

0

γ
[γ e−2γ |t−t ′ |] δi j → 2Deff δ(t − t ′) δi j .

(4)
(ii) the initial positions xi’s of the particles are random

variables themselves uniformly distributed in the interval
[−L, 0]. Thus, we have an initial step profile for the density
ρ(x) = ρ = N

L for x ∈ [−L, 0];
(c) each particle is subjected to a Poissonian resetting

dynamics with the constant rate r to its initial position. This
means that, within a small time interval dt , with probability
r dt , the current position xi(t ) → xi and with the com-
plementary probability 1 − r dt , the current position xi(t )
evolves freely as in Eq. (1) or (2)—see Fig. 1 for typical
trajectories for the diffusive case with resetting. Note that
in the case of the RTP, one has to be more careful in
defining the resetting protocol. Here, following Ref. [31],
we start each RTP with a random velocity ±v0 with equal
probability. When the position xi(t ) is reset to the initial
value xi, we assume that the velocity gets randomized and
the process (both position and velocity) renews itself after
each resetting. Note that if the velocity is not randomized at
each reset event, then one has to keep track of both position
and velocity and the corresponding Green’s function in the
position space is more complicated to calculate [31], and
hence we do not discuss this case here. In addition, we do
not expect the physics to change much qualitatively.

B. The observable of interest: Annealed vs quenched current
distribution

We start the stochastic dynamics of the system from the
initial positions {x1, x2, . . . , xN } and evolve the system up to
time t . Let Q(t ) denote the total current up to time t , i.e., the
number of particles that have crossed the origin from left to
right up to t . It was realized in Ref. [13] that, for the step initial
condition, this history-dependent observable Q(t ) is related to
an instantaneous observable at time t , namely the number of
particles N+(t ) present at time t on the right of the origin. The
distribution of Q(t ) clearly depends on the initial positions
and we denote it by P(Q, t |{x1, x2, . . . , xN }). It is convenient
to consider the generating function of Q(t ), namely

〈e−pQ〉{xi} :=
N∑

Q=0

e−pQP(Q, t | {xi}). (5)

The annealed and quenched averages are defined as [7,13]
N∑

Q=0

e−pQPan(Q, t ) = 〈e−pQ〉{xi}, (6)

∫ ∞

0
e−pQPqu(Q, t ) dQ = exp[ln 〈e−pQ〉{xi}]. (7)

where the symbol (. . . ) represents the average over {xi}.
Note that in the quenched case, by taking first the average
of the logarithm followed by re-exponentiation allows us to
extract the typical behavior of P(Q, t ) among all possible
initial configurations. In the set of typical configurations (e.g.,
approximately equispaced initial positions), the value of Q
is rather large and hence the discrete sum in the annealed
case gets replaced by an integral over continuous values of Q.
Hence the generating function gets replaced by the Laplace
transform in the quenched case. In this paper, we compute
exactly both the annealed and the quenched current distri-
butions for the diffusive as well as for the RTP case with
stochastic resetting. Our main results are summarized in the
next subsection.

C. Main results

1. Annealed case

In this case, it was already shown in Ref. [13] that, irrespec-
tive of the dynamics, the distribution Pan(Q, t ) has a universal
Poissonian form,

Pan(Q, t ) = e−μ(t ) [μ(t )]Q

Q!
, Q = 0, 1, 2, . . . . (8)

Only the mean μ(t ) depends on the underlying process explic-
itly as

μ(t ) = ρ

∫ ∞

0
dz U (z, t ), (9)

where

U (z, t ) :=
∫ +∞

0
dx G(x,−z, t ), z � 0. (10)

In this expression, G(x,−z, t ) is the Green’s function of the
underlying dynamics, i.e., the probability density, for a single
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particle, to reach x at time t , starting from −z. The result (8)
admits a large deviation form

Pan(Q, t ) ∼ exp

{
−μ(t ) �an

[
Q

μ(t )

]}
, (11)

valid for large Q and μ(t ) with Q/μ(t ) fixed. Here the rate
function �an(q) is universal, i.e., independent of the particle
dynamics, and is given by

�an(q) = q ln q − q + 1, q � 0. (12)

In this paper, we compute the mean μr (t ) (the subscript r
refers to resetting with rate r), both for the diffusive and the
RTP case. For the diffusive case, it is given by

μr (t ) = ρ

2

√
D

r
erf (

√
rt ), (13)

where erf (z) = (2/
√

π )
∫ z

0 e−u2
du is the error function. The

function μr (t ) has the following asymptotic behaviors:

μr (t ) ≈

⎧⎪⎨
⎪⎩

ρ

√
D
π

√
t, t → 0,

ρ

2

√
D
r , t → ∞.

(14)

Thus, as time increases, the mean current initially increases as√
t , as in the case without resetting and saturates exponentially

fast to its stationary value as t → ∞.
In the case of the RTP, we show that

μr (t ) = e−rtμ0(t ) + r
∫ t

0
e−rτμ0(τ )dτ, (15)

where μ0(t ) is the result for RTP without resetting found in
Ref. [13]

μ0(t ) = 1
2ρv0te−γ t [I0(γ t ) + I1(γ t )], (16)

with I0, I1 denoting the modified Bessel functions of the first
kind. The asymptotic behaviors of μr (t ) are given by

μr (t ) ≈
{ 1

2ρ v0 t, t → 0,

ρ v0

2
√

r(r+2γ )
, t → ∞.

(17)

As in the case of resetting Brownian motion, the mean current
again approaches exponentially fast to a stationary limiting
value as t → ∞. In the diffusive limit v0 → ∞, γ → ∞ with
v2

0/(2γ ) = D fixed, the stationary value in the second line of
Eq. (17) coincides with the stationary value for the resetting
Brownian motion given in Eq. (14).

Thus in the long-time limit, in both models, the annealed
current distribution in Eq. (8) converges to a stationary distri-
bution

Pan(Q, t ) −→
t→∞ e−μr (∞) [μr (∞)]Q

Q!
, Q = 0, 1, 2, . . . . (18)

This stationary distribution is still Poissonian but with a con-
stant mean μr (∞) as given in Eqs. (14) and (17) for the two
models. Thus, for any value of Q, the distribution Pan(Q, t )
converges uniformly to its stationary value exponentially fast.

2. Quenched case

To appreciate the effect of resetting, let us first briefly recall
the results for the quenched case in the absence of reset-
ting for the diffusive [7,13] and the RTP cases [13]. For the
quenched case, the calculation is more intricate, even without
resetting. For the noninteracting diffusive case, it was shown
in Refs. [7,13] that, for large t , large Q with Q/

√
t fixed,

Pqu(Q, t ) admits a large deviation form,

Pqu(Q, t ) ∼ exp

[
−ρ

√
Dt �diff

(
Q

ρ
√

Dt

)]
, (19)

where �diff (q) is not fully explicit and grows anomalously as
�diff (q) ∼ q3/12 as q → ∞ [7,13]. In contrast, for the RTP
case, it was shown in Ref. [13] that, for large Q and large t
with Q/t fixed, the quenched current distribution takes a large
deviation form,

Pqu(Q, t ) ∼ exp

[
−ρ v0 γ t2 �RTP

(
Q

ρ v0 t

)]
, (20)

where the rate function �RTP(q) is now fully explicit and given
by [13]

�RTP(q) = q − q

2

√
1 − q2 − sin−1

⎡
⎣
√

1 −
√

1 − q2

2

⎤
⎦,

0 � q � 1. (21)

The upper bound q � 1 arises from the fact that the total
current Q(t ) cannot exceed ρv0t . In particular, the rate func-
tion approaches a nontrivial constant �RTP(q) → 1 − π/4 as
q → 1 [13].

What happens to the current distribution in the quenched
case when the resetting rate r is switched on? As in the
annealed case, in the limit t → ∞, the quenched current dis-
tribution Pqu(Q, t ) also approaches a stationary distribution
in the presence of resetting in both models. However, the
approach to the stationary state in the quenched case is very
different from that of the annealed case. We recall that the an-
nealed distribution approaches its stationary form uniformly
for all Q. In contrast, for the quenched case, we show that
there is a critical value Qcrit (t ) that increases linearly with t
such that, for Q < Qcrit (t ) the quenched distribution attains
its stationary form, while it is still time dependent for Q >

Qcrit (t ). Thus the stationary state gets established on longer
and longer scales as time increases. The critical value Qcrit (t )
separates the steady state and the transient regime. This is
reminiscent of how the position distribution evolves for a
single resetting Brownian motion studied in Ref. [25]. On this
scale, when Q ∼ Qcrit (t ), we show that the quenched distri-
bution admits an unusual large deviation form in both models
that exhibits a third-order phase transition at Q = Qcrit (t ).

For the diffusive case, we find that, in the limit Q → ∞,
t → ∞ keeping the ratio q = Q/(rt ) fixed, the quenched cur-
rent distribution admits a large deviation form,

Pqu(Q, t ) ∼ exp

[
−r2t2�

(r)
diff

(
Q

rt

)]
, (22)
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with

�
(r)
diff (q) =

⎧⎪⎨
⎪⎩

q2

q∗ for q < q∗ = 2
√

D
r ρ

− q∗
3 + q + q3

3q∗2 for q > q∗ = 2
√

D
r ρ.

(23)
We note that the function �

(r)
diff (q) and its two first derivatives

are continuous at q = q∗, while the third derivative is discon-
tinuous, indicating a third-order dynamical phase transition.
In fact, taking the limit t → ∞ but keeping Q fixed, one sees,
using the result in the first line of Eq. (23), that the current
distribution Pqu(Q, t ) approaches a stationary Gaussian form

Pqu(Q, t ) −→
t→∞ exp

(
− 1

2ρ

√
r

D
Q2

)
. (24)

Indeed, for finite but large t , for Q � q∗r t , the current dis-
tribution becomes time independent, while for Q 
 q∗r t , the

distribution is transient, i.e., time dependent. Thus, the bound-
ary Qcrit (t ) = q∗r t in the (Q, t ) plane separates the stationary
regime from the transient regime discussed above, indicat-
ing the two phases across the third-order phase transition at
q = q∗.

