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Biases in inverse Ising estimates of near-critical behavior
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Inverse Ising inference allows pairwise interactions of complex binary systems to be reconstructed from
empirical correlations. Typical estimators used for this inference, such as pseudo-likelihood maximization
(PLM), are biased. Using the Sherrington-Kirkpatrick model as a benchmark, we show that these biases are
large in critical regimes close to phase boundaries, and they may alter the qualitative interpretation of the inferred
model. In particular, we show that the small-sample bias causes models inferred through PLM to appear closer to
criticality than one would expect from the data. Data-driven methods to correct this bias are explored and applied
to a functional magnetic resonance imaging data set from neuroscience. Our results indicate that additional care
should be taken when attributing criticality to real-world data sets.
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I. INTRODUCTION

It is often the case that while interactions between indi-
vidual constituents of complex systems are unknown, their
correlations are measurable. Reconstructing the strength of
the interactions from these correlations is an inverse problem.
Inverse Ising inference, also known as pairwise maximum
entropy modeling, is an inference technique used to learn the
maximum entropy model (MEM) [1] representing a system
of interacting binary variables [2,3]—termed spins. Following
seminal work on the inference of interactions in retinal neu-
rons [4], the maximum entropy modeling framework has been
used in a range of biological settings, from understanding
protein interactions [5] to modeling antibody diversity [6]
and even to analyze the collective behavior of flocks of birds
[7]. In neuroscience, in particular, the inference of pairwise
MEMs (i.e., Ising models) from binary data has become com-
mon practice and is used both to understand the behavior of
neuronal tissue [4,8,9] and to learn functional connectivity
networks from coarse-grained functional magnetic resonance
imaging (fMRI) studies in humans [10–13]. This procedure
provides insight into the structure of the inferred networks, in-
cluding their sparsity and the heterogeneity of their couplings
[3,14,15].
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In such Ising models, critical behavior emerges between
a disordered high-temperature paramagnetic (P) phase with
weak correlations and a low-temperature strongly interacting
spin-glass (SG) phase with multiple metastable minima and
large correlations [16–22]. The critical state is associated
with a range of advantageous properties, including provid-
ing optimal sensitivity to inputs [23], enabling coordination
between individual elements [24,25], allowing a large range
of dynamic responses [26,27] and maximizing computational
ability through edge-of-chaos computation [28,29]. In neuro-
science, the activation patterns of ensembles of neurons have
been shown to display typical signatures of critical behavior,
as these so-called “neuronal avalanches” follow power-law
distributions with size and dynamics that are consistent with a
critical branching process [30–34]. Similar power-law distri-
butions have also been found in human brain imaging studies
[25,35], and inverse Ising inference specifically has recently
shown that typical brain activity measured by fMRI occurs
near the SG-P phase transition [13]. More generally, a range
of evidence supports that many complex biological systems
exist in a near-critical state [36,37], and it is postulated that
the advantageous properties of the critical state may generally
cause complex systems to organize towards criticality. With
this in mind, maximum entropy techniques provide a valu-
able tool-set with which to further investigate the criticality
hypothesis, allowing the inferred models to be assessed in the
well-understood framework of equilibrium statistical physics
[1].

In this paper, we focus on the pseudo-likelihood maxi-
mization (PLM) [2,38] approach to solving the inverse Ising
problem. We chose this logistic regression-based method as it
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FIG. 1. Convergence of the variance of the inferred parameters
(σ ∗)2 (scaled by system size) vs inverse sample number 1/B. The
dashed lines indicate linear fits to the asymptotic (large B) regime of
the data. Asymptotic intercepts of the two SK state-points correspond
to T ∗ = 1.40 and 2.00; PLM is able to perfectly reproduce the state-
point given infinite data. The gradient b1 of the asymptotic fits sets
the severity of the small sample bias. This gradient depends strongly
on the state-point, system size, and topology of the input data,
e.g., we find b1 (SK: T = 1.4) = 760, b1 (SK: T = 2.0) = 450, and
b1 (Brain) = 3416.

is widely acknowledged as the state-of-the-art solution to the
inverse Ising problem [3,14,15]. In Sec. II we introduce the
PLM method and highlight alternative inverse Ising solvers.
In Sec. III we show that parameters estimated via PLM are
biased and that statistical averages of the parameters, such as
the variance, converge to the true value as a linear function
of 1/B; see Fig. 1. We relate this convergence to the standard
small-sample bias of maximum likelihood estimators (MLEs).
Using the Sherrington-Kirkpatrick (SK) [16,17] spin-glass
model as a benchmark, we find that the small B bias causes
the inferred model to appear tuned towards criticality; models
inferred using PLM show both a lower temperature and en-
hanced critical fluctuations than the input model from which
the data were generated. Similar to previous authors [3,14], we
find that the rate at which the bias is dissipated is state-point
(i.e., temperature) -dependent and links the failure of PLM
at low temperatures (i.e., for highly correlated data) to the
separation effect observed in logistic regression [39,40]. In
Sec. IV we present two corrective procedures to remove the
bias, a self-consistency correction and Firth’s penalized logis-
tic regression [40–42], and we compare their performance by
measuring how well they capture the temperature and critical
fluctuations of the input data set. In Sec. V we explore the
repercussions of the small sample bias in interpreting infer-
ence results from real data by considering an fMRI data set
of brain activity related to meditation. Our results lead us to
caution against claims of criticality in PLM models, as we
show that small sample size biases tune models inferred from
dynamical (i.e. fluctuating) data to a closer-to-critical state.

