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Data sets in the real world are often complex and to some degree hierarchical, with groups and subgroups of
data sharing common characteristics at different levels of abstraction. Understanding and uncovering the hidden
structure of these data sets is an important task that has many practical applications. To address this challenge, we
present a general method for building relational data trees by exploiting the learning dynamics of the restricted
Boltzmann machine. Our method is based on the mean-field approach, derived from the Plefka expansion, and
developed in the context of disordered systems. It is designed to be easily interpretable. We tested our method in
an artificially created hierarchical data set and on three different real-world data sets (images of digits, mutations
in the human genome, and a homologous family of proteins). The method is able to automatically identify the
hierarchical structure of the data. This could be useful in the study of homologous protein sequences, where the
relationships between proteins are critical for understanding their function and evolution.

DOI: 10.1103/PhysRevE.108.014110

I. INTRODUCTION

The advent of new technologies is fostering the collec-
tion of data in unprecedented quantities. The difficulty is to
automatically extract information or to discover core princi-
ples from these collected data, which are frequently neither
labeled nor classified. Biology provides a key illustration of
this situation: modern sequencing techniques generate vast
amounts of raw data (e.g., genome or protein sequences) far
more quickly than researchers can connect them to biolog-
ical knowledge through experimental procedures or curated
annotations. Building the theoretical foundation needed to
extract scientifically meaningful insights from massive data
sets is more important than ever. In this study, we focus on
the problem of unsupervised identification of categories and
subcategories in the data without introducing interfering prior
knowledge that could bias the results.

Energy-based models in unsupervised learning are particu-
larly well suited to interpretability applications because their
operating mechanism is precisely to encode the empirical dis-
tribution of the data in the Boltzmann distribution of an energy
function (often called a Hamiltonian). If simple enough, such
a Hamiltonian serves as an effective model for the data, and
it can be analyzed for feature extraction. This strategy has
been very popular in biology, for instance for protein-structure
prediction [1–3]. In this sense, restricted Boltzmann machines
(RBMs) are very well suited for this task because they are
powerful enough to encode any complex data set [4], and

*lrosset@ucm.es

at the same time simple enough (formally analogous to a
disordered spin Hamiltonian in physics) to be described with
the tools of statistical physics. In fact, significant progress has
been made in the past decade in understanding the learning
mechanisms of the RBM, which has provided a theoretical
basis for extracting statistical features in these models [5–9].

Today we know that learning in an RBM is triggered when
the eigenvectors of its coupling matrix gradually match the
first principal component analysis (PCA) directions of the data
set [5–7]. As learning progresses, the RBM finds more com-
plex nonlinear decompositions of the data, which are critical
to producing increasingly reliable fake data. The goal is then
to use these features to go beyond the aforementioned PCA
for dimensionality reduction to identify hidden communities,
or features, in the data. In addition, one can exploit the pro-
gressive nature of learning to hierarchize those features: the
machine first learns global features to gradually encode more
local and fine-grained features that can help us to identify
subcommunities. At this point, the simplicity of the RBM
architecture provides a clear advantage over more complex
neural networks, as the log-likelihood of the models at dif-
ferent stages of the learning process can be easily explored
using standard tools of statistical physics of disordered sys-
tems, such as the TAP equations to find different probability
maxima [10–12]. In this work, we implement this idea in real-
world data sets, exploiting current knowledge of the learning
mechanisms of RBMs to build relational trees with data. We
then use these hierarchies to divide the data into families and
subfamilies.

Our work is structured as follows: We begin with an in-
troduction to the RBM model and its learning mechanisms.
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This is followed by a mean-field description of this model,
which is used to find the multiple maxima of the model’s
probability distribution function that are further used to cluster
the data at different stages of the learning process. Later, we
explain how we exploit the dynamics of these fixed points
to build a tree with a data set in which categories emerge
naturally as learning encodes finer and finer features in the
model. Finally, we show the implementation of this algorithm
on several real-world data sets.

II. DEFINITION OF THE MODEL

The RBM is a Markov random field with pairwise interac-
tions defined on a bipartite graph of two noninteracting layers
of variables: the visible variables v = {vi}i=1,...,Nv

represent
the data, while the hidden variables h = {hμ}μ=1,...,Nh consti-
tute a latent representation of the data that models the effective
interactions among the visible variables. The joint probability
distribution of visible and hidden variables is given by the
Boltzmann distribution

pθ (v, h) = 1

Zθ

e−E (v,h;θ), where Zθ =
∑
v,h

e−E (v,h;θ). (1)

In the previous expressions, the normalization factor Zθ is
called the partition function, θ refers to the parameters of
the model, and E is the energy function or Hamiltonian. In
this work, we focus on a setting in which the hidden units
are binary variables, hμ ∈ {0, 1}, while the visible units are
categorical variables that can assume values q ∈ {1, . . . , Nq}.
We can model this kind of system by introducing a set of Potts
variables in the visible layer; the associated Hamiltonian is

E (v, h; θ) = −
∑

iq

aq
i δvi,q −

∑
μ

bμhμ −
∑
iqμ

δvi,qw
q
iμhμ,

(2)
where δvi,q is the Kronecker symbol that returns 1 if the site i
of the visible layer has the value q and 0 otherwise, a = {aq

i }
and b = {bμ} are two sets of local fields acting, respectively,
on the visible and on the hidden layers, and w = {wq

iμ} is a
3-rank tensor, which we simply refer to as weight matrix, that
models the interactions between the two layers. We sketched
the Potts-RBM structure in Fig. 1. We would like to emphasize
that the selection of Potts variables as visible variables for the
RBM is a generalization that allows the study of sequence data
within the same conceptual framework that applies to binary
data. Nevertheless, binary Ising variables are sufficient for
most clustering applications where the data set can be made
of binary states.

The model defined by the Hamiltonian (2) is not uniquely
defined, and common practice in Boltzmann learning is to fix
the gauge in order to remove the flat directions caused by the
overparametrization [2]. Recent works [13] suggested using
the following gauge-fixing prescription:∑

q

aq
i = 0,

∑
q

w
q
iμ = 0,

∀i = 1, . . . , Nv, ∀μ = 1, . . . , Nh, (3)

which is called zero-sum gauge. This choice preserves sym-
metry between the different categories and has the advantage

FIG. 1. Scheme of the Potts-RBM. The weights matrix is a
three-dimensional tensor w = {wq

iμ}. When input data v(k) enters the
machine, it selects at each site i the connection of the proper color
vi = q with the hidden component μ.

of being computationally easier to implement. However, the
choice of the actual gauge should not affect our clustering
procedure.

The RBM is trained by maximizing the log-likelihood
(LL) function of the model computed on the data set D =
{v(1), . . . , v(M )}, which is defined as

Luw(θ|D) = 1

M

M∑
m=1

log pθ (v = v(m) )

= 1

M

M∑
m=1

log
∑

h

e−E (v(m),h;θ) − log Zθ, (4)

via (stochastic) gradient ascent. For some data sets, however,
it may be more convenient to look at a weighted version of the
LL instead,

L(θ|D) = 〈log pθ (v)〉D = 1

Meff

M∑
m=1

xm log pθ (v = v(m) )

= 1

Meff

M∑
m=1

xm log
∑

h

e−E (v(m),h;θ) − log Zθ, (5)

where Meff = ∑
m xm, and {xm}m=1,...,M is a set of weights

associated with the data samples that have to be specified for
each data set. The weighted average likelihood is useful to
compensate for the fact that certain categories may be over-
represented in the data set compared to others. In particular,
reweighting the data set can affect the process of splitting
the data into categories (especially since larger groups are
split first in the tree), but it has the disadvantage of requiring
to know the groups in the first place. For this reason, we
will generally not use this weighted version except for the
protein sequence data set to partially mitigate the fact that
the data entries may not be independent of each other. This
is typically the case for the available protein sequence data
because the genomes of some species are sequenced more
frequently than others [3]. In this case, reweighting will not
occur between functional groups but between sequences with
similar sequence identity.
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FIG. 2. Different representations of the SED data set and evolution of the features learned by the model as a function of the training time.
(a) SED data set. Each row is a data vector made of Nv binary values. (b) First four levels of the real tree obtained from the SED data set. Each
node of the tree corresponds to a data sample. (c) First two principal components of the SED data set’s PCA. (d) Eigenvalues of the weight
matrix, {wα}, as a function of the training time in terms of epochs. (e) Projections of the SED data set along the first two principal directions
of the weight matrix at different epochs. (f) Tree of the SED data set reconstructed with the proposed method. The colored tags in the external
rings represent the true labels (most internal ring) and sublabels (outer ring) of the data points.