In the case of RTP, we show that the quenched current
distribution Pqu(Q, t ) similarly admits a large deviation form
in the limit Q → ∞, t → ∞ but keeping q = Q/(ρ v0 t ) fixed

Pqu(Q, t ) ∼ exp

[
−ρv0γ t2 �

(r)
RTP

(
Q

ρv0t

)]
, (25)

where

�
(r)
RTP(q) =

⎧⎪⎨
⎪⎩

qc

2
√

1−q2
c

q2, 0 < q < qc =
√

α(α+2)
α+1 ,

− qc

2
√

1−q2
c

+ q√
1−q2

c

− 1
2 q
√

1 − q2 + 1
2 sin−1(qc) − 1

2 sin−1(q), qc < q � 1.
(26)

with α = r/γ . This rate function also undergoes a third-order
phase transition at q = qc, similarly to the resetting Brownian
motion. In this case, Qcrit (t ) = ρ v0 qc t separates the steady-
state regime for Q < Qcrit (t ) and the transient regime for Q >

Qcrit (t ). Note that in the limit r → 0+ (or α → 0+), when
qc → 0, we recover the result in Eq. (21) without resetting.

III. GENERAL SETUP FOR NONINTERACTING
PARTICLES: CURRENT FLUCTUATIONS

The general setup for the current fluctuations for nonin-
teracting particles starting from a step initial condition was
already discussed in Ref. [13]. We briefly recall this setup

here to make the discussion in this paper self-contained and,
in addition, this will also serve the purpose of setting up our
notations. The main observation of Ref. [13] was that the total
current Q(t ) (left to right through the origin) up to time t
coincides with the number of particles N+(t ) at time t that
are present on the right of the origin, i.e.,

Q(t ) = N+(t ) =
N∑

i=1

θ [xi(t )], (27)

where θ (x) = 1 if x � 0 and zero otherwise. For a fixed initial
condition {x1, x2, . . . , xN } it follows that the generating func-
tion

∞∑
Q=0

e−pQP(Q, t, {xi}) = 〈e−pQ〉{xi} =
〈

exp

{
−p

N∑
i=1

θ [xi(t )]

}〉
{xi}

=
N∏

i=1

{1 − (1 − e−p)〈θ [xi(t )]〉}, (28)

where we used e−pθ (x) = 1 − (1 − e−p)θ (x) is the last equal-
ity and the independence of particles. Noticing that

〈θ [xi(t )]〉 =
∫ ∞

0
G(x, xi, t )dx ≡ U (−xi, t ), xi < 0,

(29)
where G(x, xi, t ) is the single-particle Green’s function, i.e.,
the propagator for a particle to reach x at time t , starting
initially at xi < 0. This gives

〈e−pQ〉{xi} =
N∏

i=1

[1 − (1 − e−p)U (−xi, t )], xi < 0,

∀i = 1, . . . , N. (30)

This is a general result, valid for any underlying dynamics, the
information about the dynamics being contained in U (z, t ).
We now consider the average over the initial positions {xi},
leading to the annealed and the quenched cases that are dis-
cussed below separately.

A. Annealed case

The annealed distribution Pan(Q, t ) is defined in Eq. (6).
Performing the average · · · over the initial positions gives

〈e−pQ〉{xi} =
N∏

i=1

[1 − (1 − e−p)U (−xi, t )], (31)
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where U (−xi, t ) is defined in Eq. (29). To perform the average
over the initial conditions with a fixed uniform density ρ, we
assume that each of the N particles is distributed indepen-
dently and uniformly over a box [−L, 0] and then eventually
take the limit N → ∞, L → ∞ keeping the density ρ = N/L
fixed. For this uniform measure, each xi is uniformly dis-
tributed in the box [−L, 0]. Using the independence of the
xi’s we then get

〈e−pQ〉{xi} =
N∏

i=1

[
1 − (1 − e−p)

∫ 0

−L
U (−xi, t )

dxi

L

]

=
[

1 − 1

L
(1 − e−p)

∫ L

0
U (z, t )dz

]N

, (32)

where, in the last equality, we made the change of variable
z = −xi. Taking now the limit N → ∞, L → ∞ keeping ρ =
N/L fixed gives

∞∑
Q=0

e−pQPan(Q, t ) = 〈e−pQ〉{xi} = exp[−μ(t ) (1 − e−p)],

where μ(t ) = ρ

∫ ∞

0
dz U (z, t ). (33)

By expanding exp[−μ(t ) (1 − e−p)] in powers of e−p and
comparing to the left-hand side, we see that Q can take only
integer values Q = n = 0, 1, 2, . . . and the probability distri-
bution is thus simply a Poisson distribution as in Eq. (8) with
mean μ(t ) given in Eq. (33). Thus, all we need to compute is
the mean μ(t ) for a given process.

B. Quenched case

As in the annealed case, the general formalism for the
quenched case, valid for noninteracting particles with arbi-
trary dynamics, was also worked out in Ref. [13]. One starts
with the definition of the current distribution in the quenched
case in Eq. (7), which we recall here∫ ∞

0
Pqu(Q, t )e−pQ dQ = exp[ln[〈e−pQ〉{xi}]], (34)

where · · · represents an average over the initial positions {xi}.
Our starting point is again Eq. (30). We take the logarithm on
both sides of (30) to obtain

ln[〈e−pQ〉{xi}] =
N∑

i=1

ln[1 − (1 − e−p)U (−xi, t )], (35)

where U (−xi, t ) is defined in Eq. (29) in terms of the
single-particle Green’s function G(x, xi, t ) of the underlying
dynamics. Next, we perform the average over the initial po-
sitions where each xi is chosen independently and uniformly
from the box [−L, 0]. Taking the thermodynamic limit N →
∞, L → ∞ with ρ = N/L fixed, we get

log[〈e−pQ〉{xi}] = N

L

∫ 0

−L
dxi ln[1 − (1 − e−p)U (−xi, t )]

−→ ρ

∫ ∞

0
dz ln[1 − (1 − e−p)U (z, t )].

(36)

Therefore the Laplace transform of the quenched flux distri-
bution is given by∫ ∞

0
Pqu(Q, t )e−pQ dQ = exp [I (p, t )], (37)

where

I (p, t ) = ρ

∫ ∞

0
dz ln[1 − (1 − e−p)U (z, t )]. (38)

This result is very general and holds for any stochastic pro-
cess. While it is difficult to invert this Laplace transform (37)
and (38) to get Pqu(Q, t ) explicitly, one can easily derive its
moments by making a small p expansion of (38). For example,
for the mean and the variance one gets [13]

〈Q〉qu = ρ

∫ ∞

0
U (z, t )dz, (39)

σ 2
qu = 〈Q2〉qu − 〈Q〉2

qu = ρ

∫ ∞

0
U (z, t )[1 − U (z, t )]dz.

(40)

Note that by comparing Eqs. (33) and (39), one finds,
quite generally, that the mean current in the annealed and
the quenched cases are identical for any dynamics. However,
their variances differ, signaling that the current fluctuations
are rather different in the two cases. In both cases, the basic
information needed to compute the full current distribution is
contained in the function U (z, t ) = ∫∞

0 G(x,−z, t ) dx. This is
indeed the central quantity and to compute it, all we need is
the single-particle Green’s function of the underlying process.

Below we derive the results for the diffusive and the RTP
dynamics with resetting separately, both for the annealed and
the quenched cases.

IV. BROWNIAN PARTICLES WITH STOCHASTIC
RESETTING

Here the underlying dynamics of each particle is a Brown-
ian diffusion with stochastic resetting with rate r to its initial
position. The initial positions are distributed independently
and uniformly with density ρ on the negative real line. Both
for the annealed and the quenched cases, the central quan-
tity needed is the function Ur (z, t ) = ∫ Gr (x,−z, t ) dx, where
Gr (x,−z, t ) is the propagator of a single resetting Brownian
motion from −z to x in time t . Note that the subscript r here
denotes the “resetting” Brownian motion. This propagator can
be easily derived from a simple renewal equation [18]

Gr (x, x0, t ) = e−rt G0(x, x0, t ) + r
∫ t

0
e−rτ G0(x, x0, τ )dτ,

(41)
where G0(x, x0, τ ) = e−(x−x0 )2/(4Dτ )/

√
4πDτ is just the Brow-

nian propagator without resetting. The result in Eq. (41) can
be understood as follows. First we consider the case where
there is no resetting in the interval [0, t], which happens
with probability e−rt . In this case, the propagator is simply
G0(x, x0, t ), explaining the first term in Eq. (41). In case when
there are multiple resettings in [0, t] to the initial position x0,
it suffices to keep track of what happens after the last resetting
before t . Let this last resetting happen at time t − τ . Then
between t − τ and t , the particle evolves freely from x0 during
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the interval τ and hence its propagator is simply G0(x, x0, τ ).
Furthermore, the factor r e−rτ dτ denotes the probability of
the event that there are no resetting in the interval [t − τ, t],
preceded by a resetting event in the time interval dτ before
t − τ . Multiplying these two probabilities and integrating over
τ ∈ [0, t] gives the second term in Eq. (41). To solve this
equation, it is convenient to take the Laplace transform with
respect to t , which gives

G̃r (x, x0, s) =
∫ ∞

0
Gr (x, x0, t ) e−st dt

= r + s

s
G̃0(x, x0, r + s), (42)

where

G̃0(x, x0, s) =
∫ ∞

0
G0(x, x0, t ) e−st dt

= 1√
4Ds

exp

(
−
√

s

D
|x − x0|

)
. (43)

In arriving at the last equality, we used the explicit free
propagator G0(x, x0, t ) = e−(x−x0 )2/(4Dt )/

√
4πDt . Substituting

this result in Eq. (42), we obtain G̃r (x, x0, s). What we need
is actually Ur (z, t ) = ∫∞

0 Gr (x,−z, t ) dx. Taking the Laplace
transform of this relation with respect to t and using the
explicit expression of G̃r (x,−z, s) we get

Ũr (z, s) =
∫ ∞

0
Ur (z, t ) e−st dt = 1

2s
exp

[
−
√

r + s

D
z

]
.

(44)

Inverting this Laplace transform (44) with respect to s using
the convolution theorem, we obtain

Ur (z, t ) =
∫ t

0

z

4
√

πDτ 3
exp

(
−rτ − z2

4Dτ

)
dτ. (45)

Note that while for finite t it is hard to evaluate this integral
explicitly, it simplifies in the large t limit where it approaches
a stationary form,

Ur (z) = Ur (z, t → ∞) = 1
2 e−

√
r
D z. (46)

Having obtained the central quantity Ur (z, t ) in Eq. (45) or
equivalently its Laplace transform in Eq. (44), we now discuss
the annealed and the quenched cases separately.