II. BACKGROUND: INVERSE ISING INFERENCE VIA
PSEUDO-LIKELIHOOD MAXIMIZATION

We will consider systems of N interacting binary variables
si ∈ ±1, i = 1, . . . , N which we refer to as spins. These spins
may represent any binary quantities, such as the magnetic
moments of spins in a metal (up, down), or the state of a
neuron or region of interest (ROI) in the brain (on, off). The
spins fluctuate in time, and for each of the N labeled regions,
we have time series of length B. The state of the entire spin
vector at a time t ′, s(t = t ′), is called a configuration, and
the full data set of B × N observations will either be referred
to as a trajectory or as the data set. Inverse Ising inference
corresponds to learning a set of interaction parameters that
is likely to reproduce the observations. Configurations of the
inferred model will follow the maximum entropy probability
distribution [1], and by measuring the per-spin magnetization
mi = 〈si〉 and cross-correlations,

Ci j = 〈sis j〉 − 〈si〉〈s j〉, (1)

where 〈·〉 indicate time averages, one infers the so called
pairwise maximum entropy model. This model is defined by
the Hamiltonian

H = −
∑

i

hisi − 1

2

∑
i �= j

Ji jsis j, (2)

where the Ji j represent pairwise couplings between the spins
and the hi are external fields, with the summation index i �= j
running over all nonmatching pairs of i and j. The inference
problem, therefore, consists in determining the symmetric
matrix of couplings J (diagonal entries are zero as there are
no self-couplings) and vector of fields h from the correla-
tions C and averages m. The probability of observing a given
configuration s follows the maximum entropy (Boltzmann)
distribution:

P(s) = 1

Z
exp [−βH(s)], (3)

with β = 1/T being the inverse temperature and Z the parti-
tion function, a normalization constant. The log-likelihood of
observing a given trajectory {s}B from the couplings and fields
is

L({s}B|h, J) = β
∑

i

himi

+ β

2

∑
i �= j

Ji j (mimj + Ci j ) − log Z. (4)

The set of parameters {h∗, J∗} which maximizes Eq. (4) is
the maximum-likelihood solution to the inverse Ising prob-
lem. When the number of spins N is very small (typically
a few tens), it is computationally feasible to perform this
optimization directly. However, the problem becomes rapidly
intractable with increasing N (the number of possible config-
urations scales as 2N ), and a range of alternative methods have
been proposed to perform the maximization. This includes
Boltzmann learning [43] which uses Monte Carlo (MC)
simulations [44,45] to evaluate the gradients of (4). While
it is technically possible to compute these gradients with
unbounded accuracy, the random nature and computational
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intensity of MC sampling means this process is also limited to
small (N ∼ 120 [9]) system sizes. Various analytical solutions
have also been introduced as alternatives, see [3,46,47] for
reviews, yet most of these require additional assumptions to be
made about the system, and often fail in the low-temperature
(strong-coupling) regime, providing more error-prone solu-
tions [3]. A powerful alternative approach, and the method
studied here, is pseudo-likelihood maximization (PLM) [2].
In PLM one replaces the log-likelihood (4) by a set of N
pseudo-log-likelihoods

Lr ({s}B|hr, Jr ) = 1

B

B∑
t=1

ln P{hr ,Jr}[sr (t )|s\r (t )], (5)

which depend only on the parameter hr and the rth row of
entries Jr = {Jr j} j �=r to the coupling matrix. We also introduce
the conditional probability distribution

P{hr ,Jr}(sr|s\r ) = 1/(1 + e−2βsr [hr+
∑

r �= j Jr j s j ] ), (6)

corresponding to the probability of observing the rth spin in
state +1 or −1 given all other N − 1 spins. We note that each
of the Lr can be maximized independently for each spin, mak-
ing the problem highly suitable for parallelization, and that in
the limit of B → ∞ the PLM approach to inverse Ising infer-
ence is exact. Moreover, the structure of the pseudo-likelihood
means that each PLM optimization is formally identical to
logistic regression for which efficient computational algo-
rithms exist. For this work, we perform the regressions using
the sklearn.linear_model.LogisticRegression classifier from
the Scikit-learn [48] Python package. Note that the coupling
matrix inferred this way is not symmetric, and we therefore
always perform a postinference symmetrizing step, setting
J∗ = 1

2 [J∗
PLM + (J∗

PLM)T ], where T is the transpose of the
matrix. J can also be interpreted as the weighted adjacency
matrix of a complex network [49,50], which encodes the
topology of the model. As such, l1-regularized sparsity pro-
moting versions of PLM [38] are commonly used for network
reconstruction when a large set of parameters are known (or
assumed to be zero), and most extensions to PLM have fo-
cused on improving its performance for this purpose [14,15].
When sparsity cannot be assumed to be unregularized, PLM
still offers superior performance to other approximate inverse
Ising solvers [3], and in this work we focus exclusively on
PLM without regularization. We note that the fact that PLM
provides independent estimates of Ji j and Jji is meaningful for
kinetic and dynamic models with nonsymmetric interactions
and makes the approach viable for more generic network
reconstructions.

III. PLM ACCURACY NEAR CRITICALITY

Previous work found that the accuracy of PLM depends
on the temperature (or coupling strength) and topology of
the underlying true model [2,3,14,51], and that errors are
minimized near the critical point. It should be noted, however,
that system sizes of only N from 16 to 64 were analyzed in
these studies, and so the critical point is poorly defined. These
results are commonly attributed to the theoretical finding that
the generalized susceptibility of the Ising model can be related

to the Fisher information matrix [52], and that the maximiza-
tion of these quantities at the critical point corresponds to a
high density of distinguishable parametrizations of different
models. Notice that statistical distinguishability pertains to
the parametrizations of the same model (e.g., the SK Hamil-
tonian) and does not correspond to our ability to distinguish
different physical models.

When inferring a parametrization, finite-sample effects
play an important role. The parameter estimates obtained
through PLM, like those of any maximum-likelihood estima-
tor (MLE), are well known to depend both on the number of
samples B (with a slow 1/B convergence) and a prefactor set
by the true parameter [41], which is not known a priori, so
that, for example,

J∗
i j = J0

i j + b1,i j (h
0, J0)

B
+ O(B−2). (7)

Here, the superscripts ∗ and 0 denote the inferred and true
values, respectively, while b1,i j (h

0, J0) is the state-dependent
prefactor to the leading 1/B bias. Collectively, the prefactors
b1,i j (h

0, J0) set the difficulty of learning a given state-point
(i.e., model) by increasing or decreasing the amount of data
required to dissipate the bias. When expressed this way, we
expect that due to the maximized Fisher information at crit-
icality [52], systems near the critical point would have a
smaller first-order prefactor making them easier to learn. It
is also possible to express averaged quantities of the inferred
parameters, such as the standard deviation σ of the couplings
J in terms of the bias, so that

σ ∗ = σ 0 + b1(h0, J0)

B
+ O(B−2), (8)

where b1 is the combination of several bias terms on the
individual Ji j couplings. Again, b1 is an input state-dependent
prefactor that sets the bias contribution to the inferred standard
deviation. We show that this relation holds for two select SK
state-points, as well as for a real-world data set in Fig. 1.

