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Quasiprobability distribution of work in the quantum Ising model

Gianluca Francica and Luca Dell’Anna
Dipartimento di Fisica e Astronomia e Sezione INFN, Università di Padova, via Marzolo 8, 35131 Padova, Italy

(Received 23 February 2023; revised 22 April 2023; accepted 15 June 2023; published 6 July 2023)

A complete understanding of the statistics of the work done by quenching a parameter of a quantum many-
body system is still lacking in the presence of an initial quantum coherence in the energy basis. In this case,
the work can be represented by a class of quasiprobability distributions. Here, we try to clarify the genuinely
quantum features of the process by studying the work quasiprobability for an Ising model in a transverse field.
We consider both a global and local quench by focusing mainly on the thermodynamic limit. We find that, while
for a global quench there is a symmetric noncontextual representation with a Gaussian probability distribution
of work, for a local quench we can get quantum contextuality as signaled by a negative fourth moment of the
work. Furthermore, we examine the critical features related to a quantum phase transition and the role of the
initial quantum coherence as a useful resource.
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I. INTRODUCTION

Out-of-equilibrium processes generated by quenching a
parameter of a closed quantum system have been extensively
investigated: Outstanding experiments of this kind have been
realized with ultracold atoms [1–3] and theoretical problems
concerning many-body systems have been examined, such
as thermalization and integrability [2,4], the universality of
the dynamics across a critical point [5], and the statistics of
the work done [6]. In particular, the work statistics can be
described in terms of the two-projective measurement scheme
[7] if the initial state is incoherent, i.e., there is no initial
quantum coherence in the energy basis. In contrast, when the
initial state is not incoherent, there may not be a probability
distribution for the work done, as proven by a no-go theorem
[8]. This is related to the quantum contextuality as discussed
in Ref. [9]. In simple terms, the problem is similar to looking
for a probability distribution in phase space for a quantum par-
ticle in a certain quantum state. Since position and momentum
are not compatible observables, in general we get a quasiprob-
ability, e.g., the well-known Wigner quasiprobability [10].
Concerning the work, which in a thermally isolated quantum
system is equal to the energy change of the system, the role
of position and momentum is played by the initial and final
Hamiltonian of the system. Several attempts have been made
to describe the work statistics; among these, quasiprobabilities
have been defined in terms of full-counting statistics [11] and
weak values [12], which can be viewed as particular cases of
a more general quasiprobability introduced in Ref. [13]. In
general, if some fundamental conditions need to be satisfied,
the work will be represented by a class of quasiprobability
distributions [14]. Determining the possible representations
of the work has a fundamental importance: If there is some
quasiprobability that is a non-negative probability, there can
be a non-contextual classical representation of the protocol,
i.e., the process can be not genuinely quantum.

Here, we focus on the statistics of the work done by
quenching a parameter of a many-body system starting
from a nonequilibrium state having coherence in the energy

basis. Although some investigations on the coherence ef-
fects have already been carried out, e.g., in Refs. [15,16],
the full-counting statistics and weak value quasiprobabilities
have been examined, the work statistics still remains rather
uninvestigated, especially in many-body systems. Thus, after
discussing the statistics of work and the quantum contex-
tuality, in general, in Sec. II, we focus on an Ising model,
which we introduce in Sec. III. Our aim is to derive some
general features of global and local quenches present in the
thermodynamic limit thanks to the initial coherence. Further-
more, we are interested in clarifying the critical features of the
work related to a quantum phase transition: Although several
studies have been performed for initial incoherent states (e.g.,
on the large-deviation of work [17–19] and the Ising model
[20–28], just to name a few), the initial coherence also plays
a role, as found in Ref. [15], which is not entirely clear. Thus,
we focus on a global quench starting from a coherent Gibbs
state in Sec. IV, where we show that, unlike a system of finite
size, in the thermodynamic limit the symmetric quasiproba-
bility representation of the work tends to be noncontextual;
in particular, we get a Gaussian probability distribution, even
if there are also other quasiprobabilities that take negative
values. In contrast, for a local quench, since the work is not
extensive, there are initial states such that all the quasiprob-
abilities of the class can take negative values as signaled by
a negative fourth moment of the work (see Sec. V). Then,
these processes also remain genuinely quantum in the ther-
modynamic limit. Furthermore, we also try to clarify the role
of initial quantum coherence as useful resource for the work
extraction in Sec. VI, showing that, even when the protocol
tends to be noncontextual, the initial coherence still plays an
active role. In the end, we summarize and discuss further our
results in Sec. VII.

II. WORK STATISTICS

We consider a quantum quench so the system is ini-
tially in state ρ0 and the time evolution is described by the
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unitary operator Ut,0 which is generated by the time-
dependent Hamiltonian H (λt ), where the control param-
eter λt is changed in the time interval [0, τ ]. In detail,
Ut,0 = T e−i

∫ t
0 H (λs )ds, where T is the time order opera-

tor and the Hamiltonian can be expressed as H (λt ) =∑
k Ek (λt )|Ek (λt )〉〈Ek (λt )|, where |Ek (λt )〉 is the eigenstate

with eigenvalue Ek (λt ) at time t . For brevity, we define Ei =
Ei(λ0) and E ′

k = Ek (λτ ). The average work 〈w〉 done on the
system in the time interval [0, τ ] can be identified with the
average energy change

〈w〉 = Tr{(H (H )(λτ ) − H (λ0))ρ0}, (1)

where, given an operator A(t ), we define the Heisenberg time-
evolved operator A(H )(t ) = U †

t,0A(t )Ut,0. In general, the work
performed in the quench can be represented by a quasiproba-
bility distribution of work. We recall that if some Gleason-like
axioms are satisfied (see Ref. [14] for details), for the events
E ∧ F we get the quasiprobability v(E , F ) = ReTr{EFρ0},
but for more than two events, i.e., for E ∧ F ∧ G ∧ · · · , the
quasiprobability is not fixed by the axioms. However, we can
associate a quasiprobability of the form ReTr{EFG · · · ρ0}
to each of all possible decompositions of the form E ∧ F ,
F ∧ G, G ∧ · · · . By considering this notion of quasiprobabil-
ity, if we require that (W1) the quasiprobability distribution
of work reproduces the two-projective measurement scheme
in the case of initial incoherent states (i.e., for states ρ0 such
that ρ0 = �(ρ0), where we have defined the dephasing map
�(ρ0) = ∑

i |Ei〉〈Ei|ρ0|Ei〉〈Ei|), (W2) the average calculated
with respect to the quasiprobability is equal to Eq. (1), and
(W3) the second moment is equal to

〈w2〉 = Tr{(H (H )(λτ ) − H (λ0))2ρ0}, (2)

the quasiprobability distribution of work belongs to a defined
class [13,14], i.e., it takes the form

pq(w) =
∑
k, j,i

Re{〈Ei|ρ0|Ej〉〈Ej |U †
τ,0|E ′

k〉〈E ′
k|Uτ,0|Ei〉}

× δ(w − E ′
k + qEi + (1 − q)Ej ), (3)

where q is a real parameter. Our aim is to investigate this
quasiprobability for a many-body system. We can focus on
the characteristic function which is defined as χq(u) = 〈eiuw〉
and reads

χq(u) = 1
2 (Xq(u) + X1−q(u)),

where we have defined
Xq(u) = Tr{e−iuqH (λ0 )ρ0e−iu(1−q)H (λ0 )eiuH (H ) (λτ )}. (4)

The moments of work are 〈wn〉 = (−i)n∂n
u χq(0), and the

higher moments for n > 2 depend on the particular represen-
tation. In particular, we get

〈wn〉 = (−i)n∂n
u χq(0) = (−i)n∂n

u Xq(0)

2
+ (−i)n∂n

u X1−q(0)

2
,

(5)

where (see Appendix A)

(−i)n∂n
u Xq(0) =

n∑
k=0

(−1)n−k

(
n

k

) n−k∑
l=0

(
n − k

l

)
qn−k−l (1 − q)l

× Tr{ρ0H (λ0)l (H (H )(λτ ))kH (λ0)n−k−l}. (6)

We can consider the problem if there is a classical repre-
sentation, i.e., if there is a noncontextual hidden variable
model which satisfies the conditions about the reproduction
of the two-projective-measurement scheme, the average, and
the second moment. To introduce the concept of contextuality
at an operational level (see, e.g., Refs. [9,29]), we consider a
set of preparation procedures P and measurement procedures
M with outcomes k, so we will observe k with probability
p(k|P, M ). We aim to reproduce the statistics by using a set of
states ζ that are random distributed in set Z with probability
p(ζ |P) every time the preparation P is performed. If, for a
given ζ , we get the outcome k with the probability p(k|ζ , M ),
we are able to reproduce the statistics if

p(k|P, M ) =
∫
Z

p(ζ |P)p(k|ζ , M )dζ , (7)

and the protocol is called universally noncontextual if p(ζ |P)
is a function of the quantum state alone, i.e., p(ζ |P) =
p(ζ |ρ0), and p(k|ζ , M ) depends only on the positive operator-
valued measurement element Mk associated to the corre-
sponding outcome of the measurement M, i.e., p(k|ζ , M ) =
p(k|ζ , Mk ). In our case, the outcome k corresponds to the
work wk , and if the protocol is noncontextual the work dis-
tribution can be expressed as

p(w) =
∑

k

p(k|P, M )δ(w − wk ), (8)

where p(k|P, M ) is given by Eq. (7) with p(ζ |P) = p(ζ |ρ0)
and p(k|ζ , M ) = p(k|ζ , Mk ), so for a negative quasiprobabil-
ity of work we cannot have a noncontextual protocol. Thus, a
process that cannot be reproduced within any noncontextual
protocol will exhibit genuinely nonclassical features. If all the
quasiprobabilities in the class take negative values, the proto-
col is contextual, whereas if there is a quasiprobability which
is non-negative, there can be a noncontextual representation.
We recall that for an initial incoherent state ρ0 = �(ρ0), we
get the two-projective measurement scheme that is noncontex-
tual [9]. In contrast, the presence of initial quantum coherence
in the energy basis can lead to a contextual protocol. Let us
investigate the effects of the initial quantum coherence by
considering a Ising model in a transverse field.