A. Annealed case

As discussed before for general noninteracting particles,
the current distribution Pan(Q, t ) in the annealed case is Pois-
sonian. This Poisson distribution is fully characterized just by
its mean μr (t ) = ρ

∫∞
0 dz Ur (z, t ), where Ur (z, t ) is given in

Eq. (45). To compute this integral, it is actually convenient to
first consider its Laplace transform

μ̃r (s) =
∫ ∞

0
μr (t ) e−st dt =

∫ ∞

0
Ũr (z, s)dz = ρ

2s

√
D

r + s
,

(47)

where in the last equality we used Eq. (44). One can now
invert this Laplace transform easily to obtain the exact mean

current,

μr (t ) = ρ

2

√
D

r
erf (

√
rt ), (48)

valid for all t . Thus, in this case, the current distribution is
exact at all time t . As discussed in Sec. II C, the distribution
becomes stationary at long time with mean μr (t → ∞) =
(ρ/2)

√
D/r.

B. Quenched case

From Eq. (38), we see that the basic ingredient needed to
compute Pqu(Q, t ) is also the function Ur (z, t ) already com-
puted in Eqs. (44) and (45). We start by computing the mean
and the variance of Pqu(Q, t ) given in Eqs. (39) and (40). For
the mean we obtain, using Eqs. (39) and (48),

〈Q〉qu = ρ

2

√
D

r
erf (

√
rt ). (49)

Similarly, the variance is given by Eq. (40) with U (z, t ) given
in Eq. (45). While it is difficult to perform the integral for
Ur (z, t ) in Eq. (45), it turns out that the expression for the
variance in Eq. (40) simplifies when one performs the integral
over z first and then over τ . This allows us to obtain an explicit
formula for the variance

σ 2
qu = ρ

2

√
D

r
V (r t ), (50)

where the scaling function V (z) is given by

V (z) = erf (
√

z) − 1

4

{
[1 − 2(2z + 1) erfc(

√
z) + (4z + 1)

× erfc(
√

2z)] + 4√
π

√
z e−z − 2√

π

√
2z e−2z

}
. (51)

This function V (z) has the asymptotic behaviors

V (z) ≈
⎧⎨
⎩
√

2
π

√
z + O(z3/2), z → 0

3
4 + O(e−z/

√
z), z → ∞.

(52)

Thus V (z) saturates to a constant 3/4 as z → ∞, indicating
from Eq. (50) that the variance approaches a constant as
t → ∞

σ 2
qu → 3 ρ

8

√
D

r
. (53)

This is indeed the variance of the current in the stationary
state. Indeed, in the stationary state, one can calculate all the
cumulants of Pqu(Q, t → ∞). To see this, we take the t → ∞
limit of Eq. (38). Substituting the stationary form Ur (z, t →
∞) in Eq. (46) and performing the integral in Eq. (38), we get

I (p, t → ∞) = −ρ

√
D

r
Li2

[
1

2
(1 − e−p)

]
, (54)

where Li2(z) =∑n�1 zn/n2 is the dilogarithm function,
which is convergent for |1 − e−p| < 2. For p outside this
range, one needs to analytically continue this formula (54) to
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obtain I (p, t → ∞). For small p, one can use this expression
for I (p, t → ∞) in (54) and expand in powers of p to compute
all the cumulants of Pqu(Q, t → ∞), i.e.,

I (p, t → ∞) =
∞∑

n=1

(−p)n κn

n!
, (55)

where κn is the nth cumulant of Pqu(Q, t → ∞). Expanding
Eq. (54) in powers of p one can obtain all the cumulants in
the stationary state as κn = ρ

√
r/D an, where the first an’s are

given by

a1 = 1
2 , a2 = 3

8 , a3 = 5
24 , a4 = 1

32 ,

a5 = − 19
240 , etc. (56)

Note that the first two cumulants agree with the large t limit
of our exact formulas for the mean and the variance valid for
all t , respectively in Eq. (49) and (50). Interestingly, the fifth
cumulant is negative. While we can compute the cumulants
exactly in the stationary state, extracting Pqu(Q, t → ∞) ex-
plicitly requires the knowledge of I (p, t → ∞) in the whole
complex p plane, which is more complicated and we do not
pursue it further here.

So far, we have computed exactly the full time-dependent
mean and the variance of the quenched current distribution
and higher cumulants only in the stationary state. It turns out
that one can also extract the behavior of the full distribution
Pqu(Q, t ) in the special scaling limit Q → +∞, t → +∞ but
keeping the ratio Q/t fixed. In this limit, we now show that it
satisfies a large deviation behavior as announced in Eqs. (22)
and (23).

This large Q behavior can be extracted by analyzing the
Laplace transform in Eq. (37). It turns out that, for this, we
need to extract the behavior of I (p, t ) for large negative p.
Analytically continuing the expression for I (p, t ) in Eq. (38)
to negative p, and using v = −p, we get

I (−v, t ) := Ĩ (v, t ) ≈ ρ

∫ +∞

0
dz ln [1 + evUr (z, t )], (57)

where we recall that the Laplace transform of Ur (z, t ) is given
explicitly in Eq. (44). Even though this Laplace transform
can be inverted formally to obtain (45), it is useful to extract
the asymptotic behaviors of Ur (z, t ) (for large z and large t),
directly from the Laplace transform. The reason for this is as
follows. We will see later that for the RTP case, the real space
representation of Ur (z, t ) is much more complicated, while it
is much easier in the Laplace space. Hence, working in the
Laplace space is more convenient in both cases. The inverse
Laplace transform Ur (z, t ) in Eq. (44) can be expressed as a
Bromwich integral in the complex s plane

Ur (z, t ) =
∫

�

ds

2π i

es t

2s
e−

√
r+s
D z, (58)

where � runs along the vertical axis in the complex s plane
such that its real part is to the right of all the singularities of the
integrand. We note that this integrand clearly has a simple pole
at s = 0. It also has a saddle point for large t at s = s∗, where
s∗ is obtained by minizing the argument of the exponential and

is given by

s∗ = −r + z2

4D t2
. (59)

Now two situations can occur:
(i) s∗ < 0, i.e., z <

√
4D r t : In this case, the dominant

contribution to the integral comes from the pole at s = 0 and
one simply gets

Ur (z, t ) ≈ 1
2 e−

√
r
D z. (60)

(ii) s∗ > 0, i.e., z >
√

4D r t : In this case the saddle occurs
to the right of the pole on the real axis. Hence one can deform
the Bromwich contour to pass through the saddle to pick
up the leading contribution. Evaluating this saddle point and
ignoring pre-exponential factors, we get

Ur (z, t ) ≈ e−t (r+ z2

4D t2 )
. (61)

Combining these two behaviors [(60) and (61)], one can ex-
press Ur (z, t ) in a large deviation form,

Ur (z, t ) ∼ e−t f ( z
t ),

where f (u) =
{√ r

D u if u < u∗ = √
4Dr,

r + u2

4D if u > u∗ = √
4Dr.

(62)

The rate function f (u) and its first derivative is continu-
ous at u = u∗ = √

4D r [see Fig. 2(a)]. However, the second
derivative is discontinuous. This is similar to the second-order
transition found in the position distribution of a resetting
Brownian motion in Ref. [25]. Substituting this large devia-
tion form (62) in Eq. (57) we get

I (−v, t ) := Ĩ (v, t ) ≈ ρ

∫ +∞

0
dz ln[1 + (ev − 1) e−t f ( z

t )]

≈ ρ

∫ +∞

0
dz ln[1 + eve−t f ( z

t )], (63)

where, in the last approximation, we used v 
 1. To evaluate
this integral, we use the following trick: We first take the
partial derivative of Ĩ (v, t ) with respect to v, and then we
compute the integral and finally integrate back with respect
to v. The partial derivative gives

∂ Ĩ (v, t )

∂v
≈ ρ

∫ +∞

0
dz

1

1 + e−[v−t f (z/t )]

= ρ t
∫ +∞

0
dx

1

1 + e−t[v/t− f (x)]
. (64)

Let us define x∗ such that

v = t f (x∗), (65)

where f (x) is given in Eq. (62). Hence Eq. (64) reads

∂ Ĩ (v, t )

∂v
= ρ t

∫ +∞

0
dx

1

1 + e−t[ f (x∗ )− f (x)]
. (66)

In the limit of large t , we now recognize that the integrand in
Eq. (66) is like a Fermi function (at “an inverse temperature”
t). Hence for large t (zero-temperature limit), one can replace
the Fermi function by a step function, which takes value 1 for
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(b)(a)

FIG. 2. (a) Plot of the function f (u) vs u in Eq. (62). With the parameter choices D = 1, r = 1, we have u∗ = √
4D r = 2 shown by the

vertical dashed line where the function f (u) and its first derivative are continuous, but the second derivative is discontinuous. (b) Plot of the
rate function �

(r)
diff (q) vs q as given in Eq. (78). The critical value q∗ = 2

√
D/r ρ = 2, for the choice D = 1, r = 1 and ρ = 1, is marked by the

vertical dashed line.

x < x∗ and 0 for x > x∗. Hence the integral over x in (66) gets
cutoff at x∗ and we get to leading order for large t ,

∂ Ĩ (v, t )

∂v
≈ ρt x∗ = ρ t f −1

(v
t

)
, (67)

where f −1 is the inverse function of f . It can be easily read
off by inverting Eq. (62) explicitly,

f −1(y) =
{√

D
r y for y < 2r,√
4D(y − r) for y > 2r.

(68)

Finally, integrating back in v, with v/t fixed, we get to leading
order for large t ,

Ĩ (v, t ) = ρt
∫ v

0
f −1
(y

t

)
dy = ρt2

∫ v
t

0
f −1(y)dy. (69)

Using the explicit form of f −1(y) from Eq. (68), we arrive at

Ĩ (v, t ) ≈ −ρt2 φ̃
(v

t

)
(70)

with

φ̃(y) =

⎧⎪⎨
⎪⎩

−
√

D
r

y2

2 for y < 2r

− 2
3

√
Dr3 − 4

3

√
Dr3
( y

r − 1
)3/2

for y > 2r.
(71)

Substituting this scaling form (70) of Ĩ (v, t ) on the right-hand
side of Eq. (37), we then get

〈e−pQ〉 ≈
∫ ∞

0
e−p QPqu(Q, t )dQ ≈ exp

[
−ρt2 φ̃

(v
t

)]
.