The above bias expressions are general, and hold for
any MLE. But PLM specifically involves performing a
set of binary logistic regressions, and these are known
to be affected by an additional small sample size issue
termed separation [39]. Separation occurs when a subset
of covariates (e.g., ssep ⊂ s\r) in the logistic regression can
perfectly predict the outcome variable (sr), and leads to (the-
oretically infinitely) large estimates for the corresponding
parameters. Most commonly the separation will be quasi-
complete and only parameter estimates associated with ssep

will be infinite, with the remaining parameter estimates re-
maining relatively unaffected. In real settings, where the
logistic regression is solved numerically, the precise values
of the separated parameters will not be infinite and instead
depend on the convergence criteria of the numeric opti-
mization scheme [40]. Methods that implicitly remove the
first-order bias term through modifying the log-likelihood
function [41] have been shown to control separation
[40,42].

We perform a study of the first-order bias of PLM, and
recontextualize the findings of previous authors in terms
of these results. In particular, we connect the effects of
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separation in the data sets (also observed in [2]) to criticality.
For any SK-like model, the highly correlated nature of data
drawn either from the critical point or the low-temperature SG
and F phases means that there will always be a B-dependent
threshold temperature below which separation will occur, and
at which PLM can no longer estimate the parameters correctly.
For nonseparated data, our work additionally shows that the
bias behaves as

b1,i j (h
0, J0) ≈ b1,i j (σ

0), (9)

that is, the bias is, to a good approximation, purely a function
of the variance of the parameters (i.e., the inverse tempera-
ture).

A. Inference of SK models

We benchmark the PLM method on a zero-field
(h0 = 0), fully connected Sherrington-Kirkpatrick (SK)
model [16] with system sizes comparable to typical
coarse-grained fMRI brain region analyses [13,53,54], N =
50, 100, 200, 400, 800, collecting a total of Bmax = 10 000
samples per state-point.

We generate our input couplings J0 by drawing from a
Gaussian distribution with mean μ0 = μ/T N and standard
deviation σ 0 = σ/T N1/2. Note that we have absorbed the
temperature of Eq. (3) into our definition of the model param-
eters. We do this as for real applications the “temperature”
(in a statistical physics sense) of the system is undefined,
and only coupling strengths can be extracted. μ and σ are
intensive variables, and the state of the system is charac-
terized by the dimensionless average coupling strength μ/σ

and temperature T/σ . We fix σ = 1 and sample from the
range μ ∈ [0, 2], T ∈ [0.5, 2], where in the N → ∞ thermo-
dynamic limit, the system explores all of its phases. These
phases are a low-temperature disordered spin-glass (SG), low-
temperature ordered ferromagnetic (F), and high-temperature
disordered paramagnetic (P) phase. From previous findings,
we expect the inference to perform best near the phase transi-
tions [2,3]. We produce input time-series for every state-point
via standard Monte Carlo simulations [44,45], sampling data
every 1000N steps. We monitor the autocorrelation time τ to
ensure that subsequent samples are decorrelated and can be
considered as independent and identically distributed (i.i.d.).
From the series, we compute the spin-glass order parameter
(also known as the overlap)

q = 1

N

N∑
i=1

〈si〉2, (10)

and the covariance as

C2 = 1

N

N∑
i, j=1

C2
i j, (11)

which is related to the spin-glass susceptibility χSG = C2/T 2

[13,55]. When approaching the SG phase from the higher-
temperature P phase, the susceptibility (and hence the
covariance) increases rapidly, reflecting the development of
spontaneous large correlations near the phase transition, i.e.,
the critical point. We then perform unregularized PLM infer-
ence on each trajectory, as the models are not sparse. The

quality of the inference is assessed by measuring the error

ε =
√√√√

∑
i� j

(
θ∗

i j − θ0
i j

)2

∑
i� j

(
θ0

i j

)2 , (12)

a robust aggregate measure of the deviations in parameter esti-
mation previously defined in [3]. Here θ is a symmetric matrix
containing all PLM parameters, with θii = hi and θi j = Ji j

as all Jii = 0 (there are no self-couplings). Note that as the
number of couplings NJ = N (N − 1)/2 is much larger than
the number of fields Nh = N , the error is dominated by con-
tributions from the couplings. The biases enter the numerator
of this expression, and a 1/B scaling of the error is expected.

Each generated model will deviate by a small amount
from T , and so we define the measured temperature of each
model realization as T 0 = 1/(σ 0N1/2), where σ 0 is the stan-
dard deviation computed from the realized couplings. We
similarly define the measured inferred temperature as T ∗ =
1/(σ ∗N1/2), where σ ∗ is the standard deviation of the inferred
couplings. This allows us to define a second global metric
on the inference quality, i.e., how well the inferred model
reproduces the temperature.

B. Error dependence on state-point

In Fig. 2 we illustrate the overall phase behavior of the SK
model and of the inference error for N = 200 and B = 10 000,
with the phase boundaries of the N = ∞ system overlaid. In
(a) we recover the known SK phase diagram, with low val-
ues for the overlap in the paramagnetic and spin-glass phase
compared to the ferromagnetic phase. The phase transitions
correspond to regimes of increased susceptibility, which peak
at the phase boundaries but are blurred and shifted due to
finite-size effects [56] as shown in (b). Deep in the F and P
phases, C2 is low due to the lack of fluctuations in the F phase,
and a lack of spin-spin correlations in the P phase.

Figure 2(c) shows the performance of the PLM method as
quantified by the error in (12). We observe a minimum in ε

in the paramagnetic phase (μ = 0.4, T = 1.1), and a rapid in-
crease as the two correlated F and SG phases are approached.
This is consistent with previous studies of the fully connected
SK model for N = 64 [2,3], who found the error to be min-
imized around T ∼ 1 for μ = 0. We note importantly that
although the error minimum is close to the peak of the critical
fluctuations, the two are not coincident—in our simulations
we find, e.g., the P-SG C2 peak at T ≈ 0.6, while finite-size
studies of the SK model have shown the critical fluctuations
of the specific heat of the P-SG transition to peak at T ≈ 0.7
for similar system sizes [57]. The ε color-map is capped at
1.5εmin, but much larger errors, O(103–104) × εmin, are ob-
served in the correlated F and SG phases. These large errors
are due to the B configurations becoming highly correlated
(τ  1), causing the separation effect introduced in Sec. III
to lead to (infinitely) large parameter estimates. The numeric
values of ε in these regions do not have a real meaning—they
simply indicate that no maximum-likelihood solution can be
found for some of the PLM logistic regressions.