III. MODEL

We consider a chain of L spin 1/2 described by the Ising
model in a transverse field with Hamiltonian

H (λ) = −λ

L∑
i=1

σ z
i −

L∑
i=1

σ x
i σ x

i+1, (9)

where we have imposed periodic boundary conditions σα
L+1 =

σα
1 , and σα

i with α = x, y, z are the Pauli matrices on the
site i. We note that the parity P = ∏L

i=1 σ z
i is a symmetry

of the model, i.e., it commutates with the Hamiltonian. The
Hamiltonian can be diagonalized by performing the Jordan-
Wigner transformation

ai =
⎛
⎝∏

j<i

σ z
j

⎞
⎠σ−

i , (10)
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where the fermionic operators ai satisfy the anticommutation
relations {ai, a†

j} = δi, j , {ai, a j} = 0. We get the Hamiltonian
of fermions

H (λ) = −λ

L∑
i=1

(2a†
i ai − 1) −

L−1∑
i=1

(a†
i − ai )(ai+1 + a†

i+1)

+ P(a†
L − aL )(a1 + a†

1), (11)

where the parity reads P = eiπN and N = ∑L
i=1 a†

i ai is the
number operator. We consider the projector P± on the sector
with parity P = ±1, then the Hamiltonian reads

H (λ) = P+H+(λ)P+ + P−H−(λ)P−. (12)

For the sector with odd parity P = −1, we get the Kitaev
chain

H−(λ) = −λ

L∑
i=1

(2a†
i ai − 1) −

L∑
i=1

(a†
i − ai )(ai+1 + a†

i+1),

(13)

with periodic boundary conditions aL+1 = a1. We perform a
Fourier transform a j = 1/

√
L

∑
k e−ik jak , where k = 2πn/L

with n = −(L − 1)/2, . . . , (L − 1)/2 for L odd and n =
−L/2 + 1, . . . , L/2 for L even. Thus, the Hamiltonian reads

H−(λ) =
∑

k



†
k [−(λ + cos k)σ z + sin kσ y]
k, (14)

where σα with α = x, y, z are the Pauli matrices and we
have defined the Nambu spinor 
k = (ak, a†

−k )T . In partic-

ular,the Hamiltonian can be written as H−(λ) = ∑
k 


†
k
�dk ·

�σ
k , which, in the diagonal form, reads

H−(λ) =
∑

k

εk

(
α

†
k αk − 1

2

)
=

∑
k

εkα
†
k αk + E−, (15)

where E− = −∑
k εk/2. In detail, we have performed a ro-

tation with respect to the x axis with an angle θk between �dk

and the z axis, corresponding to the Bogoliubov transforma-
tion αk = cos(θk/2)ak − i sin(θk/2)a†

−k , where εk = 2|| �dk||,
or more explicitly,

εk = 2
√

(λ + cos k)2 + sin2 k. (16)

For the sector with even parity P = 1, we get the Hamiltonian
H+(λ), which is equal to the one in Eq. (13) with antiperiodic
boundary conditions aL+1 = −a1, thus the only difference is
in the momenta k which are k = 2π (n − 1/2)/L. Of course,
not all eigenstates of the Hamiltonians H± are eigenstates of
the Hamiltonian H , and their parity needs to be discussed. Let
us consider L even. Thus, in the even parity sector, k ∈ K+,
for each k there is −k, and the eigenstates of the Hamiltonian
are the states

α
†
k1

· · · α†
k2m

|0̃+〉, (17)

where m is an integer, ki ∈ K+ and |0̃+〉 is the vacuum state of
αk with k ∈ K+. In contrast, in the odd parity sector, k ∈ K−,
for each k there is −k except for k = 0 and π . For λ < −1,
we get α0 = a0 and απ = aπ , for λ > 1 we get α0 = a†

0 and
απ = a†

π , and for |λ| < 1 we get α0 = a†
0 and απ = aπ . Then,

for |λ| > 1, the vacuum state |0̃−〉 of αk with k ∈ K− has even
parity and the eigenstates of the Hamiltonian are the states

α
†
k1

· · · α†
k2m+1

|0̃−〉, (18)

with ki ∈ K−. Conversely, for |λ| < 1 the vacuum state |0̃−〉
of αk with k ∈ K− has odd parity since has the fermion a0 but
not aπ , and the eigenstates of the Hamiltonian are the states

α
†
k1

· · · α†
k2m

|0̃−〉, (19)

with ki ∈ K−. Then, for |λ| < 1 both states |0̃+〉 and |0̃−〉 are
eigenstates of the Hamiltonian with energies E+ and E−, so
the ground state is twofold degenerate in the thermodynamic
limit. Thus, at the points λ = ±1 we get a second-order quan-
tum phase transition.

IV. GLOBAL QUENCH

We start to focus on a sudden global quench of the trans-
verse field λ, i.e., λ is suddenly changed from the value λ0 to
λτ , so τ → 0 and Uτ,0 = I . To investigate the role of initial
quantum coherence, we focus on a coherent Gibbs state

|
G(β )〉 = 1√
Z

∑
j

e−βEj/2+iϕ j |Ej〉, (20)

where Ej are the eigenenergies of H (λ0), ϕ j is a phase,
Z = Z (λ0), and Z (λ) is the partition function defined as
Z (λ) = Tr{e−βH (λ)}. Of course, the incoherent part of the state
|
G(β )〉 is �(|
G(β )〉〈
G(β )|) = ρG(β ), where ρG(β ) is the
Gibbs state ρG(β ) = e−βH (λ0 )/Z . With the aim to calculate the
characteristic function for an arbitrary size L, from Eq. (4),
by using the relations

∑
s Ps = I , P2

s = Ps, [Ps, H (λ)] = 0 and
[Ps, H±(λ)] = 0, where s = ±, it is easy to see that

Xq(u) =
∑

s

Tr
{
e−iuqHs (λ0 )Psρ0Pse

−iu(1−q)Hs (λ0 )eiuH (H )
s (λτ )

}
.

(21)

We get Psρ0Ps = Psρ
s
0, where for the Gibbs state ρs

0 =
e−βHs (λ0 )/Z and for the coherent Gibbs state ρs

0 = |
s
G〉〈
s

G|.
In particular, we get

∣∣
s
G

〉 = 1√
Z

⊗k∈Ks

(
e

βεk
4 |0̃k〉 + e− βεk

4 +iφk |1̃k〉
)
, (22)

where we consider a phase such that φ−k = φk , with |ñk〉 =
(α†

k )nk |0̃k〉, where εk = εk (λ0), αk = αk (λ0), and |0̃k〉 is the
vacuum state for the fermion αk . As shown in Appendix B,
we get

Xq(u) = 1

2

∑
s

X s
q (u) + ηsX

′s
q (u), (23)

where we have defined ηs = s〈0̃s|eiπN |0̃s〉, which is η+ = 1
and η− = −1 for |λ0| > 1 and η− = 1 for |λ0| < 1, and

X s
q (u) = 1

Z

∏
k∈Ks:k�0

X (k)
q (u). (24)

In detail, for k > 0 and k �= π , we get

X (k)
q (u) = X (k),th

q (u) + X (k),coh
q (u), (25)
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where X (k),th
q (u) is the incoherent contribution, which reads

X (k),th
q (u) = 2(cos((u − iβ )εk ) cos(uε′

k ) + sin((u − iβ )εk )

× sin(uε′
k )d̂k · d̂ ′

k + 1), (26)

and X (k),coh
q (u) is the coherent contribution, which reads

X (k),coh
q (u) = −2i sin(uε′

k ) sin(u(2q − 1)εk − 2φk )(d̂k × d̂ ′
k )x,

(27)

where, for brevity we have defined ε′
k = εk (λτ ), �dk = �dk (λ0),

and �d ′
k = �dk (λτ ). Furthermore, we have

X ′s
q (u) = 1

Z

∏
k∈Ks:k�0

X ′(k)
q (u), (28)

with

X ′(k)
q (u) = X (k)

q (u) − 4. (29)

In contrast, for k = 0 and k = π , we get

X (0,π )
q (u) = 2 cosh

(
βε0,π − iu(s0,π ε′

0,π − ε0,π )

2

)
, (30)

X ′(0,π )
q (u) = 2 sinh

(
βε0,π − iu(s0,π ε′

0,π − ε0,π )

2

)
, (31)

where sπ = −1 if |λ0|< 1 and λτ > 1 or |λτ | < 1 and λ0 > 1,
otherwise sπ = 1, and s0 = −1 if |λ0| < 1 and λτ < −1 or
|λτ | < 1 and λ0 < −1, otherwise s0 = 1, while the partition
function is

Z = 1

2

∑
s

∏
k∈Ks

2 cosh(βεk/2) + ηs

∏
k∈Ks

2 sinh(βεk/2). (32)

If the initial quantum coherence does not contribute, i.e.,
X (k),coh

q (u) = 0, we get X (k)
q (u) = X (k),th

q (u) and the character-
istic function is the one of the initial Gibbs state ρG(β ). We
get X (k),coh

q (u) = 0 for q = 1/2 and φk = nπ/2, and in this
case the quasiprobability is non-negative; in particular, it is
equivalent to the two-projective-measurement scheme which
is noncontextual. For q = 1/2, the initial quantum coherence
contributes only for φk �= nπ/2 with n integer. In this case,
the quasiprobability can take negative values. However, in the
thermodynamic limit the negativity of the quasiprobability
is always subdominant for q = 1/2, and we get a Gaussian
probability distribution of work. To prove it, we note that
in the thermodynamic limit we get Z = ∏

k∈K+ Zk with Zk =
2 cosh(βεk/2), then

Xq(u) =
∏

k∈K+:k>0

X (k)
q (u)

Z2
k

. (33)

Basically, in the thermodynamic limit the model is equivalent
to the system of fermions with Hamiltonian H+. Thus, we can
write

Xq(u) = eLgq (u), (34)

where gq(u) is intensive, so the work is extensive, i.e., 〈wn〉 ∼
Ln. In particular, for the initial coherent Gibbs state under

FIG. 1. The quasiprobability of work in Eq. (37) for different
values of q. We put L = 50, β = 1, λ0 = 0.9, λτ = 1.1, and φk = 0.