(72)

We then see that, for consistency, one needs the following
large deviation form for Pqu(Q, t ):

Pqu(Q, t ) ∼ exp

[
−ρt2ψ

(
Q

ρt

)]
, (73)

where ψ (q) is yet to be determined. Indeed, substituting this
form on the left-hand side of (37) one gets

〈e−pQ〉 =
∫ +∞

0
e−pQPqu(Q, t )dQ

∼
∫ +∞

0
exp

{
−ρt2

[
Q

ρt2
p + ψ

(
Q

ρt

)]}
dQ,

setting w = Q
ρt and p = −v:

〈e−pQ〉 ∼
∫ +∞

0
exp
{
−ρt2

[
ψ (w) − v

t
w
]}

dw

∼ exp

{
−ρt2

(
min
w>0

[
ψ (w) − v

t
w

])}
, (74)

where we used a saddle-point approximation, valid for large
t . Comparing Eqs. (74) and (72), we arrive at the Legendre
transform,

min
w>0

[ψ (w) − y w] = φ̃(y) ⇒ ψ (w) = max
y

[φ̃(y) + w y].

(75)

Substituting the form of φ̃(y) given in Eq. (71) and maximiz-
ing we get

ψ (w) =
⎧⎨
⎩

1
2

√ r
D w2, w <

√
4 r D,

− 2
3

√
D r3 + r w + w3

12D , w >
√

4 r D.
(76)

By inserting this form on the right-hand side of Eq. (73)
gives us the required large deviation form of Pqu(Q, t ). It has
a slightly nicer form in terms of the dimensionless variable
q = Q/(r t ). In terms of q, Eq. (73) then reads

Pqu(Q, t ) ∼ exp

{
−r2t2�

(r)
diff

(
q = Q

r t

)}
, (77)

where

�
(r)
diff (q) =

⎧⎨
⎩

q2

q∗ for q < q∗ = 2
√

D
r ρ

− q∗
3 + q + q3

3q∗2 for q > q∗ = 2
√

D
r ρ.

(78)
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This rate function is plotted in Fig. 2(b). The nonanalytic be-
havior at q = q∗ where the third derivative of the rate function
�

(r)
diff (q) is discontinuous represents a third-order transition as

mentioned before. In Sec. VI, we verify this analytical pre-
diction in numerical simulations using importance sampling.
Interestingly, the extremely fast decay of the quenched proba-
bility in Eq. (77), namely Pqu(Q, t ) ∼ e−t2

, can be understood
from the following simple physical argument. We recall that
Q denotes the number of particles to the right of the origin at
time t . Hence a configuration where Q ∼ t originates typically
from trajectories where an initial ρ t number of particles to
the left of the origin does not undergo any reset up to time t
(otherwise, they will not be able to cross the origin easily).
The probability that a single particle does not undergo any
reset up to time t is simply ∼e−r t . Since the particles are
independent, the probability for such a configuration then is
of order [e−r t ]ρ t ∼ e−t2

, up to some exponent which is indeed
the large deviation function �

(r)
diff (q).

Finally, we note that in the very large time limit when r t 

1, the scaled variable q → 0 and using the first line of Eq. (78)
in (77), we get a Gaussian tail of the steady state Pqu(Q, t →
∞)

Pqu(Q 
 1, t → ∞) ∼ e− 1
2ρ

√
r
D Q2

. (79)

Note that this Gaussian tail is not so easy to derive directly
from the exact cumulant generating function of Pqu(Q, t →
∞) in Eq. (54).

V. RUN-AND-TUMBLE PARTICLES WITH STOCHASTIC
RESETTING

In the case of RTP’s, the trajectory of a single parti-
cle is specified by both the position xi(t ) and the velocity
vi(t ) = ±v0 at time t . We assume that the initial positions
of the noninteracting RTPs are chosen independently from
a uniform step initial condition (as in the diffusive case
above). Furthermore, we assume that the initial velocities are
chosen independently as ±v0 with equal probability. After
each resetting event, the position xi(t ) → xi and the velocity
vi(t ) → ±v0, i.e., the velocity gets rerandomized after each
resetting. Let us first denote by Gr (x, x0, t ) the propagator
of this RTP process with resetting where both the initial and
the final velocities are summed over, i.e., it represents the
“marginalized” position propagator. One can then write an ex-
act renewal equation, similar to Eq. (41) for the diffusive case
[18,31],

Gr (x, x0, t ) = e−rt G0(x, x0, t ) + r
∫ t

0
e−rτ G0(x, x0, τ )dτ,

(80)

where G0(x, x0, τ ) now represents the position propagator of
an RTP, starting from random initial velocities ±v0 with equal
probability, whose expression is known [48]

G0(x, x0, t ) = e−γ t

2

{
δ(x − x0 − v0t ) + δ(x − x0 + v0t ) + γ

v0

[
I0(ω) + γ t I1(ω)

ρ

]
θ (v0t − |x − x0|)

}
, (81)

where ω is given by

ω = γ

v0

√
v2

0t2 − (x − x0)2. (82)

Once again, the central quantity is the function

Ur (z, t ) =
∫ ∞

0
Gr (x,−z, t ) dx, (83)

where Gr (x,−z, t ) satisfies Eq. (80). Integrating the renewal
equation (80) over x and using the definition of Ur (z, t ) above,
we get a renewal equation for Ur (z, t ),

Ur (z, t ) = e−rtU0(z, t ) + r
∫ t

0
e−rτU0(z, τ )dτ, (84)

where U0(z, τ ) = ∫∞
0 G0(x,−z, τ ) dx with G0 given in

Eq. (81). For later purposes, it is useful to note that the
Laplace transform of Ur (z, t ) with respect to t in Eq. (84) has
a compact form,

Ũr (z, s) =
∫ ∞

0
e−s t Ur (z, t ) = r + s

s
Ũ0(z, r + s). (85)

The Laplace transform of U0(z, t ) can be obtained exactly
from Eq. (81) (see Ref. [13])- and has a compact expression

Ũ0(z, s) = 1

2s
exp

[
−

√
s(s + 2γ )

v0
z

]
. (86)

Using this result in Eq. (85) we get

Ũr (z, s) = 1

2 s
exp

[
−

√
(r + s)(r + s + 2γ )

v0
z

]
. (87)

This is the central result we need to discuss the annealed and
the quenched cases below.

A. Annealed case

As for an noninteracting particle systems, the current dis-
tribution in the annealed case is Poissonian and is fully
characterized by its mean,

μr (t ) = ρ

∫ ∞

0
Ur (z, t ) dz. (88)

Thus, we just need to compute this mean μr (t ) to characterize
the full distribution Pan(Q, t ). As in the diffusive case, it turns
out to be convenient to consider first its Laplace transform
with respect to t ,

μ̃r (s) =
∫ ∞

0
μr (t )e−st dt

= ρ

∫ ∞

0
Ũr (z, s) dz

= ρ v0

2s
√

(r + s)(r + s + 2γ )
, (89)
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where in the last equality we used (87). In the small s limit the
right-hand side of (89) behaves as ∼1/s, indicating that μr (t )
approaches a constant in the long-time limit and is given by

μr (t → ∞) = ρ v0

2
√

r(r + 2γ )
. (90)

In fact, μr (t ) for finite t can be obtained by inverting formally
the Laplace transform in (89) using the convolution theorem,
leading to

μr (t ) = e−rtμ0(t ) + r
∫ t

0
e−rτμ0(τ )dτ, (91)

where

μ0(t ) = 1
2ρv0 t e−γ t [I0(γ t ) + I1(γ t )], (92)

was already computed in Ref. [13].

B. The quenched case

As in the annealed case, the central information for the
quenched case is also encoded in the function Ur (z, t ) whose
Laplace transform is given in Eq. (87). The mean and the
variance are again given by Eqs. (39) and (40). As ex-
pected, the mean current is the same as in the annealed case,
〈Q〉qu = μr (t ), where the Laplace transform of μr (t ) is given
in Eqs. (91) and (92). Since we do not have any explicit
expression for Ur (z, t ), the expression for the variance is a bit
cumbersome to obtain explicitly. Rather, we focus on the large
deviation behavior of Pqu(Q, t ) as in the resetting Brownian
motion. In order to extract this behavior from Eq. (37) and
(38), we need the asymptotic behavior of Ur (z, t ) when z and
t are both large. To find this behavior, we follow the same
analysis as in the diffusive case, namely we formally invert
the exact Laplace transform in Eq. (87) as

Ur (z, t ) =
∫

�

ds

2π i

1

2 s

× exp

{
t

[
s −
√

(r + s)(r + s + 2γ )
z

v0 t

]}
, (93)

where � represents the vertical Bromwich contour in the com-
plex s plane, passing to the right of all the singularities. Once
again, this integrand has a pole at s = 0 and a saddle at s = s∗
(obtained by minimizing the argument of the exponential).
After straightforward algebra, we find that there are actually
two possible values of s∗, as solutions of a quadratic equation.
One of these roots is always negative and do not contribute to
the large time analysis of the integral. The explicit expression
of the largest one is given by

s∗ = −r + γ

⎡
⎢⎣ 1√

1 − ( z
v0t

)2 − 1

⎤
⎥⎦. (94)

As in the diffusive case, there are two possibilities
(i) s∗ < 0, i.e., z <

√
r(r+2γ )
r+γ

v0 t : In this case, the dominant
contribution to the integral comes from the pole at s = 0 and
one simply gets

Ur (z, t ) ≈ 1
2 e−√

r(r+2γ ) z
v0 . (95)

(ii) s∗ > 0, i.e., z >
√

r(r+2γ )
r+γ

v0 t : In this case the saddle
occurs to the right of the pole on the real axis. Hence one can
deform the Bromwich contour to pass through the saddle to
pick up the leading contribution. Evaluating this saddle point
and ignoring pre-exponential factors, we get after a few steps
of algebra

Ur (z, t ) ≈ exp

⎧⎨
⎩−t

⎡
⎣r + γ − γ

√
1 −
(

z

v0 t

)2
⎤
⎦
⎫⎬
⎭

× θ (v0 t − z). (96)

Physically, it is clear that z � v0 t since, if the absolute value
of the initial position of a particle is z > v0 t , then it cannot
contribute to the current Q up to time t , which is simply the
number of particles to the right of the origin at time t .