The gradient of the LL with respect to the model’s param-
eters is given by

∂L
∂aq

i

= 〈
δvi,q

〉
D − 〈

δvi,q
〉
E ,

∂L
∂bμ

= 〈hμ〉D − 〈hμ〉E ,

and
∂L

∂w
q
iμ

= 〈
δvi,qhμ

〉
D − 〈

δvi,qhμ

〉
E , (6)

where we denoted as 〈·〉D the weighted average over the
data set and as 〈·〉E the average over the model’s Boltzmann
measure (1). Since computing the partition function is gener-
ally intractable, this second average is typically approximated
by the Block-Gibbs sampling Markov chain Monte Carlo
(MCMC) method, which exploits the bipartite structure of
the graph to iteratively sample the visible variables and the
hidden variables conditioned on the other layer at once, hence
allowing for a high degree of parallelization. In particular,
in this work we have always used the persistent contrastive
divergence (PCD-k) method [14]: the initial states of the par-
allel Markov chains used to compute the gradient are taken
from the final states obtained in the previous parameter’s
update. In this scheme, the number of steps performed in
each update is fixed at k. It has been numerically investigated
that this recipe can yield quasiequilibrium models [7]. We
also systematically checked that the learned models always
operated in the so-called equilibrium regime [7,15], i.e., no
memory of the training scheme was observed. In this paper,
we will often refer to the number of epochs, Nepochs, performed
during the learning as the age of the RBM, which can also be

expressed in terms of the number of the gradient updates as
Ngrad = Nepochs · M/Nmb, where M is the number of training
samples and Nmb is the minibatch size.

III. USING THE RBM’S LEARNING HISTORY
TO CLASSIFY THE DATA

In this section, we discuss how the training trajectory of
the RBM can provide useful information to reveal the hidden
structure of a data set. As a proof of concept, we artificially
generated a data set that mimics a completely random evo-
lutionary process, which we call SED (synthetic evolutionary
data). We started with a “mother sequence” of zeros of length
Nv = 805 and generated a descendant set of five sequences
by flipping each site from 0 to 1 with probability p = 1/Nv .
We then assigned a label to each of the child sequences and
generated several more generations with the same criterion,
each sequence having a randomly chosen number of heirs
between one and five. All descendants of any of the five an-
cestral sequences carry the same label and are referred to as a
family. We can even go further by assigning a secondary label
to each of the subtrees originating from the grandchildren of
the “mother sequence.” Panels (a) and (b) of Fig. 2 show,
respectively, a sketch of the structure of the binary data set,
and the genealogical tree corresponding to this evolutionary
process.

The most naive analysis we can do to infer families from
the SED data set is the PCA. We show the projections of the
data onto the first two principal directions in Fig. 2(c), and
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color each data point according to its family color. We can see
that this analysis already does a relatively good job of sepa-
rating sequences by family. For example, the red family (and
perhaps the blue) can be directly isolated at this level of anal-
ysis, but the remaining points of the families remain mixed.
Our goal now is to use the RBM to make a finer delineation
and obtain some information about the internal structure of the
families, e.g., to isolate the subfamilies of the grandchildren
in Fig. 2(b). For the sake of visualization, the eigenvalues and
eigenvectors of w are obtained after reshaping the tensor into
the form of an (Nv · Nq) × Nh matrix and taking its SVD (see
Appendix A 2 for details). From previous works [5,6,16] we
know that, during the initial steps of learning, the RBM gradu-
ally encodes the principal directions of the data set in the SVD
of the w-matrix. In Fig. 2(d) we show the evolution of the
eigenvalues of the weight matrix as a function of the training
epochs, while in Fig. 2(e) we show the data set projected along
the first two eigenvectors of w at different stages of learning
(different epochs). At the beginning of the learning process,
the SVD eigenvectors do not contain useful information and
cannot separate the families (all colored points are mixed).
In a second phase, when only the first three eigenvalues have
grown, the projection closely resembles that of the PCA in
Fig. 2(c), thus agreeing with the previous statement that the
SVD eigenvectors align with the direction of the principal
directions [5]. After that, the RBM starts learning nonlinear
transformations of the data. In the third frame, corresponding
to the point where the RBM has about 10 expressed eigenval-
ues, the projections partition the different families much better
even at the level of a two-dimensional projection. At much
longer training times, we typically see that the clusters begin
to overlap, and direct clustering of such projections using a
few dimensions becomes difficult, even when the machine has
learned much better representations of the data.

With this discussion, we wanted to argue that the evolution
of the free energy of the model during training can be used to
explore different levels of clustering, and in this way extract
hierarchical information from the data. Such analysis can also
give us qualitative insight into the feature extraction process
in RBMs. Then, the underlying assumption is that the features
learned by the RBM during the learning should have a hierar-
chical structure, that is, the “most relevant” properties of the
data are learnt quite early during the training, while the finer
substructure is detected only at later ages of the machine. The
application of this method to the SED data set yields the tree
reported in Fig. 2(f); we are going to discuss it in the next
sections. We see that data are correctly separated into distinct
families and subfamilies, and a rich structure of the data set
has been detected, although the blueish data get split into two
distinct branches right from the beginning of the tree. The
criterion we used for categorizing the data at different ages
of the learning is based on the mean-field theory applied to
the RBM, and it is discussed in the next section.

IV. PROBING THE RBM LANDSCAPE:
A MEAN-FIELD ANALYSIS

The method that we propose is based on the mean-field
description of the RBM. In this context, we can describe
the system through an approximated thermodynamic potential
which depends on the system’s magnetizations. This extended
free energy displays a certain number of metastable minima
in the magnetization space [17], each of which corresponds
to a mode (i.e., a local maximum) of the Boltzmann prob-
ability distribution. We can interpret these metastable states
as features of the data that the model was able to capture at
a certain stage of the learning. Using the mean-field theory,
we can derive a set of self-consistent equations that, iterated
until convergence, allow us to associate each data point in the
data set to the “closest” metastable state, thereby categoriz-
ing/clustering the data into families with a similar structure
to the RBM eyes. Thus, by following this assignment proce-
dure during training for different free-energy landscapes of
progressively trained machines, we have a method for hierar-
chically classifying the data.

A. Derivation of the self-consistent equations for the Potts RBM

In what follows, we generalize the mean-field description
of Refs. [18–20], also known as Plefka expansion, to our
target model defined by the Hamiltonian in Eq. (2). These
high-temperature expansions have already been applied to the
Boltzmann machine [21] and to RBMs with binary visible
variables [10–12] and to the infinite-range Potts-glass model
[22], but we have yet to generalize these results to the RBM
case with Potts variables in the visible layer. In this section, we
outline only the main results that will be used later to build the
trees, while further details on the derivation can be found in
Appendix B.

Let us consider an energy function Eβ (v, h; θ) which
depends on the inverse-temperature β. By introducing two
sets of temperature-dependent external fields B = {Bi} =
({φp

j }, {ψμ}) with i ∈ {1, . . . , Nv · Nq + Nh}, interacting, re-
spectively, with the visible and the hidden variables, we
consider the free energy of this extended system:

−βFβ (B) = log
∑
v,h

exp

[
−βEβ (v, h; θ)

+
∑

iq

φ
q
i (β )δvi,q +

∑
μ

ψμ(β )hμ

]
, (7)

where we omit the dependence of the free energy on the
systems’ parameters θ. By taking the Legendre transform of
(7), we obtain a description of the system in terms of the
magnetizations M = {Mi} = ({ f p

j }, {mμ}) through the Gibbs
free energy,

−βGβ (M) = −β max
B

[
Fβ (B) + 1

β

∑
iq

φ
q
i (β ) f q

i + 1

β

∑
μ

ψμ(β )mμ

]

= min
B

[
log

∑
v,h

exp

(
−βEβ (v, h; θ) +

∑
iq

φ
q
i (β )

(
δvi,q − f q

i

)+
∑

μ

ψμ(β )(hμ − mμ)

)]
, (8)

014110-4



UNSUPERVISED HIERARCHICAL CLUSTERING USING … PHYSICAL REVIEW E 108, 014110 (2023)

where the maximum condition is taken because Fβ (B) is a
concave function of the fields. Consequently, this new thermo-
dynamic potential is a convex function of the magnetizations.
For the properties of the Legendre transform, fields and mag-
netizations are related through

Mi(B) = −β
∂

∂Bi
Fβ (B) and Bi(M) = β

∂

∂Mi
Gβ (M). (9)