The region of minimal error is characterized by isocon-
tours that run parallel to the phase transition lines, implying
a strong dependence of the error on the distance from the
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FIG. 2. Overview of the order parameter (a), susceptibility (b), and error (c) for the zero-field SK phase diagram with N = 200 and
B = 1 × 104. The values of the observables shown at each state-point were calculated by averaging over three independent realizations at that
state-point. Red dashed lines show phase-transition lines in the N → ∞ limit. (b) Labels P, F, and SG indicate the locations of paramagnetic,
ferromagnetic, and spin-glass phases in the thermodynamic limit. (c) Contours of ε are shown in black, with the pink dotted line labeling
the line μ = 0.1 across which a more detailed examination of the error is made in Fig. 3. The location of the minimum error is denoted by
an orange circle, and it occurs in the P phase above the P-SG boundary. Note that ε is thresholded so that the maximum plotted value is
εmax = 1.5εmin.

phase boundary. This is especially clear at low μ, where the
ε-contours lie roughly along lines of constant T . To under-
stand the relationship between the inference error and the
emergence of criticality, we also study a profile of the phase
diagram at fixed μ = 0.1, away from the ferromagnetic phase.
In Fig. 3 we compare the inference error and C2 as a function
of T . This confirms that for N = 200, ε has a flat minimum,
centered around a temperate Tmin ≈ 1.1. The shape of the
minimum is asymmetric, with ε diverging slowly as T goes
from Tmin → ∞ and rapidly as Tmin → 0. At the minimum,

FIG. 3. Plot of the error ε, autocorrelation time τ , and correla-
tion measure C2 for varying T at fixed μ = 0.1. τ is expressed in
units of 1000 N . Each point is calculated by averaging over MC
trajectories of length B = 104 with sampling frequency 1000 × N
generated from 21 independent realizations of the SK model at that
temperature. Error bars are the standard errors of the observables
over these 21 trajectories. Values T < 0.8 are not plotted as τ began
to substantially deviate from 1 on the approach to the SG regime.

the fluctuations C2(Tmin) are three to four times larger than
their high-temperature limit. But as T decreases further, the
fluctuations continue to increase while the error rapidly di-
verges. The divergence occurs without a significant increase
in the autocorrelation time, indicating that it is not due to
poor sampling. The minimum error is therefore within the
regime of enhanced critical fluctuations, and occurs close-to
but offset-from the phase transition. At the supposed finite size
critical temperature, the inference fails due to the inherently
highly correlated nature of the data from this regime (τ is
large).

C. Error origin and impact on critical fluctuations

The inference error ε is the combination of the error on
each individual parameter, dominated by the couplings Ji j . For
highly correlated data we know the PLM inference will fail
due to separation. We want to better understand the origin of
the error when inference is possible, and to do this we directly
inspect the probability distribution of J for a selection of sam-
ple sizes B. Figure 4(a) shows that the inferred distributions
remain symmetric and appear approximately Gaussian, but
that they systematically overestimate the variance, gradually
converging to that of the input distribution with increasing B.
The origin of this spread can be explained in terms of the
MLE bias—for logistic regression, the parameter estimates
are known to be biased away from 0, i.e., overestimated [41],
which in our case spreads the overall distribution of param-
eters. Since T ∗ = 1/(σ ∗N1/2), applying PLM to small data
sets leads to an inaccurate estimate of the state-point, biased
towards a lower temperature. For disordered data sets, this
corresponds to biasing the model towards the near-critical
regime. The question is, how large is this effect?

In Fig. 4(b) we plot the dependence of the inferred tem-
perature on the input temperature for various B. Taking the
worse case, B = 1000, as an example, we find that the in-
ference provides incorrect estimates of the state-point in the
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FIG. 4. (a) Probability distributions of the inferred couplings
from the PLM inference for different varying B from the same state-
point (μ = 0.1, T = 1.25) near the minimum ε in Fig. 3. Dark-blue,
orange, red, and light-blue (outer to inner in grayscale) lines corre-
spond to B = {1, 2, 10, 50} × 103, respectively. The black innermost
line shows the ground truth distribution for reference. (b) The in-
ferred temperature as a function of the input temperature for B =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50} × 103. The darkest green
(lower) line shows results for the smallest B, and the lightest yellow
(upper) line corresponds to the largest B. Colored crosses (lower to
upper) indicate temperatures of the respective distributions (outer to
inner) in (a). N = 200, with points and error bars representing the
mean and standard error of the PLM temperature estimate from MC
trajectory length B of 21 independent model realizations at each T .

entire range of temperatures considered. Even at the optimal
conditions, where the inference error is minimal, T ∗ ≈ 0.4T 0

mislabelling the state. Parameter estimates which suffered
from separation in Fig. 4(b) are indicated by low T ∗ → 0, as
the anomalously large inferred parameters cause the variance
to explode. Collecting more data allows the onset of separa-
tion to be delayed, and lower temperature state-points closer
to the P-SG transition to be correctly characterized.

We expect that the misattributed temperatures will cause
the inferred models to exhibit falsely enhanced critical fluc-
tuations. This is because the spin-glass correlations C2 and
susceptibility χSG increase rapidly as T decreases and one
crosses the P-SG transition line. To investigate this, we resim-
ulate the models inferred via PLM for each T and produce an

FIG. 5. Susceptibility measure C2 as a function of input temper-
ature T for three data quality conditions; B = 1 × 103 (circles), B =
2 × 103 (squares), B = 1 × 104 (diamonds). The black line shows
the susceptibility as measured from simulations of the true model.
Each data point and error bar in the black line represents the mean
and standard error calculated over 3 (for each B condition) × 21
= 63 independent model realizations.

estimate of the correlations C2 corresponding to the inferred
model. This process can be summarized as follows. For every
state point:

(i) Produce 21 independent data sets of sample size B. We
proceed by initializing the spins randomly and equilibrating
initially every run for 106 (discarded) MC sweeps, where
every sweep corresponds to 1000N Monte Carlo steps. We
then evolve the system for B × 1000 × N steps to collect B,
independent configurations.