Combining these two results (95) and (96), the function
Ur (z, t ) for large z and large t but with z/(v0t ) fixed can be
expressed in a large deviation form,

Ur (z, t ) ∼ e−t F ( z
v0 t )

, where

F (u) =
{√

r(r + 2γ ) u if u < uc =
√

r(r+2γ )
(r+γ ) ,

r + γ − γ
√

1 − u2 if uc < u < 1.

(97)

A plot of this function F (u) is given in Fig. 3(a). We note
that the function F (u) is supported over 0 � u � 1. As u → 1,
F (u) approaches its maximal value F (1) = r + γ . Also at
u = uc, the function F (u) and its first derivative F ′(u) are
continuous, while the second derivative is discontinuous [as
in the diffusive case in Eq. (62) for f (u)].

We now substitute this expression of Ur (z, t ) from Eq. (97)
into Eq. (38) and follow a similar analysis as was done for
the resetting Brownian motion. As in that case, to analyze the
large Q behavior of Pqu(Q, t ) in Eq. (37), we need to analyze
the behavior of I (p, t ) in Eq. (38) in the limit p → −∞.
Setting v = −p with v > 0, we write

I (v, t ) := Ĩ (v, t ) = ρ

∫ v0 t

0
dz ln [1 + (ev − 1)Ur (z, t )]

≈ ρ

∫ v0 t

0
dz ln [1 + evUr (z, t )]. (98)

As before, the trick is to take the partial derivative with
respect to v, to compute the integral and finally to integrate
back in v. Substituting the form of Ur (z, t ) given in (97) in
(98) and taking the derivative with respect to v, we get

∂ Ĩ (v, t )

∂v
≈ ρ

∫ v0 t

0
dz

1

1 + e−{v−t F [z/(v0 t )]}

= ρ v0 t
∫ 1

0
dx

1

1 + e−t[v/t−F (x)]
. (99)

Let us define x∗ such that

v = t F (x∗), (100)

where F (x) is given in Eq. (97). Hence Eq. (64) reads

∂ Ĩ (v, t )

∂v
= ρ v0 t

∫ 1

0
dx

1

1 + e−t[F (x∗ )−F (x)]
. (101)
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(a) (b)

FIG. 3. (a) Plot of the function F (u) vs u in Eq. (97) for 0 � u � 1. With the parameter choices γ = 1, r = 1, we have uc =√
r(r + 2γ )/(r + γ ) = √

3/2 = 0.866025 . . . shown by the vertical dashed line where the function F (u) and its first derivative are continuous,
but the second derivative is discontinuous. The maximal value of the function F (u) is attained at u = 1 where F (1) = γ + r = 2 as shown
by the horizontal red dotted line. (b) Plot of the rate function �

(r)
RTP(q) vs q with 0 � q � 1, as given in Eq. (111). The critical value

qc = √
r(r + 2γ )/(r + γ ) = √

3/2 = 0.866025 . . . is marked by the vertical dashed line.

Since F (x) is a monotonically increasing function, for x >

x∗, the integrand essentially vanishes in the large-t limit. In
contrast, for x < x∗, the integrand approaches 1 as t → ∞.
Thus, once again, the integrand behaves as a Fermi function
at “an inverse temperature” t . Hence, cutting the integral at
x = x∗, we get for large t ,

∂ Ĩ (v, t )

∂v
≈ ρ v0 t x∗ = ρ v0 t F−1

(v
t

)
, (102)

where F−1 is the inverse function of F . This inverse function
can be easily extracted from the explicit form of F (u) in
Eq. (97). One gets

F−1(y)=
⎧⎨
⎩

y√
r(r+2γ )

, for y < yc = r(r+2γ )
r+γ√

1 − (γ+r−y)2

γ 2 , for yc < y < γ + r.
(103)

Note that the upper limit y = γ + r comes from the fact that
the maximal value of F (u) is γ + r [see Fig. 3(a)]. If v/t >

γ + r, then the integrand is always 1 as t → ∞, since v/t >

F (x) for all x ∈ [0, 1].
Integrating this relation (102), and considering the two

regimes v/t < γ + r and v/t > γ + r, one gets to leading
order for large t ,

Ĩ (v, t ) ≈ −ρ v0 t2 �̃
(v

t

)
, (104)

where

�̃(y) =
{− ∫ y

0 F−1(y′) dy′, y < γ + r,

− ∫ γ+r
0 F−1(y′) dy′ − [y − (γ + r)], y > γ + r.

(105)

Let us now relate the large deviation behavior of Pqu(Q, t )
to this function �̃(y). Substituting this form (104) in Eq. (37)
with p = −v, one gets∫ ∞

0
Pqu(Q, t ) ev Q dQ ∼ e−ρ v0 t2 �̃( v

t ). (106)

This form suggests the following large deviation form for
Pqu(Q, t ):

Pqu(Q, t ) ∼ e−ρ v0 t2 �( Q
ρ v0 t )

. (107)

Substituting this form on the left-hand side of Eq. (106),
performing a saddle-point analysis for large t , we get (as in
the diffusive case)

min
0�q�1

[�(q) − y q] = �̃(y) ⇒ �(q) = max
y

[�̃(y) + q y].

(108)

Our next goal is to compute �̃(y) and then use Eq. (108) to
compute �(q). It turns out that the regime y > γ + r in the
second line of Eq. (105) does not contribute to the computa-
tion of �(q) in Eq. (108), as can be verified a posteriori. We
therefore restrict to the region y < γ + r, as given in the first
line of Eq. (105). To compute �̃(y), we first insert F−1(y′)
from (103) in (105) and integrate. This gives

�̃(y) =
⎧⎨
⎩

− y2

2
√

r(r+2γ )
, y < yc = r(r+2γ )

r+γ
,

− y2
c

2
√

r(r+2γ )
− ∫ y

yc

√
1 − (γ+r−y′ )2

γ 2 dy′, yc < y < γ + r.
(109)

Substituting this in Eq. (108) and maximizing with respect
to y, one gets an explicit expression for �(q). We omit

the details here, since they are quite straightforward but
involve lengthy algebra. We just remark that when one max-
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imizes with respect to y in Eq. (108) for a fixed 0 � q �
1, it turns out that the value y∗ that maximizes �̃(y) +
q y is always less than γ + r. In fact, as q approaches its
maximal value 1, the value of y∗ approaches γ + r. This
justifies, a posteriori, the restriction to the range y < γ + r in
Eq. (109).

Let us then just quote the final result here. In fact, it is
more natural to express the large deviation form in terms of a

dimensionless rate function. Hence we rewrite Eq. (107) as

Pqu(Q, t ) ∼ e
−ρ v0 γ t2 �

(r)
RTP

(
Q

ρ v0 t

)
, (110)

with the dimensionless rate function �
(r)
RTP(q) = �(q)/γ . In

terms of the dimensionless ratio α = r/γ , the rate function
�

(r)
RTP(q) can then be expressed as

�
(r)
RTP(q) =

⎧⎨
⎩

qc

2
√

1−q2
c

q2, 0 < q < qc =
√

α(α+2)
α+1 .

− qc

2
√

1−q2
c

+ q√
1−q2

c

− 1
2 q
√

1 − q2 + 1
2 sin−1(qc) − 1

2 sin−1(q), qc < q � 1.
(111)

A plot of this function for q ∈ [0, 1] is given in Fig. 3(b). The
function �

(r)
RTP(q) and its two first derivatives are continuous

at q = qc. However, the third derivative is discontinuous at
q = qc. Hence, this rate function for the RTP with resetting
also exhibits a third-order phase transition, as in the case of
resetting Brownian motion.

Let us comment on few other properties of this rate func-
tion �

(r)
RTP(q).

(i) From the large deviation form (110), we see that in the
large time limit, with Q fixed, the current distribution Pqu(Q, t )
approaches a time-independent stationary form

Pqu(Q, t ) −→
t→∞ exp

(
− 1

2ρ

√
2γ r

v2
0

Q2

)
. (112)

In the diffusive limit, when γ → ∞, v0 → ∞, with
v2

0/(2γ ) = D fixed, this result coincides exactly with Eq. (24)
for the resetting Brownian motion.

(ii) When the resetting rate r → 0, the ratio α = r/γ → 0
and hence qc → 0. In this case, the rate function �

(r=0)
RTP is

entirely given by the second line of Eq. (111) for the full range
0 � q � 1 and it reads

�
(r=0)
RTP (q) = q − q

2

√
1 − q2 − 1

2
sin−1(q). (113)

This indeed coincides with the result of Ref. [13], which we
recalled in the introduction in Eq. (21). Note that, using the

identity sin−1(q) = sin−1[

√
1−

√
1−q2

2 ] (for 0 � q � 1), one

sees that (21) and (113) are identical.
(iii) Finally, in the limit q → 1, it follows from Eq. (111)

that

�
(r)
RTP(q = 1) = − qc

2
√

1 − q2
c

+ 1√
1 − q2

c

+1

2
sin−1(qc) − π

4
, (114)

where we recall that qc = √
α(α + 2)/(α + 1) with α = r/γ .

Using this result in Eq. (110), one predicts that the probability
of the rare event that the current Q takes its maximally allowed

value, Q = ρ v0 t , decays extremely rapidly with time as

Pqu(Q = ρ v0 t, t ) ∼ exp (−θ t2),

θ = ρ v0 γ

[
− qc

2
√

1 − q2
c

+ 1√
1 − q2

c

+ 1

2
sin−1(qc) − π

4

]
.

(115)

In the absence of resetting, i.e., when r → 0, we get α →
0 and hence qc → 0. Consequently, θ → ρ v0 γ (1 − π/4),
reproducing the result of Ref. [13]. As the resetting rate r in-
creases, the probability that the current Q achieves its maximal
value becomes more unlikely and hence one would expect the
exponent θ to be a monotonically increasing function of r,
which is indeed the case.

VI. NUMERICAL SIMULATIONS

In the previous sections, we have computed analytically
the current distribution P(Q, t ), both the annealed and the
quenched versions, for diffusive and RTP particles. While
in the annealed case, the current distribution in both mod-
els are Poissonian, in the quenched case the probability of
large currents is extremely tiny, decaying as ∼e−t2

for large
t . Therefore computing these rate functions numerically is
a formidable challenge and cannot be achieved by standard
Monte Carlo sampling which will always miss such extremely
rare events. In this section, we use a specialized importance
sampling method, designed precisely to capture such tiny
probabilities. We present here the results for the resetting
Brownian motion. The same method can be extended to the
case of resetting RTP also, but we will not repeat this sim-
ulation here and restrict ourselves only to the diffusive case
below. In order to obtain the distributions over a large range
of the support, down to extremely small probabilities, we
use a numerical large-deviation algorithm [64]. In general,
for complex interacting systems, one needs a sophisticated
Markov-chain Monte Carlo simulations to sample distribu-
tions in several regions of their support via biased sampling of
random numbers [65–68]. However, here, where the particles
do not interact with each other, a much simpler approach can
be used.