consideration, gq(u) explicitly reads

gq(u) = 1

2π

∫ π

0
ln

(
X (k)

q (u)

Z2
k

)
dk. (35)

Then, if Eq. (34) holds, regardless of the explicit form of the
intensive function gq(u), as L → ∞ we can consider

Xq(u) ∼ eL(∂ugq (0)u+ 1
2 ∂2

u gq (0)u2 ), (36)

since in the calculation of the Fourier transform of Xq(u)
the dominant contribution of the integral is near u = 0,
so that we can expand gq(u) in Taylor series about
u = 0, and thus the neglected terms in Eq. (36) do not
contribute in the asymptotic formula of the quasiprobability
pq(w). We note that, although the characteristic function
χq(u) depends on q, the first two moments do not
depend on q. In particular, we note that the relative
fluctuations of work scale as σw/〈w〉 ∼ 1/

√
L, where we

have defined the variance σ 2
w = 〈w2〉 − 〈w〉2. By noting that

∂ugq(0) does not depend on q and ∂2
u g1−q(0) = ∂2

u g∗
q(0), we

get the quasiprobability of work

pq(w) ∼ 1√
2π

Re

⎛
⎝e− (w−w̄)2

2vq

√
vq

⎞
⎠, (37)

where w̄ = −i∂ugq(0)L and vq = −∂2
u gq(0)L. In particular,

the average work is 〈w〉 = w̄ and the variance σ 2
w is the

real part of vq, i.e., vq = σ 2
w + irq. As shown in Fig. 1, for

q �= 1/2 the asymptotic formula of the quasiprobability can
take negative values due to the presence of the imaginary part
rq. In contrast, for q = 1/2, we get χ1/2(u) = X1/2(u), from
which σ 2

w = −∂2
u g1/2(0)L, i.e., r1/2 = 0 and thus we get the

Gaussian probability distribution:

p1/2(w) ∼ e
− (w−w̄)2

2σ2
w√

2πσw

. (38)

It is worth noting that the protocol tends to be
noncontextual. To prove it, we consider the operator
�H = H (H )(λτ ) − H (λ0) and the probability distribution

p(�E ) =
∑

μ

〈�Eμ|ρ0|�Eμ〉δ(�E − �Eμ), (39)
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FIG. 2. The histogram of the work distribution. We put L = 10 in
the top panel, L = 50 in the bottom panel, q = 1/2, β = 1, λτ = 1.5,
λ0 = 0.5, and φk = π/4. The red line corresponds to the Gaussian
distribution probability in Eq. (38). We note that for L = 50 there
is still some skewness. The histograms are calculated by using the
characteristic function of Eq. (23).

where |�Eμ〉 is the eigenstate of �H with eigenvalue �Eμ.
Of course, p(�E ) is noncontextual, and it is easy to see
that p1/2(w) ∼ p(w) as L → ∞. Thus, the work tends to be
an observable with respect to the noncontextual symmetric
representation, differently from finite sizes, where it is
not, as was originally noted for incoherent initial states in
Ref. [7]. In particular, for the quench considered, we have
�H = (λτ − λ0)Sz, where Sz = ∑L

j=1 σ z
j , so the symmetric

representation for q = 1/2 tends to be equivalent to the
distribution probability of the transverse magnetization Sz.
We emphasize that for small sizes L, the quasiprobability
at q = 1/2 can take negative values, but for large L it is
well described by the Gaussian probability distribution in
Eq. (38) (see Fig. 2). We note that for an arbitrary initial
state, the representation for q = 1/2 is still noncontextual (see
Appendix C). In general, the negativity of the quasiprobability
pq(w) can be characterized by the integral

N ≡
∫

|pq(w)|dw, (40)

which is equal to one if pq(w) � 0. In our case, N ∼ (σ 4
w+r2

q )
1
4

σw
,

so N = 1 implies that rq = 0 and thus pq(w) � 0. We note
that N = 1 implies, in general, that pq(w) � 0 (see Ap-
pendix D). In the end, we note that the effects related to the
negativity of the quasiprobability start to affect the statistics

FIG. 3. The average work w̄ and the variance σ 2
w in the function

of λ0 for different values of L. We put β = 1, δλ = λτ − λ0 = 0.1,
and φk = π/4. The values for finite sizes L are calculated by using
the characteristic function of Eq. (23).

from the fourth moment, which reads 〈w4〉 ∼ w̄4 + 6w̄2σ 2
w +

3σ 4
w − 3r2

q . In contrast, the first three moments do not de-
pend on rq; explicitly, they read 〈w〉 = w̄, 〈w2〉 = w̄2 + σ 2

w,
and 〈w3〉 ∼ w̄3 + 3w̄σ 2

w. In particular, the kurtosis is Kurt ≡
〈(w − 〈w〉)4〉/σ 4

w ∼ 3 − 3r2
q/σ

4
w which is always smaller than

3 if rq �= 0, i.e., the distribution is more flat than the normal
one. We note that if w̄ �= 0, since w̄ ∼ L and σ 2

w ∼ L, the
fourth moment is always positive. On the other hand, for w̄ =
0, the fourth moment reads 〈w4〉 ∼ 3σ 4

w − 3r2
q and becomes

negative for rq > σ 2
w, so in this regime the negativity for q �=

1/2 will be strong. To conclude our investigation concerning
the global quench, we note that the average work reads

w̄ = (λ0 − λτ )L

π

∫ π

0

× (λ0 + cos k) sinh(βεk ) + sin k sin(2φk )

εk cosh2(βεk/2)
dk (41)

and the variance reads

σ 2
w = (λ0 − λτ )2L

π

∫ π

0

1

cosh4(βεk/2)

×
(

cosh2(βεk/2) cosh(βεk ) − 2

ε2
k

(sin k sin(2φk )

+ (λ0 + cos k) sinh(βεk ))2

)
dk. (42)

Both w̄ and σ 2
w are not regular at |λ0| = 1 for φk = φ �= nπ/2

due to the presence of a quantum phase transition (see Fig. 3).
Furthermore, concerning the negativity of the quasiprobability
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of work, we have

rq = 2(1 − 2q)(λτ − λ0)L

π

∫ π

0

sin k cos(2φk )

cosh2(βεk/2)
dk, (43)

which is regular. We deduce that the protocol admits
a noncontextual description, i.e., rq = 0, for any q and
φk = (2n + 1)π/4 or for q = 1/2. In the end, to investigate
the critical features of the work which can be related to the
presence of the quantum phase transition, we introduce the
energy scale J such the Hamiltonian reads

HJ (λ) = −Jλ

L∑
i=1

σ z
i − J

L∑
i=1

σ x
i σ x

i+1. (44)

We focus on λ0 ≈ 1 and we start to consider the average work
given by Eq. (41) multiplied by J . Then, we change variable
k′ = π − k in the integral and we define κ = k′/a, and the
renormalized couplings J = c/(2a) and λ0 = 1 − mca. In the
scaling limit a → 0, we get

w̄ ∼ J (λ0 − λτ )aL

2π

∫ π
a

0

κ sin(2φπ ) − cm sinh(βcωκ )

ωκ cosh2(βcωκ/2)
dκ,

(45)

where ωκ = √
κ2 + c2m2. We note that the integral extended

to the interval [0,∞) does not converge. Thus the integral
is not determined only by small κ , and the behavior is not
universal. Similarly, concerning the variance σ 2

w, the integral
extended to the interval [0,∞) does not converge, so it is not
universal. The coherent contribution to the average work is
defined as

w̄coh = w̄ − w̄th, (46)

where w̄th is the average work corresponding to the initial
state ρ0 = ρG(β ). Then, the coherent contribution is given by
the term proportional to sin(2φπ ) in Eq. (45), i.e.,

w̄coh ∼ J (λ0 − λτ )aL

2π

∫ π
a

0

κ sin(2φπ )

ωκ cosh2(βcωκ/2)
dκ. (47)

In this case, we can extend the integral to the interval
[0,∞), so the coherent contribution w̄coh is described by the
continuum model; in this sense it is a universal feature. From
Eq. (47), by noting that∫ ∞

0

y√
1 + y2 cosh2(x

√
1 + y2/2)

dy = 4

(1 + e|x|)|x| , (48)

the coherent contribution to the average work can be
expressed as

w̄coh ∼ (λ0 − λτ ) sin(2φπ )L

πβ
gFD(βmc2), (49)

where we have defined the Fermi-Dirac distribution
gFD(x) = 1/(1 + e|x|) and mc2 = 2J (1 − λ0). In the end, let
us consider the limit of high temperatures β → 0, so we get

gq(u) = 1

2π

∫ π

0
ln

1

2
(cos(uεk ) cos(uε′

k ) + sin(uεk ) sin(uε′
k )

× d̂k · d̂ ′
k + 1 − i sin(uε′

k ) sin(u(2q − 1)εk − 2φk )

× (d̂k × d̂ ′
k )x )dk. (50)

For φk = φ, we get the closed form of the derivatives

∂ugq(0) = − i(λτ − λ0)

2π |λ0| sin(2φ)(1 + |λ0| − |1 − |λ0||),
(51)

∂2
u gq(0) = −(λτ − λ0)2

(
1 − 1

8λ2
0

(
1 + λ2

0

− (1 + |λ0|)|1 − |λ0||
)

sin2(2φ)

)

− 4i

π
(λτ − λ0)(1 − 2q) cos(2φ), (52)

from which it is evident that the work statistics is not regular
at |λ0| = 1 for φ �= nπ/2. Of course, in this limit we can
extract the work Wex = −〈w〉, equal to

Wex = (λτ − λ0)L

2π |λ0| sin(2φ)(1 + |λ0| − |1 − |λ0||), (53)

only because of the presence of the initial coherence;
otherwise, for an initial Gibbs state we will get 〈w〉 = 0.