The extended free energy (7) can then be recovered as the
inverse Legendre transform of the Gibbs free energy (8),

−βFβ (B) = − β min
M

[
Gβ (M) − 1

β

∑
iq

φ
q
i (β ) f q

i

− 1

β

∑
μ

ψμ(β )mμ

]
. (10)

From Eq. (10), we see that the free energy of the original
system—corresponding to the free energy (7) when the ex-
ternal fields are turned off—can be obtained as the minimum
of the Gibbs free energy,

Aβ = − 1

β
log

∑
v,h

e−βEβ (v,h,θ)

= Fβ (B = 0) = min
M

[Gβ (M)]. (11)

In this way, we derived a method to compute the free energy
of the system by operating in the space of magnetizations.
However, this is true only in principle, because the Gibbs free

energy is as difficult to compute as the true free energy Aβ .
Besides, our goal of detecting the metastable states of the
system cannot be accomplished by working with the Gibbs
free energy, because it displays just one global minimum.
An estimation of the Gibbs free energy and the breaking of
the minima degeneracy can be achieved by considering a
high-temperature regime in which we can approximate the
thermodynamic potential with a Taylor expansion around
β = 0 truncated at a certain order [17]. In practice, the
high-temperature limit corresponds to a regime in which in-
teractions among the variables are negligible compared to
thermal fluctuations. This is the typical situation that we en-
counter at the beginning of the learning, when the weight
matrix stores only minimal information on how to couple the
layers of the RBM to reproduce the data set’s statistics. To
formalize this, we can consider a Hamiltonian of the kind

−βEβ (v, h; θ) =
∑

iq

aq
i δvi,q +

∑
μ

bμhμ + β
∑
iqμ

δvi,qw
q
iμhμ,

(12)
where the inverse temperature β is just a dummy parameter
that serves as the Taylor expansion and that we will eventually
set to 1. Indeed, by redefining w̃ = βw we see that the limit
β → 0 is equivalent to the limit w̃α → 0, where w̃α are the
eigenvalues of the weight matrix. That is indeed the case when
the RBM has not yet learned the modes of the data set [5].

By defining �β (M) = −βGβ (M) for simplicity, we ob-
tain the following second-order expansion of the Gibbs free
energy:

�
(2)
β (M) = �0(M) + β

∂�β (M)

∂β

∣∣∣∣
β=0

+ β2

2

∂2�β (M)

∂β2

∣∣∣∣
β=0

=
∑

iq

f q
i aq

i +
∑

μ

mμbμ −
∑

iq

f q
i log f q

i −
∑

μ

[mμ log mμ + (1 − mμ) log(1 − mμ)]

+ β
∑
iqμ

f q
i w

q
iμmμ + β2

2

∑
μ

(
mμ − m2

μ

)⎡⎢⎣∑
iq

(
w

q
iμ

)2
f q
i −

∑
i

⎛
⎝∑

q

w
q
iμ f q

i

⎞
⎠2
⎤
⎥⎦. (13)

The stationary conditions (11) yield a pair of self-consistent equations that are known as the Thouless-Anderson-Palmer (TAP)
equations [23], and they are the equivalent of the ones already obtained for RBM with different input types in Refs. [10,11],

mμ = sigmoid

⎧⎪⎨
⎪⎩bμ +

∑
iq

f q
i w

q
iμ −

(
mμ − 1

2

)⎡⎢⎣∑
iq

(
w

q
iμ

)2
f q
i −

∑
i

⎛
⎝∑

q

w
q
iμ f q

i

⎞
⎠2
⎤
⎥⎦
⎫⎪⎬
⎪⎭,

f q
i = softmax

⎧⎨
⎩aq

i +
∑

μ

mμw
q
iμ + 1

2

∑
μ

(
mμ − m2

μ

)⎡⎣(wq
iμ

)2 − 2w
q
iμ

∑
p

f p
i w

p
iμ

⎤
⎦
⎫⎬
⎭. (14)

The approximated free energy (13) has many local minima,
unlike the full Gibbs free energy of Eq. (8), which is convex.
Although this fact could be considered a pure artefact of high-
temperature expansion, in practice these various metastable
states can be associated with relative maxima in the prob-
ability distribution [17]. This fact can be explicitly verified
by direct visual inspection of a dimension reduction of the

generated data and the fixed points, at least at early steps in the
learning history when the generated data are highly clustered.
Moreover, one can also verify that this multiplication of local
minima does not vanish when we include higher orders of β in
the expansion. In particular, we have systematically compared
the fixed points obtained with the third order of the Plefka
expansion [10] with those obtained from the TAP equations in
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FIG. 3. (a) Representation of the TAP equations’ dynamics projected along the two main components of the PCA. The colored circles
represent the initial conditions (magnetizations) of the TAP equations associated with the data points of the SED data set. The colored lines
describe the trajectories that the points follow when iterating the TAP equations, while the stars represent the final fixed points. The colors
of the circles and lines match those of the corresponding fixed points. (b) Pictorial representation of the (minus) LL’s minimization trajectory
during the learning on the SED data set. The scatter plots represent the data generated by the model at different ages projected along the first
two components of the training data set’s PCA. The colored stars correspond to the fixed points of the TAP equations initialized with the data,
and the data points’ color matches the color of the corresponding fixed point. Notice how, as the training advances, the generated data set
becomes more and more structured, and the number of TAP fixed points increases accordingly. (c) ∼500 samples from the SED training data
set projected on the first two principal components of the PCA. Notice how the picture resembles the projection of the last generated data set
on panel (b).

the binary RBM case for some specific data sets, and we
have not found any appreciable difference that would justify
the implementation of higher orders than the second in the
free-energy expansion.

We want also to stress that there are other methods that
allow approximating the free energy of the model through
high-temperature expansions to higher orders than the second,
such as belief propagation (BP) [24]. However, these methods
suffer from the same main limitation of the Plefka expan-
sion; for instance, the BP algorithm assumes the weights of
the network to be uncorrelated from each other, additionally
approximating the factor graph of the model as a tree. We
know that this assumption is only true at the early stages of
the learning trajectory when the weights are small [5,16].

One could in principle use these TAP fixed points as a
way to speed up the training procedure, as suggested in previ-
ous works [10,11]. While this procedure is very effective for
training models with good generative performance, there is no
guarantee that the Boltzmann distribution of these models is
an accurate representation of the data set [15]. In fact, for this
work, we investigated this training procedure and obtained
very poor results when we tried to use the RBMs trained with
the TAP equations for clustering objectives. We will discuss
these results later.

B. Clustering data using the TAP fixed points

Given the model’s parameters at a certain age, we can
use the data set as initial conditions by mapping each data
point v(n) to a pair of magnetization sets ({ f q,(n)

i (t = 0)},
{m(n)

μ (t = 0)}) using

m(n)
μ (t = 0) = sigmoid

⎛
⎝bμ +

∑
iq

δ
v

(n)
i ,qw

q
iμ

⎞
⎠,

f q,(n)
i (t = 0) = softmax

⎛
⎝aq

i +
∑

μ

m(n)
μ (t = 0)wq

iμ

⎞
⎠ (15)

and then iterate Eqs. (14) until convergence. In this way, the
data belonging to the same basin of attraction of the free
energy will collapse into the same point of the magnetization
space, corresponding to one of the possibly many local min-
ima, as shown in Fig. 3(a). We can then use these multiple
basins of attraction to cluster similar data together. We just
need a practical way to automatically collect all the data in
the same basin (or metastable state).

To this end, we can use the DBSCAN algorithm [25] to
categorize the data by the fixed point at which it ends after
propagating the TAP equations. Now, if we do this at different
stages of learning, such a method allows us to partition the
data set according to the features that the model has learned
at that point (age) of training. This method is quite robust in
choosing the eps parameter of DBSCAN, because the TAP
dynamics makes the points collapse into very small regions of
magnetization space that can be easily delineated by the algo-
rithm without ambiguity. However, a relatively large value of
eps = 1 was chosen because we sometimes want to aggregate
fixed points that almost overlap but are still distinct, preferring
larger categories than having extremely similar fixed points. In
Fig. 3(b), we sketch how the number of fixed points and the
features recognized by the model evolve during the learning.
Data points that converge to the same fixed point (represented
by a star) are colored accordingly. This construction allows
us to visualize how the free-energy landscape changes during
the training, displaying a growing number of local minima.
We note that this procedure is very similar to the annealing
performed on the Gaussian mixture model [26,27].

