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Inequality of avalanche sizes in models of fracture
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Prediction of an imminent catastrophic event in a driven disordered system is of paramount importance—from
the laboratory scale controlled fracture experiment to the largest scale of mechanical failure, i.e., earthquakes. It
has long been conjectured that the statistical regularities in the energy emission time series mirror the “health” of
such driven systems and hence have the potential for forecasting imminent catastrophe. Among other statistical
regularities, a measure of how unequal avalanche sizes are is potentially a crucial indicator of imminent failure.
The inequalities of avalanche sizes are quantified using inequality indices traditionally used in socioeconomic
systems: the Gini index g, the Hirsch index 4, and the Kolkata index k. It is shown analytically (for the mean-field
case) and numerically (for the non-mean-field case) with models of quasi-brittle materials that the indices show
universal behavior near the breaking points in such models and hence could serve as indicators of imminent

breakdown of stressed disordered systems.
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I. INTRODUCTION

When a solid is slowly loaded to its breaking point, it
goes through many instances of microscopic damage. Such
microscopic damage can grow with additional applied load,
interact via the stress field modification, and accumulate into a
macroscopic failure (for example, a shear plane in the case of
compression induced damage in quasi-brittle objects). How-
ever, all breaking events are not equally damaging. Indeed, if
we go by the acoustic energy signal S emitted in each event,
the size distribution of these signals P(S) usually has a fat
tail [P(S) ~ S7%], implying a very small number of events
account for most of the damage incurred [1,2]. This “damage
inequality” is reminiscent of inequalities observed in myriad
complex systems, including physical (from crackling noise [3]
in magnetic domain wall movements to the largest mechanical
failures during earthquakes [4]), sociological [5] (deaths in
armed conflicts, citations of papers), and economic (wealth
distribution) [6] systems. This fat-tail or power-law behavior
is often attributed to a critical point in the system that is
reached either through the fine tuning of an external parameter
or the system self-organizing to the critical point through a
slow drive [7].

It was empirically noted by Pareto in 1896 in his famous
80-20 law that 80% of wealth is accumulated by 20% of the
richest people. Since then, this observation was much broadly
applied, showing that in many socioeconomic systems 80%
of “successes” come from 20% of “attempts” [8]. Since then,
much has been achieved in studies on inequality, primarily
in socioeconomic systems, mostly because of the immense
adverse effect such inequalities could have in socioeconomic
contexts [9]. A very recent interest is to understand inequality
in the responses of physical systems, particularly when such
systems are near a critical point [10]. The main goal in such
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a scenario is to forecast imminent catastrophe (or distance
to the critical point) in such systems. For example, it was
shown that in models of fracture, the growing inequality of
avalanche sizes shows universal behavior near the critical
point [10]. It was then shown that with a supervised machine
learning algorithm, measures of inequality of avalanche sizes
were the most important attribute for predicting the imminent
failure point [11] in models of quasi-brittle materials. It was
also shown subsequently that a family of self-organized crit-
ical (SOC) systems (e.g., Bak-Tang-Wiesenfeld and Manna
sandpile models, among others) also show universal behav-
ior in terms of the inequality measures of their responses
(avalanches) [12]. Along those lines, extensive data analysis
showed that in a wide variety of socioeconomic systems that
have been conjectured to be in self-organized critical states,
the measures of inequalities in such systems exhibit behavior
similar to that seen in SOC models. Such observations under-
line the importance of the inequality measures of responses
of a system near its critical point for uncovering the formal
link between such measures and critical phenomena [13] and
also to make use of such a link for the practical purposes of
forecasting an imminent critical point in systems where such
a point could have a catastrophic consequence (for example,
in fractures and earthquakes).

In this work, we study two generic models of fracture in
disordered quasi-brittle solids, the fiber bundle model (FBM)
and the random fuse model (RFM), in terms of the inequality
of their response functions (avalanche time series) as they are
stressed to their breaking points. Particularly, in the mean-
field FBM, we analytically calculate the inequality indices and
their scaling behavior near the critical point, thereby illustrat-
ing the previously numerically observed universal behavior.
We also study the more realistic non-mean-field limit of the
FBM and the RFM and show numerically that similar scalings
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are observed (with different exponent values) in such cases as
well.

This paper is organized as follows: first, we define
the indices that were used to quantify the inequalities
in the avalanche statistics of these models; then we describe
the models and their simulations. We then go on to present
the analytical calculations for the mean-field case and com-
pare them with previous numerical studies. Then we give the
numerical results for the non-mean-field case of the FBM and
the RFM. Finally, we discuss the results and their implications
for forecasting imminent failure in these models and poten-
tially in experiments and conclude.