014112-13



COSTANTINO DI BELLO et al. PHYSICAL REVIEW E 108, 014112 (2023)

A. Algorithm

We consider N particles labeled by i = 1, 2, . . . , N .Their
initial locations are marked as xi � 0. Each particle i diffuses
and resets to its initial position xi with a rate r. The probability
p+

i that particle i contributes to the flux Q at time t is the
probability that its position at time t is in the positive half-
space, i.e.,

p+
i ≡ Ur (−xi, t ) =

∫ +∞

0
dx Gr (x, xi, t ), (116)

where the propagator Gr (x, xi, t ) is given in Eq. (41) with

G0(x, xi, τ ) = 1√
4πDτ

exp

[
− (x − xi )2

4Dτ

]
. (117)

Since we consider starting positions in the negative range,
the probabilities are often extremely small. For a simpler
numerical treatment, we shift the argument of the Gaussian
by a suitable particle-dependent value + fi and compensate
this by a factor e− fi in front of the integral. We have chosen
fi = x2

i /(4Dt ) which was convenient. Using Eq. (117) in (41),
with this additional bias, we get

p+
i ≡ p+(xi ) = e− fi

∫ +∞

0
dx

{
e−rt

√
4πDt

exp

[
− (x − xi )2

4Dt
+ fi

]
+ r
∫ t

0
dτ

e−rτ

√
4πDτ

exp

[
− (x − xi )2

4Dτ
+ fi

]}
. (118)

For the quenched case, the dominant contribution to
Pqu(Q, t ) comes from a typical configuration where the initial
positions are equispaces with separation 1/ρ, i.e., x1 = 0,
x2 = −1/ρ, . . . , xN = −(N − 1)/ρ [13]. We have numeri-
cally determined the values p+

i (i = 1, . . . , N ) by calculating
the integrals

∫ +∞
0 dx and

∫ t
0 dτ in Eq. (118) by using the adap-

tive stepsize gsl_integration_qag() integration function
of the GNU scientific library [69]. The resulting probabili-
ties, which include the e− fi factors, can be very small, and
thus we have used for the further processing a custom-made
datatype for very small or large numbers. We have used
in our C implementation two double numbers to repre-
sent large numbers, one for the mantissa and one for the
exponent.

For the annealed case, the probabilities p+
i do not de-

pend on a single starting position any more but are just
averages of Eq. (118) over the initial positions, which
are uniformly distributed in [−L, 0], where L = N/ρ. This
yields

p+
i = 1

L

∫ 0

−L
dz p+(z) (119)

for all particles i. We have performed this integral by using the
same GSL function. Note that since the integral is dominated
by starting positions near z = 0, no shift of the Gaussian
is necessary, i.e., f = 0. Thus, the annealed probability is
much larger than the quenched-case p+(xi ) for most starting
positions xi.

Now the probability P(Q, t ) for a specific value of the flux
Q, is the sum over all combinations of particle positions at
time t , where exactly Q particles have a positive position,
which appears with probability p+

i , and N − Q particles have
a negative position, which appears with probability 1 − p+

i ,
respectively. For the annealed case, this is simply the binomial
distribution, which could be in principle be directly evalu-
ated, but we use, for simplicity, the same approach as for
the quenched case. For the quenched case, one would have to
enumerate all exponentially many possible combinations of a
number Q of particles having a positive coordinate, and the

other ones a negative coordinate. Since this is not feasible, we
use sampling.

For simple sampling, to generate one sample value of Q,
one would iterate over all particles, generating a configuration
I = (I1, . . . , IN ). For each particle with probability p+

i the par-
ticles exhibits a positive coordinate, denoted by Ii = 1, which
generates a contribution of 1 to Q = Q(I ) =∑i Ii. With prob-
ability 1 − p+

i the particles contributes Ii = 0. By repeating
this assignment to I many times, one will sample many values
of Q, which results in a histogram which can be normalized.
But this allows only to estimate the high probability part of
P(Q).

For this reason, we used a biased sampling approach. We
intended to sample configurations I exhibiting a flux Q(I ),
where an addition bias eβQ(I ) is applied, with a variable
parameter β, which acts as a negative inverse temperature.
For large values of β, the resulting underlying distribution
Pβ (Q) ∼ P(Q)eβQ will be shifted to higher values of Q. The
basic idea is to obtain the distribution for several parameter
values of β and obtain the true distribution P(Q) by combining
the measured distributions Pβ (Q), see below.

The mentioned bias means for a single particle that it
obtains a bias eβ for contributing to the flux, i.e., having a
positive position, while there is no bias for a negative posi-
tion. Therefore, we sample the state Ii of particle i with the
distribution

P̃(Ii) = δ(Ii − 1)
p+

i eβ

p+
i eβ + (1 − p+

i )

+ δ(Ii )
1 − p+

i

p+
i eβ + (1 − p+

i )
. (120)

Trivially, the state of each particle can be sampled directly
from the given two probabilities. Thus, for each iteration one
independent sample configuration I with value Q(I ) for the
biased ensemble will be obtained. By taking a decent num-
ber of samples, one can easily get high-precision histograms
estimating the typical, i.e., high probability part of Pβ (Q), re-
spectively. We have sampled 106 independent configurations
for each value of β.
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FIG. 4. Distribution Pqu(Q, t ) of the current for the quenched
case for N = 500 particles, parameters D = 1, r = 1, ρ = 1 and four
different times t = 3, 10, 30, and 100. The vertical green dashed
line corresponds to the critical value Q∗(t ) = rt q∗ for t = 30 with
q∗ = 2

√
D/r ρ; see Eq. (23). For Q � Q∗(t ), one expects the distri-

bution to be stationary, i.e., independent of t , and its logarithm with
a quadratic form, as in Eq. (24).

Within this biased sampling, each configuration I will ap-
pear with the following probability:

P̃β (I ) =
∏

i|Ii=1

p+
i eβ

p+
i eβ + (1 − p+

i )

∏
i|Ii=0

1 − p+
i

p+
i eβ + (1 − p+

i )

= eβQ(I )

Z

∏
i|Ii=1

p+
i

∏
i|Ii=1

(1 − p+
i ), (121)

= eβQ(I )

Z
P0(I ), (122)

where the normalization is given by Z =∏i[p+
i eβ + (1 −

p+
i )], and the sampling for β = 0 is equal to the unbiased

original ensemble. Thus, for the distribution of Q, where one
sums over all configurations I which exhibit the flux Q, one
obtains, for all values of β:

P(Q) ≡ P0(Q) = Ze−βQPβ (Q). (123)

Hence, to obtain the estimate for the distribution P(Q), for
each value of Q, we took, for simplicity, the normalized his-
togram hβ∗ (Q) at that value β∗ which exhibits the highest
histogram value, i.e., the best statistics, and simply calculated
Ze−β∗Qhβ∗ (Q) as estimate for P(Q). Typically, we needed a
number K of different values of β which was in between 100
und 300 to sufficiently cover a large range of the support of
P(Q). Here we used uniformly distributed values βk = k�β

(k = 0, . . . , K − 1). Depending on the case we considered,
we used either �β = 3 or �β = 5.

B. Results

For simulations, we chose the parameters D = 1, r = 1 and
used N = 500 particles with ρ = 1. For the quenched case we

FIG. 5. The symbols show the numerical rate function �
(r)
diff (q)

associated with the distribution of the scaled current q = Q/(rt ) for
the quenched case for N = 500 particles, with parameters D = 1,
r = 1, ρ = 1 and for four different times t = 3, 10, 30, and 100.
The dashed green line represents the branch �

(r)
diff,1(q), given in

the first line of Eq. (23). The solid red line represents the branch
�

(r)
diff,2(q), given in the second line of Eq. (23). They intersect at

q = q∗ = 2
√

D/rρ = 2 shown by the vertical dashed blue line. The
inset shows a blow-up of the region q = [3.0, 3.7], where we see the
convergence to the branch �

(r)
diff,2(q) (the solid red line) better.

have obtained Pqu(Q, t ) for four different times t = 3, t = 10,
t = 30, and t = 100. The resulting distributions are shown in
Fig. 4. The distributions can be sampled down to very small
probabilities like 10−14 000 with high statistical accuracy. One
observes that with increasing times, larger values of Q become
more probable and the distributions approach more and more
a common shape.

To allow for a comparison with the result given in Eq. (23),
we plot the rate function �

(r)
diff (q) = − log[Pqu(Q, t )]/(r2t2) as

a function of q = Q/(rt ) and compare with the two branches
�

(r)
diff,1(q) (for q < q∗) and �

(r)
diff,2(q) (for q > q∗) given re-

spectively in the first and the second lines of Eq. (23). The
result is shown in Fig. 5. For q < q∗, the result follows for
all times the analytical result �

(r)
diff,1(q) very well. For large

values q > q∗ a fast convergence towards the analytical result
�

(r)
diff,1(q) can be well observed with increasing time t .
The result for the annealed current distribution Pan(Q, t )

is shown in Fig. 6 for t = 10 and the parameter values
D = 1, r = 1, and ρ = 1. Since the annealed probability
p+ is much larger than most probabilities p+

i , the resulting
probabilities of the current are also much larger. Still, the
distribution stretches down to very small probabilities such
as 10−400. With increasing number N of particles a conver-
gence to a limiting distribution, independent of N , is visible.
This N-independent limiting distribution is Poissonian with
mean μr (t ) = (ρ/2)

√
D/r erf (

√
r t ) as given in Eq. (13).

For t = 10 and the given parameters above, μr=1(t = 10) =
(1/2) erf (

√
10) ≈ 0.5.
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FIG. 6. Current distribution Pan(Q, t ) for the annealed case at
time t = 10, with parameters D = 1, r = 1, ρ = 1 and for four
different number of particles N = 50, 100, 200, and 500. As N
increases, the distribution approaches an N-independent limiting
Poissonian form with mean μr (t ) ≈ 0.5.