We remark that the fixed points of the TAP equations are
not guaranteed to be local minima, but they might be saddle
points or local maxima as well. In principle, this could be
verified by computing the determinant Hessian matrix of the
TAP free energy (13) at the fixed points. Yet, in practice, this
check is revealed to be quite problematic since one should
compute an (Nv · Nq + Nh) × (Nv · Nq + Nh) dimension
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matrix for each one of the fixed points that are identified.
Instead, we qualitatively verified that the fixed points in
the early phase of learning always correspond to the local
minima of free energy by visually verifying that they fall in
the middle of the denser regions, i.e., identifying the modes of
the probability distribution. However, in the oldest machines,
we cannot guarantee that some of the fixed points may be
spurious solutions. To minimize this problem, we will always
take a “backward” approach to the tree construction, as will
be explained in the next section.

V. GENERATING RELATIONAL TREES

In this section, we discuss how to use the aforementioned
construction to produce a hierarchical description of the data
set. The method we propose consists of considering multiple
classifications performed using several models saved at dif-
ferent stages of the training (i.e., ages). Assuming that we
saved the models corresponding to the ordered set of ages
{t k

age}k=1,...,NT , with t k+1
age > t k

age, we start by taking the oldest
RBM at tNT

age and we iterate the TAP equations until conver-
gence using the dataset as initial conditions. This procedure
yields a number of fixed points that is smaller than the number
of data points since some data points will have collapsed into
the same free-energy minimum. Then, we pick the model at
tNT−1
age and we iterate again the TAP equations, this time using

as initial conditions the fixed points found at the previous step.
In fact, some minima that were distinct for the oldest RBM
will be degenerate for the younger one, finding themselves
in the same basin of attraction of a new (larger) minimum.
We can repeat this procedure backwards in time for all the
selected ages until the youngest RBM, for which all the data
collapse into a unique global minimum. If we keep track of the
fixed points’ merging during the procedure, we can construct
a tree starting from the leaves (i.e., splits made by old models)
and proceeding down to the root. We depicted this procedure
in Fig. 4. This procedure also allows us to efficiently avoid
the spurious fixed points (the saddle points or maxima of free
energy): we follow the merging of fixed points obtained in
old machines into the broader basins of attraction of the fixed
points of the younger machines. This procedure ensures that
the tree construction will rapidly rely only on the true minima
of the free energy. Yet, one could also imagine constructing
a tree based on the fixed points that arise when propagating
the TAP equations from all points in the data set at each
age of the machine. We have found empirically that trees
constructed in this way are qualitatively and quantitatively
worse than those presented here (see Fig. 17 of Appendix C).
We believe that a reason for this is precisely that not all fixed
points are free-energy minima. Another possible explanation
for this is that, in this second case, classifications performed at
different ages are independent of each other. In the method we
described, instead, the classification at a given age is informed
by those performed at later ages. In other words, information
is propagated backwards in (training) time, from the more
experienced models to the rawest ones.

At this point, we have to state a criterion for selecting the
ages of the RBM that we want to save during the training
and that will participate in the tree construction. Ideally, one
would wish to find a relation between the geometry of the

(a)

(b)

FIG. 4. (a) Sketch of the process of merging the fixed points used
to build the relational tree. We start with an old RBM and let the TAP
dynamics collapse the data into the fixed points of the self-consistent
Eqs. (14). Then we repeat the procedure for younger and younger
machines, each time propagating the TAP equations starting from the
previously found fixed points, until we reach the point where all the
data have collapsed into just one global minimum. (b) By following
the merging of the fixed points, we obtain the relational tree of the
data set.

free-energy landscape (e.g., the number of fixed points that
are present) and some observable that can be monitored during
the training, such as the spectra of the weight matrix, to decide
optimally and automatically when to save the state of the
RBM. The first splits are easily traceable by monitoring the
first eigenvalues of the weight matrix. Yet, when the RBM
starts to have an increasing number of “expressed” modes, we
can no longer link one mode to a given split (see Fig. 11 of
Appendix C). For this reason, we simply saved a certain num-
ber of models (e.g., ∼500) equally spaced along the training
history. When constructing the tree, we added a new layer
only when the number of fixed points found with the TAP
equations decreased (recall that we move backwards in time
when using the TAP equations) from the previously added
layer.

Applying this procedure to the artificial data set SED, we
create the tree we showed as teasing in Fig. 2(f). The leaves
of the graph (real data points) were colored according to the
labels of each entry, as shown in the genealogical tree in
Fig. 2(b). We consider two possible levels of relationships:
Ancestral families are shown in five colors (blue, green, pink,
yellow, and red) and next-generation entries are shown in
different shades of the same color family. We see that with this
tree we can perfectly delineate all five families based on the
main branches of the constructed tree, and the same is true for
the subfamilies initiated by the grandchildren (shown in the
outer crowns of the diagram). Since the nodes of the tree cor-
respond to points in the magnetization space, we can visualize
the evolution of the learned features during learning, as shown
in Fig. 5(a). Looking at the innermost nodes of the tree, we
can see that the RBM first learns the characteristic patterns of
the first generation of sequences by recognizing the mutation
sites, and then gradually distinguishes the second-generation
mutations, and so on. Interestingly, the magnetizations of the
various fixed points tell us exactly where the mutations (which
led to the creation of each family and subfamily) occurred
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(a)

(b)

FIG. 5. Representation of the features learned by the RBM dur-
ing training on the SED data set. (a) The same tree as in Fig. 2(f),
truncated to 15 layers. The plots in the insets represent the com-
parison between the magnetization profiles (solid colored lines)
associated with some internal nodes of the tree and the “patterns” of
the first and second generations of the genealogical tree in Fig. 2(b).
The x-axis of the boxes denotes the index site along the sequence,
whereas the y-axis represents the value of the magnetization. The
colored squares indicate the locations where mutations occurred in
the first generation of progeny (passing from the ancestral mother
sequence with all 0s to a sequence of 0s plus a few 1s), and the trian-
gles indicate the mutations in the second generations corresponding
to this subset (secondary coloring labels). (b) Representation of the
location of all first- and second-generation mutations. Each box rep-
resents one of the first five families. The squares mark the mutations
in the first generation, while the triangles and the vertical lines
highlight the mutation sites in the second generation (in both cases
compared to the ancestral mother sequence). Each color represents
a different second-generation family [retaining the color scheme of
Fig. 2(b)].

during the evolutionary process [see Fig. 5(b)]. Furthermore,
from this diagram, it is easy to understand why the main
blue family is already divided into two main groups at the
root of the tree. The magnetization profile of the blue family
in the upper left part of Fig. 5, indeed, shows a burst of
mutations that occurred very early in the evolutionary process
and caused this subfamily to diverge from the rest of the
sequences.

VI. RESULTS

So far, we have shown the performance of our method only
on a synthetic data set whose hierarchical relational structure

was given by design. Now, we apply our method to three
different real-world data sets with different categories of data
points. First, we analyze a simple image data set where all la-
bels are known and where features can be visualized directly.
In particular, we analyze a relational structure of the MNIST
data set [28], which contains images of handwritten digits
whose label is the actual digit. Second, we analyze the human
genome data set (HGD) [29], which captures the genetic mu-
tations of 5008 individuals from around the world. This data
set is even more interesting because the sequences contain
two levels of annotation (continental origin and population
group). Third, we conclude with the last and most challenging
data set: amino acid sequences of a homologous family of
proteins (the CPF protein) with a large functional diversity.
The biological function of these sequences is known for only
a very small fraction, namely those that have been studied
experimentally. The challenge, then, is to assign a probable
biological function to each of the unclassified sequences based
on limited experimental knowledge. For a detailed description
of the data sets considered, see Appendix A.

We show the projection of all three of these data sets along
the first two principal components of the PCA in Fig. 6. In
particular, we point out the different degree of clusterization
displayed in each of these three data sets: while the distribu-
tion of the MNIST data points is quite broad and connected,
the HGD and the CPF protein are rather clusterized, which is
known to sensibly damage the quality of the training process
due to sampling convergence problems [30].