V. LOCAL QUENCH

Things change drastically when the work is nonextensive,
e.g., for a local quench. We focus on the case of a sudden
quench in the transverse field, i.e., the initial Hamiltonian is
H = H (λ0) and we perform a sudden quench of the transverse
field in a site l , so the final Hamiltonian is H ′ = H (λ0) − εσ z

l .
Since we are interested only in large sizes L, we describe
the model with the corresponding fermionic Hamiltonian H+.
Here we are interested in investigating how contextuality can
emerge in a local quench, thus we focus on the states |
1(β )〉
and |
2(β )〉, which are defined as

|
1(β )〉 = e
β

4

∑
k εk

√
Z1

exp

(∑
k

e− βεk
2 +iφk α

†
k

)
|0̃+〉 (54)

and

|
2(β )〉 = e
β

4

∑
k εk

√
Z2

(
1 +

∑
k

e− βεk
2 +iφk α

†
k

+ 1

2

∑
k,k′

sk,k′e− β(εk +εk′ )

2 +i(φk+φk′ )α
†
k α

†
k′

)
|0̃+〉,

(55)

where sk,k′ = 1 if k > k′, sk,k′ = −1 if k < k′ and sk,k = 0,
and Z1 and Z2 are normalization factors such that Z ∼ Z2 ∼ Z1

as β → ∞. Indeed, |
G(β )〉 ∼ |
2(β )〉 ∼ |
1(β )〉 as β →
∞. In general, for these initial states, the function Xq(u) can
be calculated with the help of Grassmann variables (see Ap-
pendix E). While for the initial state |
1(β )〉, we find that the
fourth moment of work is positive; for the initial state |
2(β )〉,
we find that the fourth moment of work can be negative for
β small enough (see Fig. 4). This suggests that to get a
contextual protocol with a negative fourth moment, we need
to start from an initial state which involves at least couples of
quasiparticles, such as |
2(β )〉. This result is corroborated by
considering states like |
1(β )〉 but with random coefficients
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FIG. 4. The fourth moment of work 〈w4〉 in the function of the
local field ε for q = 1/2 for the states |
1(β )〉 (top panel) and
|
2(β )〉 (bottom panel). The curves for other values of q ∈ [0, 1/2]
are not distinguishable by eye from the one for q = 1/2. We put
L = 50, λ0 = 1, φk = φ−k = π , and φk = φ−k = 0 for n odd and
even, where k = 2π (n − 1/2)/L.

instead of e− βεk
2 +iφk , for which we get a non-negative fourth

moment for the local quench.

VI. INITIAL QUANTUM COHERENCE

To conclude, we investigate further the role of initial co-
herence by focusing on an initial state ρ0 with a thermal
incoherent part, i.e., �(ρ0) = ρG(β ). In general, we have the
equality (see Ref. [13])

〈e−βw−C〉 = e−β�F , (56)

where �F = F (λτ ) − F (λ0) is the change in the equilibrium
free energy, where F (λ) = −β−1 ln Z (λ), and C is the random
quantum coherence that has the probability distribution

pc(C) =
∑
i,n

Rn|〈Ei|Rn〉|2δ(C + ln〈Ei|ρ0|Ei〉 − ln Rn), (57)

where we have considered the decomposition ρ0 =∑
n Rn|Rn〉〈Rn|. In detail, the average of C is the relative

entropy of coherence 〈C〉 = S(�(ρ0)) − S(ρ0), where S(ρ)
is the von Neumann entropy defined as S(ρ) = −Tr{ρ ln ρ},
and we have the equality 〈e−C〉 = 1. In particular, from
Eq. (56), we get the inequality 〈w〉 � �F − β−1〈C〉, and
we note that Eq. (56) reduces to the Jarzynski equality [30]
〈e−βw〉 = e−β�F when ρ0 = ρG(β ). From Eq. (56), we get

�F = β−1
∞∑

n=1

(−1)n+1

n!
κn(s), (58)

where κn(s) is the nth cumulant of s = βw + C which, of
course, can be expressed in terms of expectation values of
work and coherence: The cumulants κn(C) of C cancel in
the sum due to the equality 〈e−C〉 = 1, and only work cumu-
lants κn(w) (e.g., the variance σ 2

w) and correlation terms (e.g.,
the covariance σw,C = 〈wC〉 − 〈w〉〈C〉) are present. For in-
stance, if work and coherence are uncorrelated, we get κn(s) =
βnκn(w) + κn(C) and so �F = ∑∞

n=1(−1)n+1βn−1κn(w)/n!
and the coherence does not appear. If we consider a Gaussian
probability distribution for the random variable s, we get

�F = 〈w〉 − βσ 2
w

2
− σw,C . (59)

For a given free energy change �F , from Eq. (59) we see
that the average work extracted Wex = −〈w〉 in the process
increases as the fluctuation of work becomes weak, i.e., the
variance σ 2

w decreases, and the work and coherence become
strongly negative correlated, i.e., σw,C < 0, which clarifies the
role of initial quantum coherence as useful resource. However,
we note that Eq. (59) cannot be exactly satisfied for a global
quench because we have to take into account also higher work
cumulants and correlations which will contribute to the series
in Eq. (58) due to large deviations. In particular, if we focus
on the high temperature limit β → 0, Eq. (58) reduces to

〈w〉 = �F +
∞∑

k=1

ik+1

k!
∂k

t ∂uG(0, 0), (60)

where we have defined the function G(u, t ) = ln〈eiuw+itC〉.
The derivatives are correlation terms, e.g., ∂t∂uG(0, 0) =
−σw,C , ∂2

t ∂uG(0, 0) = 2i〈C〉σw,C − iσw,C2 and ∂3
t ∂uG(0, 0) =

3(2〈C〉2 − 〈C2〉)σw,C − 3〈C〉σw,C2 + σw,C3 . For the initial
state ρ0 = η|
G(0)〉〈
G(0)| + (1 − η)ρG(0), we get the char-
acteristic function of the coherence (see Appendix F)

〈eitC〉 = Dit

((
η + 1 − η

D

)it+1

+ (D − 1)

(
1 − η

D

)it+1
)

,

(61)

where D is the dimension of the Hilbert space. Furthermore,
by considering

〈eiuw+itC〉 = Tr{ρ0eit ln ρ0 e−iuH/2−it ln �(ρ0 )/2eiuH ′

× e−iuH/2−it ln �(ρ0 )/2}, (62)

where for brevity we have defined H = H (λ0) and H ′ =
H (H )(λτ ), we get

−i∂uG(0, t ) =
(
η + 1−η

D

)it+1
w1 + (D − 1)

( 1−η

D

)it+1
w2(

η + 1−η

D

)it+1 + (D − 1)
( 1−η

D

)it+1 ,

(63)

where w1 = 〈
G(0)|(H ′ − H )|
G(0)〉 is the average work
done starting from the coherent Gibbs state, which can be
expressed as w1 = (〈w〉 − (1 − η)�F )/η, and w2 = D�F −
w1, where �F = Tr{H (λτ ) − H (λ0)}/D. Thus, the terms in
Eq. (60) can be obtained by calculating the derivatives of
Eq. (63) with respect to t . We note that for the Ising model we
get �F = 0, so in this limit the work extracted, i.e., Eq. (53)
multiplied by η, completely comes from the correlations be-
tween work and coherence. Of course, the same situation
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occurs for a cyclic change of any Hamiltonian, i.e., such that
H (λτ ) = H (λ0).

VII. CONCLUSIONS

We investigated the effects of the initial quantum coher-
ence in the energy basis to the work done by quenching a
transverse field of a one-dimensional Ising model. The work
can be represented by considering a class of quasiprobability
distributions. To study how the work statistics changes with
the increasing of the system size, we calculated the exact
formula of the characteristic function of work for an arbitrary
size by imposing periodic boundary conditions. Then, we fo-
cused on the thermodynamic limit, and we showed that, for an
initial coherent Gibbs state, by neglecting subdominant terms
for the symmetric value q = 1/2 we get a Gaussian proba-
bility distribution of work, and so a noncontextual protocol.
However, for q �= 1/2, the quasiprobability of work can take
negative values depending on the initial state. In contrast, for
a local quench there are initial states such that any quasiprob-
ability representation in the class is contextual as signaled by
a negative fourth moment. We note that the quasiprobability
distribution can be measured experimentally in different ways
[13,14], also by using a qubit (see Appendix G). In the end,
beyond the fundamental purposes of the paper, it is interesting
to understand if the contextuality can be related to some
advantages from a thermodynamic point of view, however,
further investigations are needed to go in this direction. In
particular, although the protocol tends to be noncontextual
in the thermodynamic limit for a global quench, the initial
quantum coherence can be still a useful resource for the work
extraction in the protocol when it is correlated with the work.
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APPENDIX A: WORK MOMENTS

Let us derive a closed formula for the work moments. We
define H = H (λ0) and H ′ = H (H )(λτ ). The nth work moment
can be calculated as

〈wn〉 = (−i)n∂n
u χq(0) = (−i)n∂n

u Xq(0)

2
+ (−i)n∂n

u X1−q(0)

2
.

(A1)

To calculate (−i)n∂n
u Xq(0), we note that

Xq(u) = Tr{ρ0(u)eiuH ′ }, (A2)

where we have defined

ρ0(u) = e−iuqHρ0e−iu(1−q)H . (A3)

Then,

(−i)n∂n
u Xq(u) =

n∑
k=0

(
n

k

)
Tr

{
((−i)n−k∂n−k

u ρ0(u))H ′keiuH ′}
,

(A4)

where we have noted that (−i)k∂k
u eiuH ′ = H ′keiuH ′

. It is easy
to see that

(−i)n∂n
u ρ0(u) = (−1)n

n∑
k=0

(
n

k

)
(qH )n−kρ0(u)((1 − q)H )k,

(A5)

from which

(−i)n∂n
u Xq(0) =

n∑
k=0

(−1)n−k

(
n

k

) n−k∑
l=0

(
n − k

l

)
qn−k−l (1 − q)l

× Tr{Hn−k−lρ0HlH ′k}. (A6)

APPENDIX B: QUASIPROBABILITY OF WORK

We consider two different initial states, a Gibbs state ρG =
e−βH (λ0 )/Z , and a coherent Gibbs state |
G〉. In particular, for
φ j = 0, the state |
s

G〉 in Eq. (22) reads

∣∣
s
G

〉 = 1√
Z

⊗k∈Ks

(
e

βεk
4 |0̃k〉 + e− βεk

4 |1̃k〉
)
. (B1)