II. QUANTIFICATION OF THE INEQUALITY
OF AVALANCHES: THE INEQUALITY INDICES

Inequalities in socioeconomic contexts have been quanti-
fied using several indices, for example, the Gini index g [14]
(for wealth), the Hirsch index 4 (for citations) [15], and, more
recently, the Kolkata index k [16]. The role of these indices
in parametrizing socioeconomic inequality has expanded over
the past few decades. These inequality measures are defined
through the Lorenz curve. When a time series is arranged in
ascending order of the size of the values in the series, the
Lorenz function L(p) gives the cumulative fraction of the total
“mass” acquired by the p fraction of the smallest events. If all
the values are equal in size, then the Lorenz function will be
a diagonal line from the origin to (1,1), known as the equality
line. But, in general, these values are not equal in size, so the
Lorenz function is nonlinear, always staying under the equal-
ity line and increasing monotonically from L(p = 0) =0 to
L(p = 1) = 1. The Gini index is then given by twice the area
between the Lorenz curve and the equality line, where g = 0
implies perfect equality and g = 1 indicates extreme inequal-
ity. The crossing point of the opposite diagonal line with the
Lorenz curve gives the value of the Kolkata index k, which
says that the (1 — k) fraction of the largest events accounts
for the k fraction of the total events, where kK = 0.5 indicates
perfect equality and £ = 1 represents extreme inequality. The
Hirsch index is generally calculated in the case of citations
of individual scientists or scholars, but the definition can be
expanded to measure the A-index of any series. The /-index is
then the highest number % such that / events each have at least
a size of h. For a more detailed discussion on the definitions
of these measures, see Ref. [13].

In this work, we will measure the inequality of the time
series of avalanches recorded for slowly loaded disordered
materials, represented by generic threshold activated models.
Therefore, for our purposes, the Lorenz function L(p) repre-
sents the fraction of the breaking events resulting from the
smallest p fraction of avalanches. The other definitions follow
the same line. We will show how the inequalities grow as the
system gradually approaches the catastrophic failure points.
Most importantly, we will monitor the values gy, kr, and Ay
that the inequality indices take just prior to the catastrophic
breakdown. We are interested in the universality of these
values and also the finite size and off-critical scaling behavior
these measures show, particularly in the context relevant to
forecasting an imminent failure.

III. MODELS AND METHODS

As mentioned before, in this work we consider two generic
models of fracture: the fiber bundle model [17,18] and the
random fuse model [19-21]. In the FBM, an ensemble of N
linear elastic fibers which have different individual breaking
thresholds is considered. When a load is applied to all the
fibers, some of the weak fibers fail, and the load carried by
those fibers is redistributed among the remaining ones, which
might in turn fail, leading to an avalanche event. At a critical
value of the load, the entire system collapses. In the RFM,
an ensemble of electrical fuses is arranged in a network (say,
a square lattice). Each fuse has a failure threshold, beyond
which it burns out. When a voltage difference is applied across
the system (say, the two ends of a square lattice), the weaker
fuses are burned out, requiring the current to be diverted
through other paths, which might in turn cause other fuses to
burn out, leading to an avalanche event. The modification in
the flow of current due to burnt-out fuses mimics the mod-
ification of the stress field in an elastic solid due to local
damage. Both of these models have been very well studied
in the literature from various viewpoints of applications of
fracture in disordered systems [22,23] and mimic many ex-
perimentally observed features, such as power-law scaling of
avalanches (see, e.g., [2]) and nonlinear stress-strain relations
(see, e.g., [24]).

Finding an indication of the imminent failure in these
models without using detailed information regarding the in-
dividual failure thresholds is therefore a long-standing crucial
issue. This problem has been approached in various different
ways, including changes in the avalanche size distribution
exponent prior to failure [25] and nonmonotonic behavior of
the elastic energy stored in the system [26]. However, here we
study the behavior of the inequality indices, which have shown
promising indications as precursory measures of imminent
breakdown [11].

A. Simulation methods

While a mean-field limit of the FBM is analytically
tractable, more realistic versions of the FBM and also the
RFM are not. Those limits are accessed through numerical
simulations. Therefore, here we describe the simulation meth-
ods for the two models, with which the avalanche time series
could be obtained. The inequality indices are then measured
using those time series. The codes used to produce the simu-
lation results are available in Ref. [27].