A. MNIST data set

The MNIST data set consists of binary images (pixels can
be either 0 or 1) of handwritten digits. Each example is asso-
ciated with a numeric label—from 0 to 9—indicating the digit
represented in the image. We show in Fig. 7 the relational tree
obtained by our method for MNIST. As we can see, the RBM
is mostly able to separate the different digits, although there
are some cases in which two categories are mixed together
(e.g., the digit 4 with the 9). Dealing with pictures has the
advantage that we can visualize the features learned by the
RBM during learning and try to explain them qualitatively.
The first few layers of the tree obtained using a subset of
the MNIST data set are shown in Fig. 8, where we also
highlighted the images of some data that were misclassified.
Since the internal nodes of the tree correspond to actual points
in the magnetization space, we can visualize the evolution
of the features learned from the RBM as they unfold along
the tree and see where and when each cluster detail appears.
For example, the first split separates digit 0 from the rest. As
training time (or tree depth) increases, the 0 appears to remain
completely isolated while the rest of the digits are gradually
resolved as the RBM learns finer details. We can also observe
the proximity of some digits; in addition to the 4 and the 9,
we see that the 7 is also quite close to the 9. In principle, it
would be possible to further analyze the obtained results and
find interesting features that may have been unknown before
the analysis.

B. Human genome data set

In the HGD, each data point is a binary vector corre-
sponding to a human individual, where a 1 is placed in
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(a) (b) (c)

FIG. 6. Projections of the data sets along the first two principal components of the PCA. The colors correspond to the known labels of the
data points. (a) MNIST dataset. (b) Human Genome data set. (c) CPF protein. All the data are shown in black and the colored dots correspond
to the experimentally annotated sequences.

correspondence to the sites that present a mutated gene with
respect to a reference sequence, and a 0 is placed where
the gene is maintained unaltered. For this data set, we have
two sets of labels since each individual is associated with
a certain continental area (superpopulation) and population.
This two-level characterization of the data set allows us to test
the discriminative power of the RBM at different resolutions.
The tree obtained for this data set is shown in Fig. 9. Over-

all, the separation of the major labels, corresponding to the
continental area, is performed quite well, although sometimes
the tree blends together European and American individuals.
On the other hand, the substructure corresponding to the dif-
ferent populations is almost never detected by the model at
this stage of the training, apart from the isolation of Peruvian
and Finnish people. By training an RBM separately on each
continental area, we verified that, in some cases, it would be

FIG. 7. Complete tree generated on 500 samples from the MNIST data set. The external coloured tags represent the true labels, while the
colored regions inside the tree have been manually assigned for the sake of visualization.
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FIG. 8. First 10 layers of the tree obtained on 500 samples from the MNIST data set. The colored tags in the external ring correspond
to the true labels of the data. Inside the three, we superimposed the images of the RBM’s fixed points corresponding to the nodes along the
branches. The intensity of the pixels represents the probability that the machine assigns to that pixel to be turned on. We also report the images
from the data set corresponding to some of the leaves. In particular, we put a red circle around the digits that have been wrongly classified by
the algorithm in order to highlight the configurations that fooled the machine.

possible to discriminate a subcategory from the others (see,
for instance, Fig. 12 of Appendix C), while in other cases the
data set in itself and the RBM cannot resolve the different pop-
ulations, therefore appearing indistinguishable among each
other. We should keep in mind here that, when applying the
RBM on populations, we are dealing with a reduced number
of samples in the training set and that the impossibility of
separating the different populations might be a consequence
of the lack of a statistical signal. We remark that, since only a
subpart of the genome has been used here, we do not claim
at all that these populations would be indistinguishable in
general.

C. CPF protein data set

In the two cases previously discussed, we had the label
information for all the data points. For practical purposes, a
more interesting scenario is one in which only a fraction of the
data has been annotated. To this end, we considered a biolog-
ically relevant data set consisting of homologous sequences
representing the CPF (Cryptochrome/Photolyase) protein. For
this data set, only 86 out of 397 sequences have been exper-
imentally classified, based on their biological function, into

five different categories [31–34]. Since the amino acid chains
are not the same length, the sequences have to be previously
aligned in the form of a multisequence alignment (MSA)
matrix before being fed to the RBM. Each site of the se-
quences can take one over Nq = 21 possible values (20 amino
acids + a gap symbol), hence making the data set particularly
suitable to be studied with the Potts-RBM model. Using our
tree construction, we may therefore infer a classification for
the sequences not previously annotated by looking at the label
of the annotated sequences that fall in the same branch.

The algorithm’s results on the CPF protein data set are
shown in Fig. 10. Coherently with the phylogenetic tree (see
Fig. 14 of Appendix C), the sequences classified as CPD
photolyase are found in two distinct main branches of the tree,
and a subtree containing photoreceptor sequences is found
within the (6-4) photolyase main branch. It is indeed a known
fact in biology that the concept of a biological function is
related, but not identifiable, to the phylogeny of the protein
family. In other words, proteins that diverged in their amino
acid sequences may still carry the same function. For instance,
in Ref. [35] the authors propose a hierarchical classification
method, called ProfileView, that is able to correctly identify
11 of the known subgroups of the CPF protein beyond the
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FIG. 9. Tree generated from the HGD data set. The outer colored markers represent the true labels: continental areas in the inner crown of
the circle, and populations in the outer part.

capabilities of the phylogenetic tree. It is therefore interesting
to compare the tree obtained with our method with the phy-
logenetic one and the tree obtained with ProfileView, for
which we remand to the main article [35]. As opposed to
the phylogenetic tree, our construction is able to readily iden-
tify and separate circadian transcriptional regulators from 6-4
photolyases, although it is not able to separate the animal
photoreceptors from the (6-4) photolyases as clearly as it
happens with ProfileView. Also, in [35] the photoreceptors
are further separated into the plant and plantlike subgroups.
The RBM was able to capture the difference between the two
categories, although the plantlike sequences are found in two
distinct branches of the tree. We notice how the machine very
solidly recognizes the CRY Pro group, while in the phylo-
genetic tree it is not clearly distinguishable from the other
photolyases. By running different independent training using
the same hyperparameters, we obtained slightly different tree
structures (the training of an RBM is a stochastic process) that
nevertheless always conserve the main hierarchical features.

Taking the phylogenetic tree and the ProfileView tree as
reference models, we can see that the tree we obtained does
not completely separate the different protein functions in the
same way, even though it isolates most of the identified func-
tional groups and recovers the phylogeny to some extent.
However, we would like to emphasize that our method is
able to capture all of these functional signals (and more than

just the phylogeny of the sequences) with much less data
than ProfileView, which requires the construction of a pool
of profile models obtained from the FAD domains of many
close sequences throughout the UniProt data set. Moreover,
ProfileView has been specifically optimized for accurate pro-
tein function recognition, whereas our method is completely
general and has not been optimized for this task.

VII. DISCUSSION

The presented method scans the evolution of the RBM
free energy during training backwards in time and uses it to
reconstruct the sequential features discovery of the model.
The approach we described proved to be far more effective
than the naive procedure of clustering the data in the direction
of learning. The reason is that the most important splits in the
tree correspond to the first branches created by the youngest
and “inexperienced” models. The feature discrimination capa-
bilities of these models are still quite raw, so many data points
that are far from the initial fixed points may be assigned to the
wrong feature. Therefore, it is important to start the sequential
clustering from the oldest (i.e., “more experienced”) machines
so that the data are gradually pulled through the magnetization
space to the correct free-energy minima. The sequential clus-
tering of points during tree construction has the effect of not
using all the local minima of free energy present at a given
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FIG. 10. Tree generated from the CPF protein family. The external colored tags, when available, represent the experimental classification
[31–34], while the color of the leaves represents the classification into 11 (plus one unidentified) subgroups classified by ProfileView in
Ref. [35]. Since several ProfileView categories may correspond to the same experimental classification, to avoid confusion we kept the colors
of the two classifications independent of each other.

age, but only those that find some earlier fixed points in their
basin of attraction.

Given that our method is based upon the mean-field ap-
proximation, which assumes the model to be in the early stage
of the learning, one may allegedly wonder how far we can go
with the training and still obtain a reliable approximation of
the model’s free energy. Since we do not have access to the
true free energy of the model, we cannot directly assess the
goodness of our second-order approximation. Even so, we can
have a clue on the validity of the approximation by comparing
the fixed points of the TAP equations with those obtained with
the self-consistent equations corresponding to the Gibbs free
energy (8) truncated at the first order in β, which we call
naive mean-field (nMF). The point of the training at which the
two sets of solutions start to diverge can be considered a safe
upper bound below which we are guaranteed that our method
is working properly. Performing this check for the various data
sets reveals that, at the point in which the main features of
interest (corresponding to the labeled categories) are separated
inside the tree, the fixed points of the first- and second-order
approximations of the free energy are still very similar. This
is particularly true when the data set is very clusterized. Then,
when the two sets of solutions start to change significantly,

we observe that the number of nMF fixed points grows much
more than that of the TAP solutions, as we can see in Fig. 13
of Appendix C.