(ii) Extract 21 PLM models (one per data set).
(iii) Run 6 MC simulations using the PLM estimate for

105 × N steps, sampled every 10N steps.
(iv) Evaluate C2 over each simulation and average.
Figure 5 shows the corresponding results for C2; the black

line represents the correlations of the input models, while
the colored symbols show those corresponding to the PLM
estimates for three different sample sizes. As suspected from
the temperature shifts in Fig. 4, we observe that PLM over-
estimates C2 for input models generated at high T . With
decreasing T , C2 reaches a peak value, which gets higher and
is located closer in T to the true C2 peak with increasing B.
For small sample sizes, the location of the peak corresponds
to the onset of separation, as the arbitrarily strong couplings
found for T < Tpeak fix C2 → 0. In summary, our numerical
experiments on the SK model indicate that PLM on small data
sets provides couplings that underpredict T and artificially
enhance C2. PLM will therefore misattribute finite data sets
stemming from the fluctuating P phase to a near-critical state
point.

D. Temperature dependence on sample size

In the previous section, we qualitatively described that the
inferred temperature depends on B. Here we quantitatively
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FIG. 6. T ∗/T 0 as a function of B for three illustrative input
temperatures; T = 0.95 (circles), T = 1.4 (squares), and T = 2 (di-
amonds). Points and error bars for each B are means and standard
errors obtained by repeating the simulation and inference process
for 21 independent input model realizations at each T . Inset: The
dependence of the empirical scaling parameter B̃(T ) (light pink)
and the error ε(T ) (dark blue) when B = Bmax = 5 × 104 samples
are used for PLM. Shaded symbols show B̃ for the corresponding
T ∗/T 0(B) saturation curves in the main body of the figure. Coeffi-
cient of determination R2 > 0.980 of the heuristic arc-tan fit (13) for
all B̃ plotted.

demonstrate that this effect is governed by the slow 1/B
convergence of the MLE bias, and that the temperature of the
input model sets the learning difficulty of the problem. Fig-
ure 6 shows the dependence of the ratio T ∗/T 0 on the sample
size for different T , where again μ = 0.1. We find that for
increasing B, the curves follow a saturating behavior, which
can be fitted with high accuracy to the following heuristic
model:

T ∗ = (2TB→∞/π ) × arctan(B/B̃), (13)

where TB→∞ and B̃ are fitting parameters of the heuristic
model. B̃ quantifies the rate of the asymptotic first-order bias
convergence and is shown in the inset of Fig. 6, alongside
with ε. Both share a nonmonotonic behavior indicating a
correspondence between the scale B̃ (quantifying the typical
sample size to have small deviations in T ∗/T 0) and the av-
erage error on the couplings ε. The minimum of B̃ is shifted
further into the P phase, to T ≈ 1.4. Note that for N = 200,
the minimum number of samples is B̃ � 1000, pointing to the
necessity of a minimum of several thousand samples for reli-
able inference. This highlights a poignant issue for real data
sets; the bias dissipation parameter B̃ is not known a priori and
can vary by orders of magnitude depending on the temperature
of the input model. The limit defining a “small” data set
therefore depends on the underlying state-point of the data.

We motivate the arc-tan fit by noting that for x = B/B̃ � 1,

arctan(x) = π

2
− 1

x
+ O(x−3), (14)

so that

T ∗ = TB→∞ − B̃′

B
+ O(B−3) (15)

follows the same first-order linear dependence on 1/B as (7).
An equally valid approach would be to plot T as a function
of 1/B and perform a linear fit to the asymptotic regime as
is done in Fig. 1. These results imply that the dependence of
the MLE bias prefactors b1,i j on the input model parameters
(h0, J0) can, to a good extent, be approximated by a statisti-
cal average of the parameter distribution, i.e., b1,i j (h

0, J0) ≈
b1,i j (T 0).

We have chosen only to present results for N = 200 here
as the analysis of other system sizes leads to identical conclu-
sions. Although there is a sharpening of the phase transition
with increasing N , the minimum error state-point remains
offset from the transition temperature within the P phase. We
note that we find B̃ ∝ N , i.e., the amount of data to solve
the problem depends linearly on N . This dependence arises
from the fact that although the full inverse Ising problem deals
with estimating N + N (N − 1)/2 parameters, each individual
logistic regression equation only infers N parameters.

In summary, the PLM method on the SK model displays
biases that scale as the inverse of the sample size B−1. The
magnitude of the bias strongly depends on the state-point of
the input data. Small sample bias causes the temperature of
the inferred model to be underestimated, falsely enhancing the
critical fluctuations exhibited by models inferred from near-
critical paramagnetic data. Any PLM model inferred from
fluctuating (i.e., dynamically varying) data will thus appear
as closer-to-critical than it actually is. In the following, we
describe data-driven procedures to mitigate these effects.

IV. DATA-DRIVEN BIAS REDUCTION

Due to the 1/B convergence of the PLM temperature es-
timate, we suspect that methods that remove the first-order
MLE bias may provide better estimates of the state-point.
A range of such methods exists in the literature [58], and
they can be largely grouped into explicit methods that correct
for the bias correction after inferring the parameters, e.g.,
jackknife resampling [59], and implicit methods that correct
the bias during inference via a modification (penalization) of
the likelihood function [40–42,60,61].

In this section, we propose an explicit correction to the
PLM parameter estimates, which aims to best capture the crit-
ical properties of the data by enforcing self-consistency with
C2. We benchmark this against an implicit bias correction,
Firth’s penalized logistic regression [40–42]. We will assess
both methods based on their ability to estimate T and C2 for a
range of input temperatures.