VII. CONCLUSION

In this paper, our goal was to study to the effects of re-
setting on the distribution P(Q, t ) of the integrated particle
current Q up to time t through the origin in a one-dimensional
system. We studied the setting where the particles are nonin-
teracting and are initially distributed on the left of the origin,
with a uniform density ρ. We chose two different dynam-
ics for the particles: (i) Brownian dynamics with stochastic
resetting at rate r and (ii) run-and-tumble dynamics with a
persistence time γ −1 and subjected to stochastic resetting
with rate r. We studied both the annealed and the quenched
current distributions. In both models, and for both annealed
and quenched cases, the main effect of resetting is to in-
duce a stationary limit to the current distribution at long
times. It was previously known that the position distribution
of a single particle under stochastic resetting becomes sta-
tionary at long times, but here we show a similar effect for
the distribution of the current, which itself is a dynamical
observable.

One of our main findings is that, in the presence of stochas-
tic resetting, the approach to the stationary state of the current
distribution in the annealed and the quenched cases are dras-
tically different for both models. In the annealed case, the
distribution Pan(Q, t ) is Poissonian at all times and the whole

distribution approaches its stationary limit at late times uni-
formly for all Q. In contrast, the quenched current distribution
Pqu(Q, t ) is highly non-Poissonian at all times t . Moreover,
we showed that the approach to the stationary state in the
quenched case is highly nonuniform in Q. More precisely, as
time increases, we showed that there is a critical value Qcrit (t )
that increases linearly with t such that, for Q < Qcrit (t ), the
quenched distribution Pqu(Q, t ) attains its stationary form,
while it remains time dependent for Q > Qcrit (t ). This critical
value Qcrit (t ) thus separates the steady state from the tran-
sient regime. On this scale, when Q ∼ Qcrit (t ), we show that
the quenched distribution admits an unusual large deviation
form in both models. We have computed the corresponding
rate functions analytically in both models. When Q crosses
the critical value Qcrit (t ), we found that the associated rate
functions undergo a third-order phase transition, such that the
rate function and its first two derivatives are continuous, while
the third derivative is discontinuous. Measuring numerically
such a rate function presents a technical challenge. Here,
using an importance sampling algorithm that is able to access
probabilities as small as 10−14 000, we were able to compute
the rate function for the Brownian case with resetting. We
found an excellent agreement with our analytical predictions.

Such third-order phase transitions have been found previ-
ously in many different contexts, e.g., in the distribution of
the largest eigenvalue of random matrices [70], Yang-Mills
gauge theory [71–74], Coulomb gases [75,76], and also in the
height distribution of the 1 + 1-dimensional Kardar-Parisi-
Zhang fluctuating interface model at late times [77–79]. In all
these examples, the underlying system is strongly interacting.
Hence, it is interesting that a similar third-order transition
occurs in such a seemingly simple noninteracting system.
Let us also make an interesting technical remark here. In the
quenched case, for both models, while the Legendre transform
of the rate function has a second-order singularity at the criti-
cal point, the rate function itself has a third-order singularity.
It would be interesting to investigate the generality of this
mechanism.

There are many interesting directions in which the present
work can be extended. For example, it would be interesting to
see whether this third-order phase transition in the quenched
case also occurs for other dynamics with resetting, beyond the
Brownian and run-and-tumble particles studied here. Another
interesting question is whether this transition persists in the
presence of interactions between particles or for correlated
initial conditions [15].

ACKNOWLEDGMENT

This work was supported by a Leverhulme Trust Interna-
tional Professorship Grant No. LIP-2020-014.

[1] M. Prähofer and H. Spohn, Current fluctuations for the totally
asymmetric simple exclusion process, in In and Out of Equilib-
rium, edited by V. Sidoravicius (Birkhauser, Boston, 2002).

[2] T. Bodineau and B. Derrida, Current Fluctuations in Non-
Equilibrium Diffusive Systems: An Additivity Principle, Phys.
Rev. Lett. 92, 180601 (2004).

[3] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Current Fluctuations in Stochastic Lattice Gases, Phys.
Rev. Lett. 94, 030601 (2005).

[4] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Non equilibrium current fluctuations in stochastic lat-
tice gases, J. Stat. Phys. 123, 237 (2006).

014112-16

https://doi.org/10.1103/PhysRevLett.92.180601
https://doi.org/10.1103/PhysRevLett.94.030601
https://doi.org/10.1007/s10955-006-9056-4


CURRENT FLUCTUATIONS IN STOCHASTICALLY … PHYSICAL REVIEW E 108, 014112 (2023)

[5] S. Prolhac and K. Mallick, Current Fluctuations in the exclusion
process and Bethe Ansatz, J. Phys. A: Math. Theor. 41, 175002
(2008).

[6] C. Appert-Rolland, B. Derrida, V. Lecomte, and F. van Wijland,
Universal cumulants of the current in diffusive systems on a
ring, Phys. Rev. E 78, 021122 (2008).

[7] B. Derrida and A. Gerschenfeld, Current fluctuations in one
dimensional diffusive systems with a step initial density profile,
J. Stat. Phys. 137, 978 (2009).

[8] B. Derrida and A. Gerschenfeld, Current fluctuations of the
one dimensional symmetric simple exclusion process with step
initial condition, J. Stat. Phys. 136, 1 (2009).

[9] P. L. Krapivsky and B. Meerson, Fluctuations of current in
nonstationary diffusive lattice gases, Phys. Rev. E 86, 031106
(2012).

[10] T. Sadhu and B. Derrida, Large deviation function of a tracer
position in single file diffusion, J. Stat. Mech. (2015) P09008.

[11] T. Sadhu and B. Derrida, Correlations of the density and of
the current in non-equilibrium diffusive systems, J. Stat. Mech.
(2016) 113202.

[12] U. Basu, A. Kundu, and A. Pal, Symmetric exclusion pro-
cess under stochastic resetting, Phys. Rev. E 100, 032136
(2019).

[13] T. Banerjee, S. N. Majumdar, A. Rosso, and G. Schehr, Current
fluctuations in noninteracting run-and-tumble particles in one
dimension, Phys. Rev. E 101, 052101 (2020).

[14] S. Marbach, Intrinsic fractional noise in nanopores: The effect
of reservoirs, J. Chem. Phys. 154, 171101 (2021).

[15] T. Banerjee, R. L. Jack, and M. E. Cates, Role of initial con-
ditions in one-dimensional diffusive systems: Compressibility,
hyperuniformity, and long-term memory, Phys. Rev. E 106,
L062101 (2022).

[16] S. Mishra and U. Basu, Symmetric exclusion process under
stochastic power-law resetting, J. Stat. Mech. (2023) 053202.

[17] S. Jose, R. Dandekar, and K. Ramola, Current fluctuations in an
interacting active lattice gas, arXiv:2301.10680.

[18] M. R. Evans, S. N. Majumdar, and G. Schehr, Stochastic re-
setting and applications, J. Phys. A: Math. Theor. 53, 193001
(2020).

[19] S. Gupta and A. M. Jayannavar, Stochastic resetting: A (very)
brief review, Front. Phys. 10, 130 (2022).

[20] A. Pal, S. Kostinski, and S. Reuveni, The inspection paradox
in stochastic resetting, J. Phys. A: Math. Theor. 55, 021001
(2022).

[21] M. R. Evans and S. N. Majumdar, Diffusion with Stochastic
Resetting, Phys. Rev. Lett. 106, 160601 (2011).

[22] M. R. Evans and S. N. Majumdar, Diffusion with optimal reset-
ting, J. Phys. A: Math. Theor. 44, 435001 (2011).

[23] M. Montero and J. Villarroel, Monotonous continuous-time ran-
dom walks with drift and stochastic reset events, Phys. Rev. E
87, 012116 (2013).

[24] S. Gupta, S. N. Majumdar, and G. Schehr, Fluctuating Inter-
faces Subject to Stochastic Resetting, Phys. Rev. Lett. 112,
220601 (2014).

[25] S. N. Majumdar, S. Sabhapandit, and G. Schehr, Dynamical
transition in the temporal relaxation of stochastic processes
under resetting, Phys. Rev. E 91, 052131 (2015).

[26] J. M. Meylahn, S. Sabhapandit, and H. Touchette, Large devi-
ations for Markov processes with resetting, Phys. Rev. E 92,
062148 (2015).

[27] V. Méndez and D. Campos, Characterization of stationary states
in random walks with stochastic resetting, Phys. Rev. E 93,
022106 (2016).

[28] S. Eule and J. J. Metzger, Non-equilibrium steady states of
stochastic processes with intermittent resetting, New J. Phys.
18, 033006 (2016).

[29] M. Montero, A. Masó-Puigdellosas, and J. Villarroel,
Continuous-time random walks with reset events: Historical
background and new perspectives, Eur. Phys. J. B 90, 176
(2017).

[30] R. J. Harris and H. Touchette, Phase transitions in large devi-
ations of reset processes, J. Phys. A: Math. Theor. 50, 10LT01
(2017).

[31] M. R. Evans and S. N. Majumdar, Run and tumble particle
under resetting: A renewal approach, J. Phys. A: Math. Theor.
51, 475003 (2018).

[32] A. Pal, R. Chatterjee, S. Reuveni, and A. Kundu, Local time of
diffusion with stochastic resetting, J. Phys. A: Math. Theor. 52,
264002 (2019).

[33] F. den Hollander, S. N. Majumdar, J. M. Meylahn, and H.
Touchette, Properties of additive functionals of Brownian mo-
tion with resetting, J. Phys. A: Math. Theor. 52, 175001 (2019).

[34] M. Magoni, S. N. Majumdar, and G. Schehr, Ising model with
stochastic resetting, Phys. Rev. Res. 2, 033182 (2020).

[35] O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni, and Y.
Roichman, Experimental realization of diffusion with stochastic
resetting, J. Phys. Chem. Lett. 11, 7350 (2020).

[36] B. Besga, A. Bovon, A. Petrosyan, S. N. Majumdar, and S.
Ciliberto, Optimal mean first-passage time for a Brownian
searcher subjected to resetting: Experimental and theoretical
results, Phys. Rev. Res. 2, 032029(R) (2020).

[37] R. K. Singh, R. Metzler, and T. Sandev, Resetting dynamics in a
confining potential, J. Phys. A: Math. Theor. 53, 505003 (2020).

[38] F. Faisant, B. Besga, A. Petrosyan, S. Ciliberto, and S. N.
Majumdar, Optimal mean first-passage time of a Brownian
searcher with resetting in one and two dimensions: Experi-
ments, theory and numerical tests, J. Stat. Mech. (2021) 113203.