Another interesting question concerns the variability of the
trees obtained with repeated training of the same RBM model.
Since training the RBM is a stochastic process, we might
expect the tree structure to change slightly with different
training runs. We verified that there is indeed some degree
of variability, as we can see in Fig. 15 in Appendix C for the
MNIST data set. However, we also note that some key features
of the tree are preserved across experiments, such as the easy
separation of digit 0 and the difficult distinction between digits
4 and 9. The same behavior was observed for other data sets,
such as the CPF protein data set. In this case, we observe that
the position of the branches within the tree may vary with
repeated experiments, but the hierarchical organization of the
subtrees is preserved.

It is worth making a final comment on the possibility of
using the training trajectory of the RBM to construct the
tree. Since training the RBM can be viewed as an effective
annealing of the model, one might want to try to construct
the tree by simply using the most trained model and gradually
increasing the temperature (i.e., decreasing β) while iterating
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the equations from TAP repeatedly until convergence. Al-
though this method gave quite similar results to our original
version on the HGD and SED data sets, it proved very inad-
equate when applied to the MNIST data set (see Fig. 15 in
Appendix C). A good reason for using the learning trajectory
instead of a trajectory in temperature is that, in the first case,
the system undergoes continuous phase transitions [5] and
the evolution of the probability distribution of the model is
smooth. In the second case, on the other hand, the system un-
dergoes first-order phase transitions in temperature, which de-
termine very different free-energy landscapes at different tem-
peratures. This could explain why the use of the learning tra-
jectory leads to better results in the hierarchical classification.

Finally, one can ask what the result of inference would be
if one were to use an RBM trained with a different method
from the one we used. For example, one can train the RBM
by computing the negative term of the gradient using the TAP
equations (14) as proposed in Refs. [10,11]. We have explored
this possibility, but we have found empirically that models
trained in this way tend to lose the hierarchical properties as
the fixed points emerge during learning. We show in Fig. 18
of Appendix C an example of a tree obtained with an RBM
trained with the TAP equations. Similarly, trees obtained with
nonequilibrium machines, i.e., RBMs trained with nonpersis-
tent, nonconvergent chains [7,15], e.g., with chains initialized
with random distributions or the data set, show some degree of
hierarchization in clustering, but they are not specific enough
to correctly delineate the different families.

VIII. CONCLUSIONS

In this work, we derived the TAP equations for the Potts
RBM defined by the Hamiltonian (2), and we used this
mean-field description of the model to study the evolution of
the RBM free energy during training. We then developed a
method to infer the hierarchical structures of the data sets from
the training trajectory. Using labeled data, we showed that our
method is able to generate meaningful trees when applied to
four different data sets. In addition, we were able to exam-
ine the internal nodes of the tree generated on the SED and
MNIST data sets to see how the internal representations of the
model change during learning. Although the tree construction
is inherently stochastic, we demonstrated that some relevant
features are conserved across different realizations. Finally,
we tested our method on a protein data set and showed that it
can provide useful functional information by only capturing
the statistics of the input MSA in a purely unsupervised man-
ner, i.e., without any prior knowledge about the data. These
results suggest potential promising applications in biology to
detect functional signals in homologous protein data sets.
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APPENDIX A: STUDIED DATA SETS
AND TECHNICAL DETAILS

We tested our algorithm on four different data sets:
(i) The MNIST data set [28] consists of gray-scale images

representing handwritten digits, from 0 to 9, of dimension
28×28 pixels. The data set is thoroughly annotated, namely,
we have a label for each sample indicating the represented
digit. For our experiments, we extracted 10 000 samples from
the training set and we applied the tree algorithm to a subset
of 500 data samples. The images have been flattened and
converted in binary format by setting to 1 the pixels with a
normalized value above 0.3 and to 0 otherwise. In this way, the
data set we used was made of 784-dimensional binary vectors.

(ii) The human genome data set (HGD) [29] represents
human genetic variations of a population of 5008 individuals
sampled from 26 populations in Africa, east Asia, south Asia,
Europe, and the Americas. Each sample is a sequence of 805
binary variables, vi ∈ {0, 1}, representing the alteration or not
of a gene with respect to a reference genetic sequence. For
these data, we have a complete two-level hierarchical labeling.
At a higher level, the sequences are classified based on the
continental origin of the individuals, while at a finer level, we
also have a label for the particular population from which the
data were sequenced. This allows us to test the discriminative
capabilities of the RBM at different resolutions. We trained
the RBM on 4508 samples.

(iii) The synthetic evolutionary data (SED) data set has
been artificially created by us with the aim of simulating a
controlled evolutionary process fully driven by random mu-
tations. We started with an ancestor sequence of length Nv =
805 and we produced five heirs by flipping at least one site
of the sequence. Then, we associated a label with each one of
the heirs, and we iterated the following evolutionary process:
given a sequence, we generated a random number between
1 and 5, which corresponds to the number of children. Each
child is obtained by flipping each site of the mother sequence
with probability p = 1/Nv , and it is added to the data set if
the sequence was not already present. Each child inherits the
label of the mother sequence. We repeated this process at each
generation until we obtained a data set of 4508 sequences.

(iv) Finally, we tested the algorithm on a data set of ho-
mologous protein sequences. The data set we consider is
made of 397 amino acid sequences representing the cryp-
tochrome/photolyase (CPF) protein. Proteins belonging to the
CPF family share the same fold, yet they perform several
different functions. Cryptochromes are divided into photore-
ceptors that activate specific pathways in the presence of
light and light-independent circadian clock transcriptional
regulators, while photolyases are light-activated enzymes
encharged with repairing UV-damaged DNA. In particu-
lar, 86 of the available sequences have been experimentally
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TABLE I. Technical specifics of the RBMs used for generating
the trees reported in the main text. All machines have been trained in
PCD mode [7]. Only for the tree of Fig. 2(f) has a binary RBM been
used in place of the Potts version described in the main text.

Minibatch
total gradient Learning

Tree Data-set epochs size updates NGibbs rate Nh

Fig. 2(f) SED 10 000 512 9×104 100 10−2 512
Figs. 8,7 MNIST 10 000 512 2×105 100 10−3 512
Fig. 9 HGD 10 000 512 9×104 100 10−3 512
Fig. 10 CPF 10 000 128 3×104 100 10−3 512

classified into five categories according to their biological
function [31–34]: circadian, photoreceptor, (6-4) photolyase,
CPD photolyase, and ssDNA photolyase. Finally, we vali-
dated our model by also considering the finer classification
in 11 categories determined in [4].

To be processed by the RBM, the sequences must be pre-
viously aligned in a matrix called multisequence alignment
(MSA). The alignment is performed by inserting a special
symbol, the gap ‘−’, a proper number of times within adjacent
sites of the sequences. Each site can therefore assume 1 over
21 possible values (20 amino acids + the gap). After the align-
ment, the length of the obtained sequences was Nv = 7403. To
perform the MSA we used the software MAFFT with a large
ep parameter of 1 to penalize long alignments.

Concerning the weights used for computing the weighted
average in Eq. (5) in this data set, we first had to define
a set of clusters by gathering all sequences with sequence
identity greater than 0.8, and then we applied the same cri-
terion described above. The clustering has been done using
the software MMseqs2.

All the trees shown in the article have been generated using
the iTOL software.

1. Technical details of the RBM models used

In Table I we report the hyperparameters of the RBMs used
for generating the trees reported in the main article.

2. Projecting the data set along the weight matrix
principal directions

To project a data set made of categorical variables along the
first principal directions of the weight matrix, we first have to
transpose the tensor w along the first two dimensions and then
reshape it from an Nv × Nq × Nh tensor to an (Nq · Nv ) × Nh

matrix:

w ∈ RNv×Nq×Nh
transpose−−−−→ ŵ ∈ RNq×Nv×Nh

reshape−−−→ w̃ ∈ R(Nq·Nv )×Nh .

Then, we consider the singular value decomposition (SVD)
of w̃,

w̃ = USV T , (A1)

where U ∈ R(Nq·Nv )×(Nq·Nv ), S is an (Nq · Nv ) × Nh matrix with
the singular values of w in the diagonal, and V ∈ RNh×Nh . The

next step is to compute the one-hot representation of the data
set, which consists in associating with each categorical vari-
able q an Nq-dimensional vector that has value 1 in position q
and 0 otherwise:

D ∈ RM×Nv
one-hot−−−→ D̂ ∈ RM×Nv×Nq

reshape−−−→ D̃ ∈ RM×(Nv ·Nq ).