A. Correcting the bias via self-consistent C2

In Sec. III, we demonstrate that (a) the MLE bias of the
parameters is captured by a global property of the parameter
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distribution (the temperature), and (b) that the PLM models
overestimate C2. We thus propose to correct the bias by requir-
ing that the inferred models display C2 as close as possible to
the one estimated from the input data: in this sense, we aim at
inferring models whose fluctuations are self-consistent with
those of the input data set. To do so, we perform a second
optimization after estimating the PLM parameters. Again de-
noting the PLM parameter estimates by θ∗, we optimize the
objective function

L′(Tf ) = [
C2

input − C2
MC(Tf )

]2
, (16)

where C2
input is C2 measured as from the input data set and

C2
MC(Tf ) is calculated from MC simulations of a rescaled PLM

model with parameters θTf = θ∗/Tf . The rescaling parameter
Tf > 0 acts as a fictitious temperature which can shift the
state-point of the inferred model. We denote the optimal value
of Tf by T †

f , with the corresponding corrected parameter

estimates being θ†. C2 has a strong dependence on B, so
we match the amount of data in the input and in the MC
simulations Bdata = BMC. In practice, we calculate C2

MC for six
independent MC simulations of length Bdata for every Tf , and
then feed the average over these six runs into Eq. (16).

The results of this corrective procedure are shown in Fig. 7.
The correction significantly improves the reconstructed tem-
perature and, by design, perfectly matches the fluctuations
of C2 when separation does not occur. The improvement to
the T ∗ prediction is particularly pronounced for small data
sets and at high T . At low T , where separation occurs, the
corrective optimization fails to converge and C2

input �= C2(T †
f ).

This highlights a pitfall of explicit methods; they inherit any
instabilities of the original MLE, such as those that lead to
separation in logistic regression [40,58]. We note that the im-
provement itself can also be used as a score on the reliability
of the PLM estimates and as an indication of the necessity of
more data, with Tf → 1 as B → ∞.

B. Firth’s penalized logistic regression

One may also remove the first-order bias implicitly
through Firth’s penalized likelihood maximization [41]. In
our notation, this corresponds to maximizing the penalized
log-likelihood L′

r :

L′
r ({s}B|hr, Jr) = Lr (hr, Jr|{s}B) + 0.5 ln |F (hr, Jr)|, (17)

where |F (hr, Jr)| is the determinant of the Fisher informa-
tion matrix for each row of parameters r. Full details of
this method will not be given here, but see [40,41,58] for
appropriate overviews. We implement this computationally
by modifying the Python code available at Ref. [62]. The
corrective term of Eq. (17) tends to 0 as B → ∞, returning the
unpenalized likelihood. For small B the penalty compensates
the O(B−1) bias, and is known to control separation in logistic
regression [40,42].

In Fig. 8 we demonstrate the effect of the penalty on
the inferred parameters at a low T = 0.57 and a high T =
1.6 state-point. At low T separation causes the unpenalized
PLM parameters associated with specific si to diverge, with
max(θPLM

i j ) ≈ 400, leading to a non-Gaussian highly spread
PDF. In our language, models with these very strong cou-

FIG. 7. The inferred temperature T ∗ [panel (a)] and the suscepti-
bility measure C2 [panel (b)] at different input temperatures T for
three data quality conditions; B = 1 × 103 (circles), B = 2 × 103

(squares), B = 1 × 104 (diamonds). Blue (dark) lines show observ-
ables for the PLM inference, orange (light) lines show observables
after performing the self-consistency (C2) correction. Black lines are
the temperature and susceptibility of the input models at each state
point. N = 200, μ = 0.1, with all plotted points again corresponding
to means and standard errors over 21 model realizations.

plings correspond to zero temperature. Firth’s penalty controls
this effect, and although we still see large parameter estimates
for the same si, these are orders of magnitude smaller with
max(θFirth

i j ) ≈ 4. Firth’s correction reduces the spread of the
inferred distribution and largely captures the Gaussian nature
of the input coupling distribution, even at low T . It therefore
provides better T ∗ estimates than unpenalized PLM.

C. Comparing methods

In Fig. 9 we compare the performance of the self-
consistency (C2) correction and Firth’s (firth) correction for
the smallest data set, B = 1000, where bias effects are most
extreme. We again generate data from 21 independent model
realizations for each T and then apply each inference method
to each data set separately. We naively assess if the separation
has occurred by checking if |θ∗|max > μ∗ + 10σ ∗, where |θ∗|
is the absolute value of the inferred parameters from each
inference scheme. Any input T where a single inferred model
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FIG. 8. Parameter matrices θ for a subset of 50 spins for unpenal-
ized PLM (top) and Firth’s penalized PLM (middle) at two different
temperatures. (Bottom) probability density functions (PDFs) of the
corresponding inferred parameters (light colored lines) along with
the true parameter PDF (black line). Firth’s correction controls the
inference at low T , leading to finite parameters and a PDF that more
closely matches the true input model. At high T , Firth’s correction
shifts the inferred temperature towards the true temperature (by re-
ducing the spread of the parameter PDF). B = 103, N = 200, and
μ = 0.1.

satisfied the separation condition (i.e., had “anomalously”
large parameters) is indicated by the transparent points in
Fig. 9. We note that this is a conservative definition; if even a
single inference fails, we characterize the whole state point as
separation-prone. We see that (according to our definition) the
onset of separation is delayed to much lower T when using
Firth’s penalty, and that Firth’s penalized logistic regression
predicts nonzero T ∗ for all T . At high T both corrections per-
form similarly well in improving the estimated T ∗, although
the dependence T ∗(T ) appears to scale more favorably using
the C2 correction as T increases.

Figure 9(b) shows how well each method reproduces the
correlations of the input data. We observe an interesting
tradeoff; although Firth’s correction provides better estimates
for T , C2 of the corresponding models is systematically
underpredicted. Firth’s correction thus fails to capture the
correlations of the data. We note that this contrasts with the

FIG. 9. Comparison of the corrective methods’ ability to capture
the criticality relevant observables T ∗ and C2 for a small sample size
B = 103. Transparent points indicate T where separation occurred.
Firth’s correction gives reasonable estimates for T ∗ at much lower T
than PLM, highlighting this method’s ability to control separation.
In contrast to normal PLM, Firth’s correction underestimates C2 for
all T . At high T , Firth’s correction and the C2 correction perform
similarly. Each point represents an average over 21 independent data
sets at that T .

unpenalized logistic regression results for PLM, which instead
overestimate C2. The main advantage of Firth’s correction
over the C2 correction, therefore, appears to be that lower
temperature state-points can be estimated.