[39] A. Miron and S. Reuveni, Diffusion with local resetting and
exclusion, Phys. Rev. Res. 3, L012023 (2021).

[40] N. R. Smith and S. N. Majumdar, Condensation transition
in large deviations of self-similar Gaussian processes with
stochastic resetting, J. Stat. Mech. (2022) 053212.

[41] O. Vilk, M. Assaf, and B. Meerson, Fluctuations and first-
passage properties of systems of Brownian particles with rese,
Phys. Rev. E 106, 024117 (2022).

[42] E. Bertin, Stochastic resetting of a population of random walks
with resetting-rate-dependent diffusivity, J. Phys. A: Math.
Theor. 55, 384007 (2022).

[43] T. Sandev, V. Domazetoski, L. Kocarev, R. Metzler, and A.
Chechkin, Heterogeneous diffusion with stochastic resetting,
J. Phys. A: Math. Theor. 55, 074003 (2022).

[44] M. Biroli, H. Larralde, S. N. Majumdar, and G. Schehr, Extreme
Statistics and Spacing Distribution in a Brownian Gas Corre-
lated by Resetting, Phys. Rev. Lett. 130, 207101 (2023).

[45] N. R. Smith, S. N. Majumdar, and G. Schehr, Striking universal-
ities in stochastic resetting processes, EPL 142, 51002 (2023).

[46] M. Kac, A stochastic model related to the telegrapher’s equa-
tion, Rocky Mt. J. Math. 4, 497 (1974).

[47] P. Hänggi and P. Jung, Colored noise in dynamical systems,
Adv. Chem. Phys. 89, 239 (1995).

014112-17

https://doi.org/10.1088/1751-8113/41/17/175002
https://doi.org/10.1103/PhysRevE.78.021122
https://doi.org/10.1007/s10955-009-9830-1
https://doi.org/10.1007/s10955-009-9772-7
https://doi.org/10.1103/PhysRevE.86.031106
https://doi.org/10.1088/1742-5468/2015/09/P09008
https://doi.org/10.1088/1742-5468/2016/11/113202
https://doi.org/10.1103/PhysRevE.100.032136
https://doi.org/10.1103/PhysRevE.101.052101
https://doi.org/10.1063/5.0047380
https://doi.org/10.1103/PhysRevE.106.L062101
https://doi.org/10.1088/1742-5468/accf06
http://arxiv.org/abs/arXiv:2301.10680
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.3389/fphy.2022.789097
https://doi.org/10.1088/1751-8121/ac3cdf
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1103/PhysRevLett.112.220601
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1103/PhysRevE.92.062148
https://doi.org/10.1103/PhysRevE.93.022106
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1088/1751-8121/aa5734
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1088/1751-8121/ab2069
https://doi.org/10.1088/1751-8121/ab0efd
https://doi.org/10.1103/PhysRevResearch.2.033182
https://doi.org/10.1021/acs.jpclett.0c02122
https://doi.org/10.1103/PhysRevResearch.2.032029
https://doi.org/10.1088/1751-8121/abc83a
https://doi.org/10.1088/1742-5468/ac2cc7
https://doi.org/10.1103/PhysRevResearch.3.L012023
https://doi.org/10.1088/1742-5468/ac6f04
https://doi.org/10.1103/PhysRevE.106.024117
https://doi.org/10.1088/1751-8121/ac8845
https://doi.org/10.1088/1751-8121/ac491c
https://doi.org/10.1103/PhysRevLett.130.207101
https://doi.org/10.1209/0295-5075/acd79e


COSTANTINO DI BELLO et al. PHYSICAL REVIEW E 108, 014112 (2023)

[48] G. H. Weiss, Some applications of persistent random walks and
the telegrapher’s equation, Physica A 311, 381 (2002).

[49] J. Tailleur and M. E. Cates, Statistical Mechanics of Interacting
Run-and-Tumble Bacteria, Phys. Rev. Lett. 100, 218103 (2008).

[50] K. Martens, L. Angelani, R. Di Leonardo, and L. Bocquet,
Probability distributions for the run-and-tumble bacterial dy-
namics: An analogy to the Lorentz model, Eur. Phys. J. E 35,
84 (2012).

[51] H. C. Berg, E. coli in Motion (Springer, Berlin, 2014).
[52] M. E. Cates and J. Tailleur, Motility-induced phase separation,

Annu. Rev. Condens. Matter Phys. 6, 219 (2015).
[53] A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M.

Kardar, and J. Tailleur, Pressure is not a state function for
generic active fluids, Nat. Phys. 11, 673 (2015).

[54] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G.
Volpe, and G. Volpe, Active particles in complex and crowded
environments, Rev. Mod. Phys. 88, 045006 (2016).

[55] A. B. Slowman, M. R. Evans, and R. A. Blythe, Jamming and
Attraction of Interacting Run-And-Tumble Random Walkers,
Phys. Rev. Lett. 116, 218101 (2016).

[56] E. Fodor and C. Marchetti, Lecture notes for the international
summer school “Fundamental Problems in Statistical Physics”
held in Bruneck, Physica A 504, 106 (2018).

[57] K. Malakar et al., Steady state, relaxation and first-passage
properties of a run-and-tumble particle in one-dimension,
J. Stat. Mech. (2018) 043215.

[58] T. Demaerel and C. Maes, Active processes in one dimension,
Phys. Rev. E 97, 032604 (2018).

[59] G. Gradenigo and S. N. Majumdar, A first-order dynami-
cal transition in the displacement distribution of a driven
run-and-tumble particle, J. Stat. Mech.: Theor. Exp. (2019)
053206.

[60] A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit, and G.
Schehr, Run-and-tumble particle in one-dimensional confining
potentials: Steady-state, relaxation, and first-passage properties,
Phys. Rev. E 99, 032132 (2019).

[61] E. Mallmin, R. A. Blythe, and M. R. Evans, Exact spectral
solution of two interacting run-and-tumble particles on a ring,
J. Stat. Mech.: Theor. Exp. (2019) 013204.

[62] P. Le Doussal, S. N. Majumdar, and G. Schehr, Non-crossing
run-and-tumble particles on a line, Phys. Rev. E 100, 013202
(2019).

[63] P. C. Bressloff, Occupation time of a run-and-tumble particle
with resetting, Phys. Rev. E 102, 042135 (2020).

[64] A. Dembo and O. Zeitouni, Large Deviations Techniques and
Applications (Springer, Berlin, 2010).

[65] A. K. Hartmann, Sampling rare events: Statistics of local se-
quence alignments, Phys. Rev. E 65, 056102 (2002).

[66] A. K. Hartmann, High-precision work distributions for extreme
nonequilibrium processes in large systems, Phys. Rev. E 89,
052103 (2014).

[67] A. K. Hartmann, Big Practical Guide to Computer Simulations
(World Scientific, Singapore, 2015).

[68] A. K. Hartmann, P. Le Doussal, S. N. Majumdar, A. Rosso, and
G. Schehr, High-precision simulation of the height distribution
for the KPZ equation, Europhys. Lett. 121, 67004 (2018).

[69] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, GNU
Scientific Library–Reference Manual, 3rd ed., for GSL Version
1.12 (2009).

[70] S. N. Majumdar and G. Schehr, Top eigenvalue of a random
matrix: Large deviations and third order phase transition, J. Stat.
Mech. P01012 (2014).

[71] D. J. Gross and E. Witten, Possible third-order phase transi-
tion in the large-N lattice gauge theory, Phys. Rev. D 21, 446
(1980).

[72] S. R. Wadia, N = ∞ phase transition in a class of exactly solu-
ble model lattice gauge theories, Phys. Lett. B 93, 403 (1980).

[73] M. R. Douglas and V. A. Kazakov, Large N phase transition in
continuum QCD2, Phys. Lett. B 319, 219 (1993).

[74] P. J. Forrester, S. N. Majumdar, and G. Schehr, Non-intersecting
Brownian walkers and Yang-Mills theory on the sphere, Nucl.
Phys. B 844, 500 (2011).

[75] F. D. Cunden, P. Facchi, M. Ligabò, and P. Vivo, Universality
of the third-order phase transition in the constrained Coulomb
gas, J. Stat. Mech. (2017) 053303.

[76] A. Dhar, A. Kundu, S. N. Majumdar, S. Sabhapandit, and G.
Schehr, Exact Extremal Statistics in the Classical 1D Coulomb
Gas, Phys. Rev. Lett. 119, 060601 (2017).

[77] P. Le Doussal, S. N. Majumdar, and G. Schehr, Large deviations
for the height in 1D Kardar-Parisi-Zhang growth at late times,
Europhys. Lett. 113, 60004 (2016).

[78] P. Sasorov, B. Meerson, and S. Prolhac, Large deviations of
surface height in the 1 + 1-dimensional Kardar-Parisi-Zhang
equation: Exact long-time results for λH < 0, J. Stat. Mech.
(2017) 063203.

[79] A. Krajenbrink and P. Le Doussal, Linear statistics and pushed
Coulomb gas at the edge of β-random matrices: Four paths to
large deviations, Europhys. Lett. 125, 20009 (2019).

014112-18

https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1140/epje/i2012-12084-y
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1038/nphys3377
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/PhysRevLett.116.218101
https://doi.org/10.1016/j.physa.2017.12.137
https://doi.org/10.1088/1742-5468/aab84f
https://doi.org/10.1103/PhysRevE.97.032604
https://doi.org/10.1088/1742-5468/ab11be
https://doi.org/10.1103/PhysRevE.99.032132
https://doi.org/10.1088/1742-5468/aaf631
https://doi.org/10.1103/PhysRevE.100.013202
https://doi.org/10.1103/PhysRevE.102.042135
https://doi.org/10.1103/PhysRevE.65.056102
https://doi.org/10.1103/PhysRevE.89.052103
https://doi.org/10.1209/0295-5075/121/67004
https://doi.org/10.1088/1742-5468/2014/01/P01012
https://doi.org/10.1103/PhysRevD.21.446
https://doi.org/10.1016/0370-2693(80)90353-6
https://doi.org/10.1016/0370-2693(93)90806-S
https://doi.org/10.1016/j.nuclphysb.2010.11.013
https://doi.org/10.1088/1742-5468/aa690c
https://doi.org/10.1103/PhysRevLett.119.060601
https://doi.org/10.1209/0295-5075/113/60004
https://doi.org/10.1088/1742-5468/aa73f8
https://doi.org/10.1209/0295-5075/125/20009