Finally, the projected data set is given by

Dproj = D̃U ∈ RM×(Nv ·Nq ), (A2)

where each row is a vector associated with a data sam-
ple whose components correspond to the projections of the
one-hot representation of the data point along the principal
directions of the weight matrix.

APPENDIX B: TAP EQUATIONS FOR THE POTTS RBM

We start by considering a Hamiltonian of the kind

−βEβ (v, h; θ) =
∑

iq

aq
i δvi,q +

∑
μ

bμhμ + β
∑
iqμ

δvi,qw
q
iμhμ,

(B1)
where the inverse-temperature parameter, β, regulates the
interactions among the variables. Our goal is to study the
metastable minima of the free energy in the high-temperature
regime β → 0, which is equivalent to considering the limit in
which the eigenvalues of the weight matrix are vanishing.

Let us introduce two sets of external fields, {φp
j } and {ψμ},

which act, respectively, on the visible and hidden variables
and depend on the inverse-temperature β. We denote the
total external field vector as B = {Bi} = ({φp

j }, {ψμ}), with
i ∈ {1, . . . , Nv · Nq + Nh}. The free energy of this extended
system is

−βFβ (B) = log
∑
v,h

exp

[
−βEβ (v, h; θ) +

∑
iq

φ
q
i (β )δvi,q

+
∑

μ

ψμ(β )hμ

]
, (B2)

where we omitted the free energy’s dependence from the
model’s parameters θ. The local magnetizations in the pres-
ence of these fields, M = {Mi} = ({ f p

j }, {mμ}), are

f q
i = 〈δvi,q〉B = −β

∂

∂φ
q
i

Fβ (B) and

mμ = 〈hμ〉B = −β
∂

∂ψμ

Fβ (B). (B3)

Notice that the free energy in Eq. (B2) is a concave function of
the external fields. To see this, we can represent a state of the
system with the vector x = (δoh, h) ∈ RNv ·Nq+Nh , where δoh ∈
RNv ·Nq is the one-hot representation of the Potts states. Then,
the Hessian of the free energy with respect to the fields is

∂2Fβ (B)

∂Bj∂Bi
= − 1

β

∂Mi

∂Bj
= − 1

β
〈(xi − Mi )(x j − Mj )〉B

for i, j ∈ {1, . . . , Nv · Nq + Nh}, (B4)

which is seminegative defined.
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We can describe the system in terms of the magnetizations by considering the Gibbs free energy, which is obtained by taking
the Legendre transform of (B2):

−βGβ (M) = −β max
B

[
Fβ (B) + 1

β

∑
iq

φ
q
i (β ) f q

i + 1

β

∑
μ

ψμ(β )mμ

]

= min
B

[
log

∑
v,h

exp

(∑
iq

aq
i δvi,q +

∑
μ

bμhμ + β
∑
iqμ

δvi,qw
q
iμhμ +

∑
iq

φ
q
i (β )(δvi,q − f q

i ) +
∑

μ

ψμ(β )(hμ − mμ)

)]
;

(B5)

in this way the fields B = B(M) satisfy Eqs. (B3), namely
they enforce the magnetizations M. The solution B(M) must
satisfy

Bi = β
∂

∂Mi
Gβ (M),

∂2Gβ (M)

∂Mj∂Mi
= 1

β

∂

∂Mj
Bi(M)

= 1

β

(
∂Mj

∂Bi

)−1

= −
(

∂2Fβ (B)

∂Bi∂Bj

)−1

, (B6)

meaning that the Gibbs free energy is a convex function of
the magnetizations. The free energy is the inverse Legendre
transform of Gβ (M ),

−βFβ (B) = −β min
M

[
Gβ (M ) − 1

β

∑
iq

φ
q
i (β ) f q

i

− 1

β

∑
μ

ψμ(β )mμ

]
, (B7)

and the solution M(B) satisfies Eq. (B6) and it is the global
minimum of the Gibbs free energy. From Eq. (B7) we can see
that, by turning off the external fields B, we retrieve the free
energy of the original system at the minimum of the Gibbs

free energy:

Aβ = − 1

β

∑
v,h

e−βEβ (v,h,θ) = Fβ (B = 0) = min
M

[Gβ (M)].

(B8)
At this point, we have two problems. The first problem

is that the Gibbs free energy is a convex function of the
magnetizations, meaning that we cannot use it directly to
identify the metastable minima of the free energy. Moreover,
we are prevented from computing it in the first place because
it would be as difficult to evaluate as the original free energy.
The two issues can be overcome if we restrict ourselves to
the high-temperature limit, corresponding to the early stage
of the learning when the RBM has not yet learnt the modes
of the data set. In this regime, we can approximate the Gibbs
free energy with a Taylor expansion around β = 0. For ease
of notation, let us define the Gibbs free entropy as �β (M) =
−βGβ (M). We want to compute the second-order expansion:

�
(2)
β (M) = �0(M) + β

∂�β (M)

∂β

∣∣∣∣
β=0

+ β2

2

∂2�β (M)

∂β2

∣∣∣∣
β=0

. (B9)

The high-temperature approximation has the effect of break-
ing the degeneracy of the Gibbs free energy, hence allowing us
to detect the metastable pure states. Moreover, the expansion
(B9) can be directly computed, because at β = 0 the inter-
actions among the variables disappear, and the probability
measure factorizes. Given an observable O, we can define the
high-temperature average as

〈O〉 =
∑

v,h O(v, h) exp
(∑

iq

[
aq

i + φ
q
i (0)

]
δvi,q +∑

μ[bμ + ψμ(0)]hμ

)
∑

v,h exp
(∑

iq

[
aq

i + φ
q
i (0)

]
δvi,q +∑

μ[bμ + ψμ(0)]hμ

) . (B10)

In particular, we can compute the magnetizations in the high-
temperature regime as

mμ = 〈hμ〉 =
∑

hμ=0,1 hμ exp
(∑

μ hμ[ψμ(0) + bμ]
)

∑
hμ=0,1 exp

(∑
μ hμ[ψμ(0) + bμ]

)
= 1

1 + e−bμ−ψμ(0)
= sigmoid[bμ + ψμ(0)], (B11)

f q
i = 〈δvi,q〉 =

∑
v δv,q exp

(∑
p δv,p

[
φ

p
i (0) + ap

i

])
∑

v exp
(∑

p δv,p
[
φ

p
i (0) + ap

i

])

= eaq
i +φ

q
i (0)∑

p eap
i +φ

p
i (0)

= softmax
[
aq

i + φ
q
i (0)

]
. (B12)

We now proceed by computing the various terms of Eq. (B9).
For ease of notation, let us define

I =
∑
iqμ

δvi,qw
q
iμhμ, (B13)

F (β ) =
∑

iq

φ
q
i (β )

(
δvi,q − f q

i

)+
∑

μ

ψμ(β )(hμ − mμ),

(B14)
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so that the Gibbs free entropy can be written as

�β (M) = min
B

[
log

∑
v,h

exp

(
βI+ F (β ) +

∑
iq

aq
i δvi,q

+
∑

μ

bμhμ

)]
. (B15)

1. Entropic term

The zero-order term corresponds to the mean-field entropy
of the model, and it is given by

�0(M) = −
∑

iq

φ
q
i (0) f q

i −
∑

μ

ψμ(0)mμ

+
∑

i

log

[∑
v

exp
(
av

i + φv
i (0)

)]

+
∑

μ

log[1 + exp(bμ + ψμ(0))]. (B16)

To make explicit the dependence on the magnetizations
{mμ} and { f q

i } into Eq. (B16), we need to invert Eqs. (B11)
and (B12). The first equation leads straightforwardly to

ψμ(0) = log

(
mμ

1 − mμ

)
− bμ, (B17)

while from the second equation we get

φ
q
i (0) = log f q

i − aq
i + ci, (B18)

where ci = log[
∑

p exp(ap
i + φ

p
i (0))]. This last arbitrary con-

stant comes from the fact that the Potts model displays a gauge
invariance [3]. A convenient choice to fix it is the lattice-gas
gauge, for which we impose

a
Nq

i = φ
Nq

i = w
Nq

iμ = 0. (B19)

In this way, we obtain the inverse relation of the softmax
function (B12):

φ
q
i (0) = log

(
f q
i

f
Nq

i

)
− aq

i . (B20)

By inserting these relations into Eq. (B16) and remem-
bering the normalization condition

∑
q f q

i = 1, we obtain the
familiar expression of the mean-field Shannon entropy of a set
of binary and categorical variables plus two interaction terms
between the magnetizations and the local fields of the model,

�0(M) =
∑

iq

f q
i aq

i +
∑

μ

mμbμ −
∑

iq

f q
i log f q

i

−
∑

μ

[mμ log mμ + (1 − mμ) log(1 − mμ)].