This naturally raises a question: can we apply the C2
correction to the models inferred using Firth’s penalization
and improve the estimate of both T and C2? The answer is
negative: unsurprisingly, applying the C2 correction to the
penalized parameter estimates increases C2 at the cost of low-
ering T ∗, and ultimately leads to the same estimates as simply
applying the C2 correction to the unpenalized PLM model.
We summarize these findings in Table I. There thus appears to
be an inherent tradeoff between capturing the temperature and
the correlations of a data set. When deciding which method
is “best,” one must therefore decide which property is most
important to encode correctly.

D. Implications for inference around criticality

So far we have shown that small-sample biases influence
the determination of the state of Ising models inferred using
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TABLE I. Percentage errors of inferred estimates T ∗ and C2 for a
single model realization at T = 1.025, μ = 0.1, with B = 104 using
a range of inference schemes. Firth’s correction provides the best
estimate of the temperature but the worst estimate of the critical
fluctuations. We demonstrate an implicit tradeoff between correctly
inferring T and C2. Applying the C2 correction either to the PLM
model or to the Firth corrected model produces the same T ∗ and C2

pair. The temperature is underestimated, irrespective of the inference
scheme used.

Method T ∗ % error C2 % error

PLM −6.9 3.4(8)
PLM → C2 −6.0 0.2(9)
Firth −4.0 −7.7(5)
Firth → C2 −6.1 −0.1(8)

PLM. The problem is that what constitutes a “small” sample
size itself depends on the state-point (and topology) of the true
model that generated the data. Studies claiming criticality in
Ising models inferred using PLM thus need to control for bias,
for example through subsampling their data and performing a
similar analysis as in Fig. 6. They should also consider that
the PLM model they infer from any data set which is dy-
namic (i.e., fluctuates) will be biased towards the critical point
and exhibits enhanced critical fluctuations when simulated. In
such cases, the C2 correction may be applied to rescale the
couplings and match the empirical correlations. This will also
shift the inferred temperature toward the true temperature.
We note, however, that the C2 corrected temperature remains
systematically smaller than the true temperature, and should
only be considered as a lower-bound estimate of the true
temperature. It may be appropriate to use Firth’s implicitly
corrected penalized logistic regression if separation is found
to occur. This correction will provide reasonable parameter es-
timates even for low T state points, but it should be noted the
fluctuations displayed by these models are not representative
of the data, which is important when considering near-critical
phenomena.

V. CASE STUDY: CRITICALITY OF AN FMRI DATA SET

In this section, we demonstrate the effect of the bias in a
real setting by analyzing a human brain imaging data set ob-
tained from a functional magnetic resonance imaging (fMRI)
study. Brain imaging data sets are particularly interesting
from the perspective of criticality as a range of advantageous
computational properties have been attributed to systems op-
erating in the near-critical state [23–30,34,63–68]. These have
given rise to the idea that the brain is tuned towards a critical
point, and a range of experimental results support this critical
brain hypothesis [30–33,37,64,65,69,70]. PLM was recently
used to contribute to this body of work, correlating IQ to the
spin-glass susceptibility [13], and inverse Ising inference, in
general, has previously been used to map different cognitive
states to different disordered spin models [12]. Such mapping
of the fMRI signals to the Sherrington-Kirkpatrick interaction
model allows us to make the brain criticality hypothesis more
explicit and quantitative, but it also requires a number of
additional assumptions: for example, that the signals can be

meaningfully binarized or that the interactions between brain
regions are exclusively pair-wise. It is important to note that
the SK model is the maximum entropy model reproducing any
second-order statistics of binary variables [4], so that if our
measurements only concern second-order statistics, then the
SK model is sufficient. One could also consider alternative
models to regress the data, including oscillatory models such
as the Hopf model [71–73], the Kuramoto model [74–76],
or even the Hawkes point process [52,77]. The presence and
form of critical-like fluctuations will depend on the model of
choice, meaning that there are additional uncertainties in the
estimate of the distance from criticality that we perform using
the inverse Ising inference on the SK model.

We consider data from a single-participant resting-state
fMRI study, the full experimental details of which can be
found in [53]. Imaging sessions were carried out on sep-
arate days under two different conditions: those where the
participant practiced mindfulness meditation (MM) before
undergoing imaging, and those where he did not (noMM).
During each session, B = 236 samples were collected from
N = 399 regions of interest (ROIs) within the brain. We will
consider each ROI as a spin si and perform inverse Ising
inference using PLM. Note that the trajectories for each ROI,
si(t ), obtained from the preprocessing in [53] are continuous.
We therefore binarized the data by removing the average from
the signal and setting si(t ) < 0 = −1 and any si(t ) � 0 = +1.
In total, BnoMM = 40 × 236 = 9440 samples were collected
for the noMM condition and BMM = 18 × 236 = 4248 for the
MM condition. We investigate whether PLM inference leads
to the identification of a close-to-critical state, and if this
state is affected by the biological condition (i.e., practicing
mindfulness meditation). Moreover, we study if the inference
biases identified here significantly impact our conclusions.

The distributions of the PLM parameters obtained from the
full data sets are shown in Fig. 10(a). First, as opposed to the
SK model, the distributions are skewed, with a long tail at
positive values of the couplings. Second, the MM condition
corresponds to a larger variance in the couplings than the
noMM one. The immediate consequence is that the mapped
temperatures of the two full data sets are different, T ∗

full-MM =
0.98 and T ∗

full-noMM = 1.33.
However, the two sample sizes are BnoMM ≈ 2BMM. Can

this lead to a significant statistical effect in the estimation
of the corresponding state points? Figure 10(b) provides an
affirmative and quantitative answer: as we subsample (ss) the
noMM data, we find that the PLM temperature estimate de-
creases with reducing B, and when Bss-noMM = BMM, it meets
the same estimated temperature of the MM data. Hence, for
the data considered here, there is no significant difference
between the MM and the noMM data when the statistical bias
is taken into account. We further find that below some critical
value, Bc ≈ 2000 separation occurs leading to the failure of
the inference.