It can be expressed as

|
+
G 〉 = 1√

Z
(⊗k>0|
k〉), (B2)

|
−
G 〉 = 1√

Z
(⊗k>0|
k〉) ⊗ |
0〉 ⊗ |
π 〉, (B3)

where |
k〉= (|0̃k〉+ e− βεk
2 |1̃k〉) ⊗ (e

βεk
2 |0̃−k〉+ |1̃−k〉). Thus,

by noting that Ps = (I + seiπN )/2 and eiπN = 〈0̃s|eiπN |0̃s〉eiπ∑
k∈Ks

α
†
k αk , we get

Xq(u) = 1

2

∑
s

Tr
{
e−iuqHs (λ0 )ρs

0e−iu(1−q)Hs (λ0 )eiuH (H )
s (λτ )

}
+ ηsTr

{
e−iuqHs (λ0 )eiπ

∑
k∈Ks α

†
k αk ρs

0e−iu(1−q)Hs (λ0 )

× eiuH (H )
s (λτ )

}
, (B4)

where we have defined ηs = s〈0̃s|eiπN |0̃s〉. Let us focus on the
first term in the sum over s, which is

X s
q (u) = Tr

{
e−iuqHs (λ0 )ρs

0e−iu(1−q)Hs (λ0 )eiuH (H )
s (λτ )

}
. (B5)

Then, e.g., for s = −, to evaluate the trace we can consider the
basis formed by the vectors |{nk}〉 = (⊗k>0|nkn−k〉) ⊗ |n0〉 ⊗
|nπ 〉, with nk = 0, 1, where |nkn−k〉 = (a†

k )nk (a†
−k )n−k |0k0−k〉,

where |0k〉 is the vacuum state for the fermion ak . Of course,
{|nkn−k〉} generates an invariant dynamically subspace, and in
this subspace the Hamiltonian Hs(λ) is the matrix Hk (λ) such
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that

Hk (λ)|0k0−k〉 = 2(λ + cos k)|0k0−k〉 − 2i sin k|1k1−k〉,
(B6)

Hk (λ)|1k1−k〉 = −2(λ + cos k)|1k1−k〉 + 2i sin k|0k0−k〉,
(B7)

Hk (λ)|0k1−k〉 = 0, (B8)

Hk (λ)|1k0−k〉 = 0. (B9)

However, it is convenient to consider the initial eigenstates
|ñk ñ−k〉 such that

Hk (λ0)|ñk ñ−k〉 = (εknk + εk (n−k − 1))|ñk ñ−k〉. (B10)

For our two initial states, it is equal to

X s
q (u) = 1

Z

∏
k∈Ks:k�0

X (k)
q (u). (B11)

For the Gibbs state, for k > 0 and k �= π , we have

X (k)
q (u) =

∑
nk ,n−k

e(−iu−β )(εk nk+εk (n−k−1))

×〈ñk ñ−k|U †
τ,0eiuHk (λτ )Uτ,0|ñk ñ−k〉. (B12)

To evaluate X (k)
q (u), we note that

eiuHk (λτ ) = e−iuε′
k d̂ ′

k ·�τ

= (cos(uε′
k )I − i sin(uε′

k )d̂ ′
k · �τ ) ⊕ I, (B13)

where d̂ ′
k = d̂k (λτ ), ε′

k = εk (λτ ), �τ = (τ1, τ2, τ3)T , where
τi are the Pauli matrices, i.e., τ3 = |0k0−k〉〈0k0−k| −
|1k1−k〉〈1k1−k|, and so on. We have to calculate

〈ñk ñ−k|U †
τ,0eiuHk (λτ )Uτ,0|ñk ñ−k〉

= cos(uε′
k ) − i sin(uε′

k )〈ñk ñ−k|U †
τ,0d̂ ′

k · �τUτ,0|ñk ñ−k〉,
(B14)

with (nk, n−k ) = (0, 0) and (nk, n−k ) = (1, 1), while 〈0̃k 1̃−k|
U †

τ,0eiuHk (λτ )Uτ,0|0̃k 1̃−k〉 = 〈1̃k 0̃−k|U †
τ,0eiuHk (λτ )Uτ,0|1̃k 0̃−k〉 =

1. In particular, since d̂ ′
k · �τ is traceless, we get 〈0̃k 0̃−k|U †

τ,0d̂ ′
k ·

�τUτ,0|0̃k 0̃−k〉+ 〈1̃k 1̃−k|U †
τ,0d̂ ′

k · �τUτ,0|1̃k 1̃−k〉= 0, from which
we get X (k)

q (u) = X (k),th
q (u), with

X (k),th
q (u) = 2(cos((u − iβ )εk ) cos(uε′

k ) + sin((u − iβ )εk )

× sin(uε′
k )〈0̃k 0̃−k|U †

τ,0d̂ ′
k · �τUτ,0|0̃k 0̃−k〉) + 1).

(B15)

In contrast, for the coherent Gibbs state, for k > 0 and k �= π

we get

X (k)
q (u) = 〈
k (q − 1)|U †

τ,0eiuHk (λτ )Uτ,0|
k (q)〉, (B16)

where

|
k (q)〉 = (|0̃k〉 + e−iuqεk− βεk
2 |1̃k〉

)
⊗ (

eiuqεk+ βεk
2 |0̃−k〉 + |1̃−k〉

)
. (B17)

Thus, we get

X (k)
q (u) = 2

(
cos((u − iβ )εk ) cos(uε′

k ) − i

2
sin(uε′

k )

×〈
̃k (q − 1)|U †
τ,0d̂ ′

k · �τUτ,0|
̃k (q)〉 + 1

)
,

(B18)

where |
̃k (q)〉 = eiuqεk+βεk/2|0̃k 0̃−k〉 + e−iuqεk−βεk/2|1̃k 1̃−k〉.
We get

X (k)
q (u) = X (k),th

q (u) + X (k),coh
q (u) (B19)

where the coherent contribution is

X (k),coh
q (u) = −2i sin(uε′

k )Re(e−iu(2q−1)εk

×〈0̃k 0̃−k|U †
τ,0d̂ ′

k · �τUτ,0|1̃k 1̃−k〉). (B20)

To calculate the second term in the sum over s in Eq. (B4), we
note that

eiπ
∑

k∈Ks
α

†
k αk = (−1)

L
2 eiπ

∑
k∈Ks (α†

k αk− 1
2 ) (B21)

= (−1)
L
2 eiqπ

∑
k∈Ks (α†

k αk− 1
2 )

× ei(1−q)π
∑

k∈Ks (α†
k αk− 1

2 ), (B22)

then the second term is ηsX ′s
q (u), where X ′s

q (u) is obtained by

multiplying X s
q (u) by (−1)

L
2 and by performing the substitu-

tion uεk �→ uεk − π , so

X ′s
q (u) = 1

Z

∏
k∈Ks:k�0

X ′(k)
q (u), (B23)

with

X ′(k)
q (u) = X (k)

q (u) − 4 (B24)

for k > 0 and k �= π . Then, we get

Xq(u) = 1

2

∑
s

X s
q (u) + ηsX

′s
q (u). (B25)

The partition function can be calculated as

Z = Tr{e−βH (λ0 )} =
∑

s

Tr{Pse
−βHs (λ0 )} (B26)

= 1

2

∑
s

Tr{e−βHs (λ0 )} + ηsTr
{
e−βHs (λ0 )+iπ

∑
k∈Ks

α
†
k αk

}
(B27)

= 1

2

∑
s

∏
k∈Ks

2 cosh(βεk/2) + ηs

∏
k∈Ks

2 sinh(βεk/2).

(B28)

Concerning the quasiprobability distribution of work
pq(w), it can be calculated from the characteristic function
as

pq(w) =
∫

e−iuw

2π
χq(u)du (B29)

= 1

2

∫
e−iuw

2π
(Xq(u) + X1−q(u))du. (B30)
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Let us focus on the thermodynamic limit. For |λ0| > 1, we get
Z ∼ ∏

k∈K+ Zk with Zk = 2 cosh(βεk/2) and Xq(u) ∼ X +
q (u).

Then, Xq(u) is the product of the characteristic functions hav-
ing quasiprobability distributions

p(k)
q (w) = 1

Z2
k

∫
e−iuw

2π
X (k)

q (u)du, (B31)

thus the quasiprobability distribution of work reads

pq(w) = 1

2

∫ (∏
k>0

p(k)
q (wk ) +

∏
k>0

p(k)
1−q(wk )

)

× δ

(
w −

∑
k>0

wk

)∏
k>0

dwk . (B32)

We note that the average work can be calculated as

〈w〉 = −i∂uχq(0) = −i
∑
k>0

1

Z2
k

∂uX (k)
q (0). (B33)

On the other hand, for |λ0| < 1, we get Z ∼ ∏
k∈K+ Zk +∏

k∈K+ Z ′
k with Z ′

k = 2 sinh(βεk/2), and Xq(u) ∼ X +
q (u) +

X ′+
q (u) from which

Xq(u) = γ
∏
k>0

X (k)
q (u)

Z2
k

+ (1 − γ )
∏
k>0

X ′(k)
q (u)

Z ′2
k

, (B34)

where γ = (
∏

k>0 Z2
k )/Z . In the thermodynamic limit, we get

γ = e
2L
π

∫ π

0 cosh2(βεk/2)dk

e
2L
π

∫ π

0 cosh2(βεk/2)dk + e
2L
π

∫ π

0 sinh2(βεk/2)dk
→ 1 (B35)

for a nonzero temperature, since
∫ π

0 cosh2(βεk/2)dk >∫ π

0 sinh2(βεk/2)dk. In contrast, for β → ∞, we get Z ′
k ∼ Zk

so γ = 1/2, and X ′(k)
q (u) ∼ X (k)

q (u). Then we get the same
expression of the quasiprobability of work of Eq. (B32).