(B21)

2. First-order term

The first derivative is readily obtained as

∂�β

∂β

∣∣∣∣
β=0

= 〈I〉 + 〈∂βF (0)〉︸ ︷︷ ︸
=0

=
∑
iqμ

f q
i w

q
iμmμ, (B22)

which is merely the naive mean-field interaction energy.

3. Second-order term

Given an observable O(β ), the derivative of its average at
inverse-temperature β can be computed as

∂

∂β
〈O(β )〉β = 〈∂βO(β )〉β + 〈O(β )I〉β + 〈O(β )∂βF (β )〉β

− 〈O(β )〉β〈I〉β − 〈O(β )〉〈∂βF (β )〉β. (B23)

For β = 0, the expression simplifies into

∂

∂β
〈O(0)〉 = 〈∂βO(0)〉 + 〈O(0)I〉 + 〈O(0)∂βF (0)〉

− 〈O(0)〉β〈I〉, (B24)

so that the second derivative of the Gibbs free entropy is

∂2�β

∂β2

∣∣∣∣
β=0

= ∂

∂β
〈I〉 = 〈I2〉 − 〈I〉2 + 〈I ∂βF (0)〉. (B25)

(a) (b)

FIG. 11. For each model saved during the training, we recorded the number of TAP fixed points and the number of eigenvalues of the
weight matrix above different thresholds. The different colors correspond to different thresholds, and the continuous lines represent the average
number of TAP fixed points expected when a given number of eigenvalues are above the threshold. Panel (a) shows the results obtained on the
SED data set, whereas panel (b) shows the results on the MNIST data set.
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(a)

(b)

(c)

FIG. 12. (a) Tree generated on all the HGD data denoted as “East Asian.” The tree is able to only distinguish the data labeled as “Japanese
in Tokyo, Japan” from the others. (b), (c) Projection of the data set along the first and second principal components [panel (b)] and along the
third and fourth principal components [panel (c)].

To proceed further with the computation, we need to use
the following pair correlation functions computed at β = 0:

〈hμhν〉 = mμδμν + (1 − δμν )mμmν,

〈δvi,qδv j ,p〉 = f q
i δi jδqp + (1 − δi j ) f q

i f p
j . (B26)

Also, we need to compute the first derivative of the external
fields with respect to β at β = 0. These can be easily obtained

using the Schwarz theorem:

∂βφ
q
i (0) = − ∂2�β

∂β∂ f q
i

∣∣∣∣
β=0

= − ∂2�β

∂ f q
i ∂β

∣∣∣∣
β=0

= −
∑

μ

w
q
iμmμ,

∂βψμ(0) = − ∂2�β

∂β∂mμ

∣∣∣∣
β=0

= − ∂2�β

∂mμ∂β

∣∣∣∣
β=0

= −
∑

iq

f q
i w

q
iμ.

(B27)

(a) (b)

FIG. 13. Number of fixed points of the approximated free energy on the MNIST data set [panel (a)] and on the SED data set [panel (b)] as
a function of the RBM’s age. Notice that plot (a) is in log-log scale, whereas plot (b) is in linear-linear scale.
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FIG. 14. Phylogenetic tree obtained from the CPF protein data set using the neighbor-joining method and the software FastTree with
default parameters. The external colored tags correspond to the experimental classification, whereas the leaf’s color represents the classification
inferred by ProfileView in Ref. [35].

By expanding the expression (B25), after many simplifications we end up with the following second-order Taylor expansion
of the Gibbs free entropy:

�
(2)
β (M) = �0(M) + β

∂�β (M)

∂β

∣∣∣∣
β=0

+ β2

2

∂2�β (M)

∂β2

∣∣∣∣
β=0

=
∑

iq

f q
i aq

i +
∑

μ

mμbμ −
∑

iq

f q
i log f q

i −
∑

μ

[mμ log mμ + (1 − mμ) log(1 − mμ)] + β
∑
iqμ

f q
i w

q
iμmμ

+ β2

2

∑
μ

(
mμ − m2

μ

)[∑
iq

(
w

q
iμ

)2
f q
i −

∑
i

(∑
q

w
q
iμ f q

i

)2]
. (B28)

FIG. 15. Comparison between three trees of the MNIST data set generated with three models having the same parameters but trained using
different random seeds.
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FIG. 16. Tree of the MNIST data set generated through an inverse-annealing of the oldest RBM model. We applied the tree construction
procedure to a set of ∼100 models at linearly spaced inverse temperatures in the interval β ∈ [0.65, 1], starting from the coldest model at
β = 1 and progressively increasing the temperature.

The previous expression is a valid approximation of the true free energy of the model only when the magnetizations fulfill the
stationary conditions (B8):

∂�
(2)
β

∂mμ

= 0,
∂�

(2)
β

∂ f q
i

= 0. (B29)

When computing the stationary condition with respect to the visible magnetization, one has to take care of the fact that the
normalization condition on { f q

i } leaves us with only Nq − 1 independent colors, so that f
Nq

i = 1 −∑Nq−1
q=1 f q

i . This has to be
considered only in the entropic term, since elsewhere the magnetization couples with the weight matrix that is zero along the
color Nq because of the lattice-gas gauge.

The full computation of the stationary conditions (B29) at β = 1 yields

log

(
mμ

1 − mμ

)
− bμ =

∑
iq

f q
i w

q
iμ −

(
mμ − 1

2

)⎡⎢⎣∑
iq

(
w

q
iμ

)2
f q
i −

∑
i

⎛
⎝∑

q

w
q
iμ f q

i

⎞
⎠2
⎤
⎥⎦,

log

(
f q
i

f
Nq

i

)
− aq

i =
∑

μ

mμw
q
iμ + 1

2

∑
μ

(
mμ − m2

μ

)⎡⎣(wq
iμ

)2 − 2w
q
iμ

∑
p

f p
i w

p
iμ

⎤
⎦, (B30)
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FIG. 17. Tree obtained on the MNIST data set by iterating the TAP equations starting from the data at each age.

where at the left-hand side we recognize, respectively, the inverse functions of the sigmoid (B11) and of the softmax (B12).
Eventually, we end up with the following self-consistent TAP equations:

mμ = sigmoid

⎧⎪⎨
⎪⎩bμ +

∑
iq

f q
i w

q
iμ −

(
mμ − 1

2

)⎡⎢⎣∑
iq

(
w

q
iμ

)2
f q
i −

∑
i

⎛
⎝∑

q

w
q
iμ f q

i

⎞
⎠2
⎤
⎥⎦
⎫⎪⎬
⎪⎭,

f q
i = softmax

⎧⎨
⎩aq

i +
∑

μ

mμw
q
iμ + 1

2

∑
μ

(
mμ − m2

μ

)⎡⎣(wq
iμ

)2 − 2w
q
iμ

∑
p

f p
i w

p
iμ

⎤
⎦
⎫⎬
⎭. (B31)

APPENDIX C: ADDITIONAL FIGURES

In this section, we show additional experiments that we performed to better understand the limitations of the presented method
and the possibility of considering other tree construction schemes.

In Figs. 11 and 13 we study how the number of solutions of TAP equations evolves with the training time of the RBM (in
Fig. 11 we study the correspondence between the number of points and the number of eigenvalues of the weight matrix above a
certain threshold and in Fig. 13 we compare the number of fixed points obtained with naive mean-field and TAP).

Figure 12 shows the result of applying our method to a subset of the data to test the resolution power of the machine when
trained with only a subcategory of the Human Genome dataset.

For comparison with our method, we show in Fig. 14 the phylogenetic tree of the protein family presented in the main text.
In Fig. 15, we show three alternative trees obtained by applying our method to three independent trainings of the MNIST

dataset.
In Fig. 16, we show the tree obtained for the MNIST dataset by constructing the tree using a temperature annealing of the

older machine instead of following the learning trajectory as proposed in our method.
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FIG. 18. Tree obtained on the MNIST data set using an RBM trained with PCD-100 using the TAP equations.

In Fig. 17, we show the tree obtained by constructing a hierarchy with fixed points for each age instead of following the fusion
of fixed points along the training trajectory and proposed in the main text.

In Fig. 18, we show the tree obtained when training the RBM with the TAP fixed points to approximate the gradient instead
as with MCMC sampling and the PCD scheme as done in the main text.
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