To refine the estimate of the noMM state-point, we can
apply the self-consistency correction (yellow circles) and
fit the empirical saturation function, Eq. (13), to the PLM
temperature estimates. Fitting data with B � 2500, we find
TB→∞ = 1.72 and B̃ = 3465. The available data sets are
with BMM ≈ 1.2B̃ and BMM ≈ 2.7B̃, indicating that the small
sample size bias strongly impacts our conclusions here.
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FIG. 10. (a) Inferred parameter distributions for the noMM con-
dition in red (dark gray) and the MM condition in blue (light gray).
The bias causes the MM distribution to appear more spread. (b) Sub-
sampling analysis of the noMM data set. Blue (dark gray) points
show PLM temperature estimates for each number of subsamples,
and orange (light gray) points correspond to the temperatures of the
self-consistency corrected model. The fitted empirical model (13) is
shown by the dashed black line. Red (dark gray) and blue (light gray)
crosses show the temperatures corresponding to the distributions
in (a).

To contextualize the meaning of the inferred temperatures
in Fig. 10(b) we again introduce the fictitious temperature
Tf and perform MC simulations of 1

Tf
θ∗

noMM for a range of

Tf ; see Fig. 11. A peak of C2 at Tf = 1 would mean that
the PLM model is situated exactly at the critical point. We
instead find the peak at Tf = Tc = 0.78 and so θ∗

noMM is a
paramagnetic state-point above the transition, albeit still with
substantial critical fluctuations C2(Tf = 1) ≈ 0.15C2

max. The
self-consistency correction shifts the model further from Tc.
Hence, the MM and noMM conditions appear to be at best
near critical if not paramagnetic.

Summarizing these results, initial analysis of the two con-
ditions would lead to the conclusions that (a) practicing

FIG. 11. Spin-glass order parameter q (blue/dark gray data
points) and susceptibility C2 (orange/light gray data points) as func-
tions of the fictitious temperature Tf for the model inferred from
the no-MM condition, θ∗

noMM. The ferromagnetic order parameter
m was also measured and found to be 0 throughout. This sweep,
therefore, characterizes a transition from a low-temperature spin-
glass to a high-temperature paramagnetic phase. Points and error bars
correspond to means and standard errors of 60 independent MC sim-
ulations with B = 104 samples. Red (dark gray) and pink (light gray)
crosses correspond, respectively, to the PLM and self-consistency
corrected models of the noMM condition.

mindfulness meditation changes the state-point of the brain,
and (b) the noMM condition represents a near-critical param-
agnetic state-point. Carefully accounting for the bias instead
reveals that both data sets more likely originate from the same
state-point, and the C2 corrected temperature estimate shows
that, as a lower bound, the true state-point of the data lies far
from the transition in the paramagnetic phase. We find, there-
fore, no evidence to suggest that the resting state fluctuations
in this imaging study correspond to a critical brain state.

VI. CONCLUSIONS

In this work, we have studied the importance of small sam-
ple size biases in the pseudo-likelihood maximization (PLM)
approach to inverse Ising inference. Although PLM is exact in
the limit of a large sample size, we show that this condition
is often unlikely to be achieved in real-world data sets. We
demonstrate that estimates of important physical quantities
(such as the temperature) that define the state of the inferred
model depend linearly on 1/B, similarly to the standard bias
of maximum likelihood estimators.

We present a detailed study of the fully connected SK
model for N = 200. The above biases cause models inferred
from paramagnetic data sets to exhibit enhanced critical
fluctuations, with this effect worsening with decreasing B.
Paramagnetic data are therefore misclassified as near-critical
for finite B, i.e., PLM underestimates the distance from crit-
icality. The inference error is minimized close-to but offset
from the phase transition in the paramagnetic regime. The
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development of strong correlations on the approach to the
critical point means that PLM fails due to separation at lower
T . We note that, although information-theoretic arguments
suggest otherwise [52], for small or intermediate B the regime
of failure occurs before the finite-size critical temperature Tc

is reached.
We describe data-driven approaches to mitigate these ef-

fects. The self-consistent correction we propose improves the
temperature estimate T ∗ while matching the critical fluctua-
tions of the data set. It performs well when a PLM solution can
be found, i.e., when separation does not occur, and it provides
the best improvement to T ∗ at high T . For low T (or equiv-
alently for small B), Firth’s penalized logistic regression may
be used to estimate the state point when standard PLM fails.
Although this produces T ∗ closer to T , we caution that the
critical fluctuations inferred using Firth’s correction are not
representative of the data. These models thus fail to capture
an essential property of the system. Both the self-consistency
correction and Firth’s correction provide biased estimates of
the temperature, with T ∗ → T 0 from below as B → ∞. The
estimated temperatures T ∗ should therefore be considered as
lower bounds on the true temperature of the data set. In con-
trast with other regularization techniques, neither correction
requires a hyperparameter to be tuned.

We also show that the bias profoundly impacts the estima-
tion of criticality in a real finite B data set from neuroscience.
Not accounting for small sample size effects causes state
points to be incorrectly classified. For fluctuating, i.e., dy-
namically varying data, this corresponds to inferring models
that are falsely tuned towards the critical point. Applying
the self-consistency correction to this data set allows us to
counteract this and establish that, as a lower bound, the data
are paramagnetic. The above results lead us to conclude that
any PLM study claiming criticality in a real data set must
carry out a proper analysis of the dependence of the inference
on B, e.g., through the subsampling scheme we describe.
Otherwise small sample size biases cannot be ruled out as
the primary cause of the criticality of the inferred model.

This is especially important as we have shown that the bias
prefactors, e.g., B̃, setting the learning difficulty of the model
are functions of the state (and also topology [14]), and that
one thus cannot establish a priori what constitutes a “small”
sample size.

The finite-sample effects impacting on the parameters in-
ferred via pseudo-likelihood maximization are expected to be
generic features, as they are a consequence of the maximum-
likelihood procedure that lies at the core of the method. This
suggests that similar finite-size effects in the inference of the
properties of generic spin systems should be observed around
the critical regions.

With a view to the future, experimental evidence for crit-
icality appears to be ripe across biological systems [37].
Maximum entropy approaches, such as the PLM solution for
inverse Ising inference, provide an attractive route with which
to investigate these, by allowing the criticality of the data to be
assessed in the framework of statistical physics. We show here
that any such study must make careful consideration of small
sample size biases before claiming a system to be critical.
This is especially important as the distance to criticality is
becoming an increasingly relevant biological variable [70],
and, in neuroscience for instance, it is starting to be considered
a guiding route for clinical work [78].

The code used for this study is available as a Python pack-
age at Ref. [79].
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