1. Sudden quench

Let us consider a sudden quench, i.e., the limit τ → 0, so
Uτ,0 = I . For the Gibbs state, we get X (k)

q (u) = X (k),th
q (u) with

X (k),th
q (u) = 2(cos((u − iβ )εk ) cos(uε′

k ) + sin((u − iβ )εk )

× sin(uε′
k )d̂k · d̂ ′

k + 1) (B36)

by noting that

〈0̃k 0̃−k|d̂ ′
k · �τ |0̃k 0̃−k〉 = Tr{d̂ ′

k · �τ |0̃k 0̃−k〉〈0̃k 0̃−k|}
= 1

2 Tr{d̂ ′
k · �τ d̂k · �τ }

= d̂k · d̂ ′
k (B37)

since d̂k · �τ = |0̃k 0̃−k〉〈0̃k 0̃−k| − |1̃k 1̃−k〉〈1̃k 1̃−k|. On the other
hand, for the coherent Gibbs state we get

X (k)
q (u) = X (k),th

q (u) + X (k),coh
q (u). (B38)

To evaluate the coherent contribution X (k),coh
q (u), we note that

〈0̃k 0̃−k|d̂ ′
k · �τ |1̃k 1̃−k〉 = Tr{d̂k · �τ d̂ ′

k · �τ |1̃k 1̃−k〉〈0̃k 0̃−k|}
= iTr{(d̂k × d̂ ′

k ) · �τ |1̃k 1̃−k〉〈0̃k 0̃−k|},
(B39)

then

〈0̃k 0̃−k|d̂ ′
k · �τ |1̃k 1̃−k〉 = i(d̂k × d̂ ′

k )x〈0̃k 0̃−k|τ1|1̃k 1̃−k〉, (B40)

since d̂k × d̂ ′
k has only an x component. Since

〈0̃k 0̃−k|τ1|1̃k 1̃−k〉 = 1, we get

〈0̃k 0̃−k|d̂ ′
k · �τ |1̃k 1̃−k〉 = i(d̂k × d̂ ′

k )x. (B41)

Thus, we get

X (k),coh
q (u) = −2i sin(uε′

k ) sin(u(2q − 1)εk )(d̂k × d̂ ′
k )x.

(B42)

For φ j �= 0, we have |
k〉 = (|0̃k〉 + eiφk− βεk
2 |1̃k〉) ⊗

(e
βεk

2 |0̃−k〉 + eiφ−k |1̃−k〉), with φ−k = φk . Thus, by considering
the corresponding state |
k (q)〉, the only effect of phase φk is
the shift uqεk → uqεk − φk , then we get

X (k),coh
q (u) = −2i sin(uε′

k ) sin(u(2q − 1)εk − 2φk )(d̂k × d̂ ′
k )x.

(B43)

2. Arbitrary quench

In the end, let us consider an arbitrary quench. The
time evolution acts as a rotation of the vector �dk (λτ ),
so U †

τ,0d̂k (λτ ) · �τUτ,0 = d̂ ′
k (λτ ) · �τ , where for brevity d̂ ′

k =
d̂ ′

k (λτ ). Then, X (k),th
q (u) is still given by Eq. (B36) with the

new vector d̂ ′
k , and if d̂k × d̂ ′

k also has a nonzero y component,
then

〈0̃k 0̃−k|d̂ ′
k · �τ |1̃k 1̃−k〉 = i(d̂k × d̂ ′

k )x + (d̂k × d̂ ′
k )y, (B44)

from which the coherence contribution has a further term and
reads

X (k),coh
q (u) = −2i sin(uε′

k )(sin(u(2q − 1)εk − 2φk )(d̂k × d̂ ′
k )x

+ cos(u(2q − 1)εk − 2φk )(d̂k × d̂ ′
k )y) (B45)

3. Histogram

To determinate the quasiprobability distribution of work
from the characteristic function χq(u), we consider the inter-
vals In = [wn − �w/2,wn + �w/2], where wn = n�w with
an n integer. Then, we can determinate the histogram by
calculating the probability

pn =
∫

In

pq(w)dw = �w

2π

∫
χq(u)sinc

(
u�w

2

)
e−iuwn du,

(B46)

where sinc(x) = sin(x)/x. To calculate the integral, we can
focus on the interval [−2πK/�w, 2πK/�w] with K large
enough. Of course, pq(wn) ≈ pn/�w for �w small enough.

APPENDIX C: SUPERPOSITION OF TWO
COHERENT GIBBS STATES

For simplicity, we consider the fermionic Hamiltonian H+.
We focus on the initial state

|
〉 = a|
+
G,1〉 + b|
+

G,2〉, (C1)
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where |
+
G,i〉 is the coherent Gibbs state

|
+
G,i〉 = ⊗k>0

|
i,k〉
Zi,k

, (C2)

where

|
i,k〉 = (|0̃k〉 + eiφi,k− βiεk
2 |1̃k〉

) ⊗ (
e

βiεk
2 |0̃−k〉 + eiφi,−k |1̃−k〉

)
.

(C3)

We will get

X +
q (u) = |a|2

∏
k>0

X (k)
q,1 (u)

Z2
1,k

+ |b|2
∏
k>0

X (k)
q,2 (u)

Z2
2,k

+ ab∗ ∏
k>0

Y (k)
q,1 (u)

Z1,kZ2,k
+ a∗b

∏
k>0

Y (k)
q,2 (u)

Z1,kZ2,k
, (C4)

where

X (k)
q,i (u) = 〈
i,k (q − 1)|U †

τ,0eiuHk (λτ )Uτ,0|
i,k (q)〉, (C5)

Y (k)
q,1 (u) = 〈
2,k (q − 1)|U †

τ,0eiuHk (λτ )Uτ,0|
1,k (q)〉, (C6)

Y (k)
q,2 (u) = 〈
1,k (q − 1)|U †

τ,0eiuHk (λτ )Uτ,0|
2,k (q)〉, (C7)

with

|
i,k〉 = (|0̃k〉 + e−iuqεk+iφi,k− βiεk
2 |1̃k〉

)
⊗ (

eiuqεk+ βiεk
2 |0̃−k〉 + eiφi,−k |1̃−k〉

)
. (C8)

Then we can write

X +
q (u) = |a|2eLg1,q (u) + |b|2eLg2,q (u)

+ ab∗eLy1,q (u) + a∗beLy2,q (u), (C9)

where

gi,q(u) = 1

2π

∫ π

0
ln

(
X (k)

q,i (u)

Z2
i,k

)
dk, (C10)

yi,q(u) = 1

2π

∫ π

0
ln

(
Y (k)

q,i (u)

Z1,kZ2,k

)
dk. (C11)

As L → ∞, the Fourier transform of eLyi,q (u) gives

p′
i,q(w) ∼ eLyi,q (0)√

2πx(2)
i,q

e
− (w−x(1)

i,q )2

2x(2)
i,q , (C12)

where x(1)
i,q = −i∂uyi,q(0)L and x(2)

i,q = −∂2
u yi,q(0)L. For q =

1/2, we get x(i)
2,1/2 = (x(i)

1,1/2)∗, then the quasiprobability dis-
tribution of work reads

p1/2(w) ∼ |a|2 e
− (w−w̄1 )2

2v1,q√
2πv1,q

+ |b|2 e
− (w−w̄2 )2

2v2,q√
2πv2,q

+ 2Re(ab∗ p′
1,1/2(w)), (C13)

where w̄i = −i∂ugi,q(0)L and vi,q = −∂2
u gi,q(0)L, so p1/2(w)

can take negative values. However, since the real part of yi,q(0)
is negative, p′

i,q(w) tends exponentially to zero in the thermo-
dynamic limit and p1/2(w) is the convex combination of two
Gaussian probability distributions, which is positive.

1. Generalized coherent Gibbs state

For an arbitrary quench from the initial coherent Gibbs
state, from Eq. (B45), we get

rq = (2q − 1)L

2π

∫ π

0

εkε
′
k

cosh2(βεk/2)
(cos(2φk )(d̂k × d̂ ′

k )x

+ sin(2φk )(d̂k × d̂ ′
k )y)dk, (C14)

which is zero for q = 1/2. Let us focus on an initial state of
the form

|
+〉 = ⊗k>0|
k〉, (C15)

which generalizes the coherent Gibbs state |
+
G 〉, where we

have defined the states

|
k〉 =
∑

nk ,n−k

cnkn−k |ñk ñ−k〉. (C16)

This implies that Xq(u) has the form in Eq. (33) with Zk = 1,
where X (k)

q (u) can be calculated from Eq. (B16) with

|
k (q)〉 = c00eiuqεk |0̃k 0̃−k〉 + c11e−iuqεk |1̃k 1̃−k〉
+ c01|0̃k 1̃−k〉 + c10|1̃k 0̃−k〉. (C17)

Then, the representation for q = 1/2 will be noncontextual.
Let us show explicitly that r1/2 = 0. X (k)

q (u) reads

X (k)
q (u) = X (k)

no (u) + δX (k)
q (u), (C18)

where X (k)
no (u) does not depend on q, and

δX (k)
q (u) = −2i sin(uε′

k )Re
(
c∗

00c11e−iu(2q−1)εk
(
i(d̂k × d̂ ′

k )x

+ (d̂k × d̂ ′
k )y

))
. (C19)

Then, ∂2
u δX (k)

q (0) is imaginary and ∂2
u δX (k)

q (0) ∝ (1 − 2q).
Similarly, it is easy to see that ∂2

u X (k)
no (0) is real. Furthermore,

∂uX (k)
q (0) is imaginary, then rq is obtained by calculating

an integral with respect to k of ∂2
u δX (k)

q (0), so we get rq ∝
(1 − 2q), which is zero for q = 1/2. In the end, we note that a
linear combination of states of the form in Eq. (C15) will give
for q = 1/2 a convex combination of Gaussian probability
distributions, which is positive.

APPENDIX D: NEGATIVITY

To prove that N = 1 implies, in general, that pq(w) � 0,
we can proceed ad absurdum. We write pq(w) = p(w) +
δp(w), where p(w)� 0,

∫
p(w)dw= 1 and

∫
δp(w)dw= 0.

If pq(w) � 0 for w ∈ I and pq(w) < 0 for w ∈ I ′, then
δp(w) < 0 for w ∈ I ′ and I = I+ ∪ I− such that δp(w) � 0
for w ∈ I+ and δp(w) < 0 for w ∈ I−. Then, from N = 1, we
get the condition p(I )− p(I ′)+ δp(I+)+ δp(I−)− δp(I ′) = 1,
where p(I ) = ∫

I p(w)dw and so on, thus we get the system

p(I ) + p(I ′) = 1

p(I ) � 0

p(I ′) � 0

δp(I+) + δp(I−) + δp(I ′) = 0

δp(I+) � 0

δp(I−) < 0

δp(I ′) < 0

p(I ) − p(I ′) + δp(I+) + δp(I−) − δp(I ′) = 1, (D1)
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which admits as solution p(w) such that 0 � p(I ) < 1
and p(I ′) = 1 − p(I ) and δp(w) such that δp(I+) > (1 −
p(I ) + p(I ′))/2, δp(I−) = (1 − 2δp(I+) − p(I ) + p(I ′))/2
and δp(I ′) = −δp(I−) − δp(I+). Then δp(I ′) = −p(I ′), so
pq(I ′) = 0, which implies that pq(w) is non-negative.

APPENDIX E: GENERAL QUADRATIC
FORM IN FERMI OPERATORS

We consider the initial Hamiltonian

H =
∑
i, j

(
a†

i Ai ja j + 1

2
(a†

i Bi ja
†
j + H.c.)

)
− 1

2

∑
i

Aii,

(E1)

where A and B are real matrices such that AT = A and BT =
−B. The Hamiltonian can be diagonalized by performing the
transformation

αk =
∑

i

gkiai + hkia
†
i , (E2)

so

H =
∑

k

εk

(
α

†
k αk − 1

2

)
. (E3)

In detail, the matrices g and h are such that φ = g + h and
ψ = g − h, where φ and ψ are orthogonal matrices such that
ψT εφ = A + B, where ε is the diagonal matrix with entries
εk . The final time-evolved Hamiltonian is H ′ with matrices A′

and B′, and will be diagonalized by performing the transfor-
mation

α′
k =

∑
i

g′
kiai + h′

kia
†
i (E4)

so

H ′ =
∑

k

ε′
k

(
α

′†
k α′

k − 1

2

)
. (E5)

Let us proceed with our investigation by considering the
initial state

|
1〉 = e
β

4

∑
k εk

√
Z1

exp

(∑
k

e− βεk
2 α

†
k

)
|0̃〉. (E6)

We note that for β → ∞ we get Z1 ∼ Z = ∏
k 2 cosh(βεk/2)

and |
1〉 ∼ |
G〉. We aim to calculate

Xq(u) = 〈
1|e−iu(1−q)H eiuH ′
e−iuqH |
1〉. (E7)

We consider the vacuum state |0̃′〉 of the fermions α′
k , we get

the relation

|0̃〉 = Ke
1
2

∑
k,k′ Gkk′α′†

k α
′†
k′ |0̃′〉, (E8)

where G is solution of the equation g̃G + h̃ = 0, where g̃ =
gg′T + hh′T and h̃ = gh′T + hg′T . In particular,

αk =
∑

k′
g̃kk′α′

k′ + h̃kk′α
′†
k′ . (E9)

We get

Xq(u) = |K|2 e(β+iu)
∑

k εk/2−iu
∑

k ε′
k/2

Z1
〈0̃′| exp

(
− 1

2

∑
k,k′

Gkk′α′
kα

′
k′

)
exp

( ∑
k

ukα
′
k + vkα

′†
k

)

× exp

(∑
k

u′
kα

′†
k + v′

kα
′
k

)
exp

(
1

2

∑
k,k′

G̃kk′α
′†
k α

′†
k′

)
|0̃′〉, (E10)

where G̃kk′ = Gkk′eiu(ε′
k+ε′

k′ ) and

uk =
∑

k′
e−(β/2+iu(1−q))εk′ g̃k′k, (E11)

vk =
∑

k′
e−(β/2+iu(1−q))εk′ h̃k′k, (E12)

u′
k =

∑
k′

e−(β/2+iuq)εk′ +iuε′
k g̃k′k, (E13)

v′
k =

∑
k′

e−(β/2+iuq)εk′ −iuε′
k h̃k′k . (E14)

We note that

exp

(∑
k

ukα
′
k + vkα

′†
k

)
exp

( ∑
k

u′
kα

′†
k + v′

kα
′
k

)
= 1

+
∑
k,k′

uku′
k′α

′
kα

′†
k′ + ukv

′
k′α

′
kα

′
k′ + vku′

k′α
′†
k α

′†
k′ − v′

kvk′α′
kα

′†
k′ +

∑
k

vkv
′
k + · · · , (E15)

where we have omitted terms linear in the Fermi operators. Then, the overlap in Eq. (E10) can be easily calculated by using the
coherent states |ξ 〉 such that α′

k|ξ 〉 = ξk|ξ 〉. By using the identity
∫

dξ ∗dξe−∑
k ξ∗

k ξk |ξ 〉〈ξ | = 1, we get

Xq(u) ∼ |K|2 e(β+iu)
∑

k εk/2−iu
∑

k ε′
k/2

Z1

[ ∫
dξ ∗dξ exp

(
− 1

2

∑
k,k′

Gkk′ξkξk′ +
∑
k,k′

(uku′
k′ξkξ

∗
k′ + ukv

′
k′ξkξk′
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+ vku′
k′ξ

∗
k ξ ∗

k′ − v′
kvk′ξkξ

∗
k′ ) −

∑
k

ξ ∗
k ξk + 1

2

∑
k,k′

G̃kk′ξ ∗
k ξ ∗

k′

)

+
∑

k

vkv
′
k

∫
dξ ∗dξ exp

(
− 1

2

∑
k,k′

Gkk′ −
∑

k

ξ ∗
k ξk + 1

2

∑
k,k′

G̃kk′ξ ∗
k ξ ∗

k′

)]
. (E16)

By performing the integral, we get

Xq(u) ∼ Ceiu
∑

k (εk−ε′
k )/2

(√
det(�(u)) +

√
det(�0(u))

∑
k

vkv
′
k

)
, (E17)

where

�0(u) =
(

G −I
I −G̃

)
(E18)

and

�(u) =
(

G − M1 −I − M2

I + MT
2 −G̃ − M3

)
= �0(u) + M(u), (E19)

where M1,kk′ = ukv
′
k′ − uk′v′

k , M2,kk′ = uku′
k′ − v′

kvk′ , and M3,kk′ = vku′
k′ − vk′u′

k . The constant C can be determined by requiring
that Xq(0) = 1. The exact expression of Xq(u) can be obtained by expanding

√
det(�(u)) at the first order in M(u), i.e.,

Xq(u) = Ceiu
∑

k (εk−ε′
k )/2

√
det(�0(u))

(
1 + 1

2
Tr

{
�−1

0 (u)M(u)
} +

∑
k

vkv
′
k

)
. (E20)

Concerning the coherent Gibbs state, for low temperatures β → ∞ we get

|
G〉 ∼ e
β

4

∑
k εk

√
Z

(
1 +

∑
k

e− βεk
2 α

†
k +

∑
k>k′

e− β(εk +εk′ )

2 α
†
k α

†
k′

)
|0̃〉. (E21)

We define

ukq = e−(β/2+iu(1−q))εk g̃kq, (E22)

vkq = e−(β/2+iu(1−q))εk h̃kq, (E23)

u′
kq = e−(β/2+iuq)εk+iuε′

q g̃kq, (E24)

v′
kq = e−(β/2+iuq)εk−iuε′

q h̃kq, (E25)

so uk = ∑
k′ uk′k and so on, then the matrices V1, V2, V3, V ′

1 , V ′
2 , and V ′

3 with elements V1,qq′ = ∑
k,k′ sk,k′ukquk′q′ , V2,qq′ =∑

k,k′ sk,k′ukqvk′q′ , V3,qq′ = ∑
k,k′ sk,k′vkqvk′q′ , V ′

1,qq′ = ∑
k,k′ sk,k′v′

kqv
′
k′q′ , V ′

2,qq′ = ∑
k,k′ sk,k′v′

kqu′
k′q′ , V ′

3,qq′ = ∑
k,k′ sk,k′u′

kqu′
k′q′ ,

where sk,k′ = 1 if k > k′, sk,k′ = −1 if k < k′ and sk,k = 0. Thus, by proceeding similarly, we get at second order

Xq(u) ∼ Ceiu
∑

k (εk−ε′
k )/2

√
det(�0(u))

(
1 + 1

2
Tr

{
�−1

0 (u)M(u)
} +

∑
k

vkv
′
k + 1

2
Tr

{
�−1

0 (u)(V (u) − V ′(u))
} + 1

2
Tr{V2 − V ′

2}
)

,

(E26)

where we have defined the matrices

V (u) =
(

V1 V2

−V T
2 V3

)
, V ′(u) =

(
V ′

1 V ′
2

−V ′T
2 V ′

3

)
. (E27)

We note that for an initial state that is the ground state of H , we get the characteristic function

χ (0)(u) = eiu
∑

k (εk−ε′
k )/2

√
det(�0(u))

det(�0(0))
, (E28)

which is obtained from Xq(u) in the limit β → ∞. Alternatively, by considering θT = (ξT , ξ ∗T ), Eq. (E20) can be derived with
the help of the identity ∫

dθθiθ je
− 1

2 θT �0θ = −1

2
Tr

{
�−1

0 Xi j
}√

det(�0), (E29)
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where Xi j = |i〉〈 j| − | j〉〈i|, and |i〉 is the unit vector with only the ith component which is nonzero. Actually,
√

det(�0) is the
Pfaffian of �0. To prove it, we note that∫

dθθiθ je
− 1

2 θT �0θ = 1

ε

( ∫
dθ (1 + εθiθ j )e

− 1
2 θT �0θ −

∫
dθe− 1

2 θT �0θ

)
. (E30)

The second integral is
∫

dθe− 1
2 θT �0θ = √

det(�0). By considering the limit ε → 0, we get∫
dθθiθ je

− 1
2 θT �0θ ∼ 1

ε

(∫
dθe

ε
2 (θiθ j−θ jθi )e− 1

2 θT �0θ −
√

det(�0)

)
, (E31)

then ∫
dθθiθ je

− 1
2 θT �0θ ∼ 1

ε
(
√

det(�0 − εXi j ) −
√

det(�0)); (E32)

by evaluating the limit ε → 0, we get Eq. (E29). Similarly, we have the identity∫
dθθiθ jθkθl e

− 1
2 θT �0θ = −1

2
Tr

{
�−1

0 Xi j�
−1
0 Xkl

}√
det(�0) + 1

4
Tr

{
�−1

0 Xi j
}
Tr

{
�−1

0 Xkl
}√

det(�0). (E33)

To prove it, we consider that∫
dθθiθ jθkθl e

− 1
2 θT �0θ = 1

ε

( ∫
dθθiθ j (1 + εθkθl )e

− 1
2 θT �0θ −

∫
dθθiθ je

− 1
2 θT �0θ

)
, (E34)

which, in the limit ε → 0 can be evaluated with the help of the identity in Eq. (E29). We get∫
dθθiθ jθkθl e

− 1
2 θT �0θ ∼ 1

2ε

(
Tr

{
�−1

0 Xi j
}√

det(�0) − Tr{(�0 − εXkl )
−1Xi j}

√
det(�0 − εXkl )

)
; (E35)

by evaluating the limit ε → 0, we get Eq. (E33). In the end, we consider the initial state in Eq. (E21), which is

|
2〉 = e
β

4

∑
k εk

√
Z2

⎛
⎝1 +

∑
k

e− βεk
2 α

†
k + 1

2

∑
k,k′

sk,k′e− β(εk +εk′ )

2 α
†
k α

†
k′

⎞
⎠|0̃〉. (E36)

By using the identities in Eqs. (E29) and (E33), we get

Xq(u) = Ceiu
∑

k (εk−ε′
k )/2

√
det(�0(u))

(
1 + 1

2
Tr

{
�−1

0 (u)M(u)
}

+
∑

k

vkv
′
k + 1

2
Tr

{
�−1

0 (u)(V (u) − V ′(u))
}

+ 1

2
Tr{V2 − V ′

2} − 1

4
Tr{V2}Tr{V ′

2}

− 1

4
Tr{V2}Tr

{
�−1

0 (u)V ′(u)
}

− 1

4
Tr{V ′

2}Tr
{
�−1

0 (u)V (u)
} − 1

2
Tr{V3V

′
1}

+1

2
Tr

{
�−1

0 (u)V ′′(u)
} + 1

2
Tr

{
�−1

0 (u)V (u)�−1
0 (u)V ′(u)

}
−1

4
Tr

{
�−1

0 (u)V (u)
}
Tr

{
�−1

0 (u)V ′(u)
})

, (E37)

where we have defined

V ′′(u) =
(

V2V ′
1 + V ′

1V T
2 V2V ′

2 − V ′
1V3

V3V ′
1 − V ′T

2 V T
2 V3V ′

2 + V ′T
2 V3

)
. (E38)

If we introduce a relative phase φk , we have to multiply ukq and vkq by e−iφk and u′
kq and v′

kq by eiφk .
If A and B are complex matrices, we get g and h complex. In this case, we have the same formulas, with g̃ = gg′† + hh′T and

h̃ = gh′T + hg′†, and in �0 in Eq. (E18), we have G∗ instead of G, and in uk , vk , ukq, and vkq we have g̃∗ and h̃∗ instead of g̃
and h̃.
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APPENDIX F: INITIAL QUANTUM COHERENCE

We consider the initial state ρ0 = η|
G(0)〉〈
G(0)| +
(1 − η)ρG(0), and we get

〈eitC〉 = Tr{ρ0ei ln ρ0 ei ln ρG(0)t } = Tr
{
ρ1+it

0

}
Dit (F1)

since ρG(0) = I/D is the completely mixed state. Then, since
the eigenvalues of ρ0 are η + (1 − η)/D and (1 − η)/D which
is D − 1-fold degenerate, by evaluating the trace we get

〈eitC〉 = Dit ((η + (1 − η)/D)1+it + (D − 1)((1−η)/D)1+it ),

(F2)

which is Eq. (61). Concerning 〈eiuw+itC〉, it can be easily
derived from the joint quasiprobability distribution of the
work and coherence given in Ref. [13]. By doing a symmetric
choice of the parameters q = q′ = 1/2 we get Eq. (62), from
which

−i∂uG(0, t ) = −i∂u ln〈eitC+iuw〉|u=0

= Tr{ρ0ei ln ρ0t (H ′ − H )}
Tr{ρ0ei ln ρ0t } , (F3)

and by proceeding similarly we get Eq. (63).

APPENDIX G: MEASURING THE
CHARACTERISTIC FUNCTION

The characteristic function can be measured as observed
in Ref. [13]. Here we note the detector can be a qubit in
the initial state ρD(ti ) with Hamiltonian HD = ω|e〉〈e|. We
consider the interactions with the system described by HI =
−δe|e〉〈e| − δg|g〉〈g| and H ′

I = −δ′
e|e〉〈e| − δ′

g|g〉〈g|, where |g〉
is the ground state of the qubit and |e〉 is the excited state. The
total system is in the initial state ρD(ti ) ⊗ ρ0 at the initial time
ti = −tD. In the time interval (−tD, 0), the time evolution is
generated by the total Hamiltonian Htot = H (λ0) + HD + HI .
Then, in the time interval (0, τ ), the qubit and the system do
not interact and the quench is performed. Finally, in the time
interval (τ, τ + t ′

D), the time evolution is generated by the
total Hamiltonian H ′

tot = H (λτ ) + HD + H ′
I . The coherence of

the qubit at the final time t f = τ + t ′
D reads

〈e|ρD(t f )|g〉 = 〈e|ρD(ti)|g〉e−iω(t f −ti )Tr{e−i(1−δe )tDH (λ0 )ρ0

× ei(1−δg)tDH (λ0 )U †
τ,0ei(δ′

e−δ′
g)t ′

DH (λτ )Uτ,0},
(G1)

from which we can determine Xq(u).

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[3] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M.
Rigol, Rev. Mod. Phys. 83, 1405 (2011).

[4] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
Adv. Phys. 65, 239 (2016).

[5] J. Dziarmaga, Adv. Phys. 59, 1063 (2010).
[6] J. Goold, F. Plastina, A. Gambassi, and A. Silva, in Thermo-

dynamics in the Quantum Regime: Fundamental Aspects and
New Directions, edited by F. Binder, L. A. Correa, C. Gogolin,
J. Anders, and G. Adesso, Fundamental Theories of Physics
Vol. 195 (Springer, Cham, 2019), pp. 317–336.

[7] P. Talkner, E. Lutz, and P. Hänggi, Phys. Rev. E 75, 050102(R)
(2007).

[8] M. Perarnau-Llobet, E. Bäumer, K. V. Hovhannisyan, M.
Huber, and A. Acin, Phys. Rev. Lett. 118, 070601 (2017).

[9] M. Lostaglio, Phys. Rev. Lett. 120, 040602 (2018).
[10] E. Wigner, Phys. Rev. 40, 749 (1932).
[11] P. Solinas and S. Gasparinetti, Phys. Rev. E 92, 042150 (2015).
[12] A. E. Allahverdyan, Phys. Rev. E 90, 032137 (2014).
[13] G. Francica, Phys. Rev. E 105, 014101 (2022).
[14] G. Francica, Phys. Rev. E 106, 054129 (2022).
[15] B.-M. Xu, J. Zou, L.-S. Guo, and X.-M. Kong, Phys. Rev. A 97,

052122 (2018).

[16] María Díaz, G. Guarnieri, and M. Paternostro, Entropy 22, 1223
(2020).

[17] A. Gambassi and A. Silva, Phys. Rev. Lett. 109, 250602
(2012).

[18] S. Sotiriadis, A. Gambassi, and A. Silva, Phys. Rev. E 87,
052129 (2013).

[19] G. Perfetto, L. Piroli, and A. Gambassi, Phys. Rev. E 100,
032114 (2019).

[20] A. Silva, Phys. Rev. Lett. 101, 120603 (2008).
[21] R. Dorner, J. Goold, C. Cormick, M. Paternostro, and V. Vedral,

Phys. Rev. Lett. 109, 160601 (2012).
[22] L. Fusco, S. Pigeon, T. J. G. Apollaro, A. Xuereb, L. Mazzola,

M. Campisi, A. Ferraro, M. Paternostro, and G. De Chiara,
Phys. Rev. X 4, 031029 (2014).

[23] A. Russomanno, S. Sharma, A. Dutta, and G. E. Santoro, J. Stat.
Mech. (2015) P08030.

[24] N. O. Abeling and S. Kehrein, Phys. Rev. B 93, 104302 (2016).
[25] K. Zawadzki, A. Kiely, G. T. Landi, and S. Campbell,

Phys. Rev. A 107, 012209 (2023).
[26] Z. Fei and H. T. Quan, Phys. Rev. Res. 1, 033175 (2019).
[27] Q. Wang, D. Cao, and H. T. Quan, Phys. Rev. E 98, 022107

(2018).
[28] Z. Fei, N. Freitas, V. Cavina, H. T. Quan, and M. Esposito,

Phys. Rev. Lett. 124, 170603 (2020).
[29] R. W. Spekkens, Phys. Rev. Lett. 101, 020401 (2008).
[30] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

014106-15

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2010.514702
https://doi.org/10.1103/PhysRevE.75.050102
https://doi.org/10.1103/PhysRevLett.118.070601
https://doi.org/10.1103/PhysRevLett.120.040602
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRevE.92.042150
https://doi.org/10.1103/PhysRevE.90.032137
https://doi.org/10.1103/PhysRevE.105.014101
https://doi.org/10.1103/PhysRevE.106.054129
https://doi.org/10.1103/PhysRevA.97.052122
https://doi.org/10.3390/e22111223
https://doi.org/10.1103/PhysRevLett.109.250602
https://doi.org/10.1103/PhysRevE.87.052129
https://doi.org/10.1103/PhysRevE.100.032114
https://doi.org/10.1103/PhysRevLett.101.120603
https://doi.org/10.1103/PhysRevLett.109.160601
https://doi.org/10.1103/PhysRevX.4.031029
https://doi.org/10.1088/1742-5468/2015/08/P08030
https://doi.org/10.1103/PhysRevB.93.104302
https://doi.org/10.1103/PhysRevA.107.012209
https://doi.org/10.1103/PhysRevResearch.1.033175
https://doi.org/10.1103/PhysRevE.98.022107
https://doi.org/10.1103/PhysRevLett.124.170603
https://doi.org/10.1103/PhysRevLett.101.020401
https://doi.org/10.1103/PhysRevLett.78.2690