1. Simulating FBM

In the FBM, a large number of parallel fibers are connected
between two horizontal plates. The top plate with hanging
fibers is rigid, and the rigidity of the lower plate determines
the interaction range of the model. All the fibers are assumed
here to have identical elastic constants but have different fail-
ure thresholds. Here the failure thresholds of the fibers are
randomly assigned from a uniform distribution between 0 and
1. When a load is applied to the system, the weakest fibers fail
irreversibly, and the load of the broken fibers is redistributed to
the remaining intact fibers. The increased load on the surviv-
ing fibers then may cause more failures, and this process will
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go on until the remaining fibers are strong enough to hold the
extra load or the whole bundle collapses. The external load is
kept constant throughout the redistribution process, and then it
is increased to initiate the dynamics again after the dynamics
stops. The number of fibers breaking between two successive
load increments is called an avalanche. The redistribution of
the load mentioned above depends on the elastic properties
of the lower plate. The two cases of load redistribution are
equal load sharing (ELS) and local load sharing (LLS). In
ELS, when the lower plate is absolutely rigid, the load of
the broken fiber is equally redistributed among all surviving
fibers; hence, it is the mean-field limit. In LLS, when the
lower plate deforms under loading, a higher fraction of the
load of the broken fiber is carried by the surviving neighbors
that are closer to the broken fiber. The extreme case is nearest
neighbor load sharing. But long-range (power-law) load shar-
ing has also been studied before [28]. Here we redistribute
the load of the broken fiber between R surviving neighbors
on either side (see, e.g., [29]) when the fibers are arranged in
a one-dimensional lattice of length L. Clearly, R = 1 is the
nearest neighbor load sharing, and R ~ L is the ELS limit (in
fact, the ELS limit is reached much earlier [30]).

Here we study both the mean-field limit (ELS) and the
local load sharing limit with finite values of R. We mention
the respective cases in the results as appropriate.

2. Simulating RFM

The random fuse network model that we consider here is
defined on a two-dimensional tilted square lattice of linear
size L with periodic boundary conditions along the horizontal
direction. A potential difference is applied along the vertical
direction between the two opposite sides of the lattice. Each
bond i representing an Ohmic resistor with unit conductance
carries electrical current i; until it burns out irreversibly at
a threshold value b; of its current, and then it becomes an
insulator. The thresholds values {b;} are selected randomly
and independently from a power-law distribution: p(b) ~ b~",
bounded between 10~# and 10°. This is a generic form of
distribution with a decaying power-law tail that has been
considered widely for modeling fractures of heterogeneous
materials with varying degrees of disorder [29,31-33].

Initially, all the bonds are intact, and the applied voltage
difference V is raised quasi-statically from zero. The spe-
cific geometry of our lattice ensures that every bond initially
carries the same amount of current. Therefore, the breaking
process initiates when the current through the “weakest bond”
in the system reaches its breaking threshold at V =V, =
(L — 1) x min{b;}. Subsequently, the bond burns out, and it
is irreversibly removed. The new current distribution is then
determined by keeping the external voltage difference fixed
at V = V). This may initiate a sequence of bond burning.
At this stage, all the bonds carrying currents higher than
their respective threshold values are removed simultaneously,
and again, the current distribution is calculated. Numerically,
to determine the current distribution, a set of Kirchhoff’s
equations is iteratively solved using the conjugate gradient
method with an accuracy of 10~!2 [34]. The technical details
of the method and the convergence criteria that we followed
are described in Ref. [34]. In this way, the breaking process

continues until a stable state is reached when the current
through all the remaining intact bonds is lower than their
respective breaking thresholds. This completes an avalanche.
The largest ratio between the current and threshold, i.e.,
max(i;/b;), is then calculated for all intact bonds i to deter-
mine the next weakest bond to be burned out and removed.
This initiates a new avalanche. Accordingly, the external volt-
age difference is raised.

In this voltage-controlled setting, the breaking process
stops completely when a final crack comprising burnt-out
bonds wraps around the lattice in a direction transverse to the
applied potential difference; that is, no current flows through
the system. The number of bonds that burn out between two
successive increments of the external voltage determines the
avalanche size.

Note that at an early stage of the breaking process, the
intact bond with the minimum value of the breaking threshold
determines the weakest bond. However, depending on the
value of B, this is not generally true at the later stage. The cur-
rent concentration around the crack zone competes with the
local strength of the breaking thresholds. As a consequence,
the breaking events become correlated [21,31,35,36]. Cer-
tainly, the choice of B is important, as discussed in Ref. [31].
In the limit of weak disorder, i.e., 8 — 0, the width of the
distribution is so narrow that the fracture process becomes
localized and only a single crack grows in the system, while
it becomes percolation-like in the limit of strong disorder, i.e.,
B — oo. In the latter case, one gets only avalanches of size
unity and always burns out the intact bond with the smallest
breaking threshold on the conducting backbone. Importantly,
depending on L, the breaking dynamics is avalanche domi-
nated in the intermediate range of disorder [31,35].

We choose the value of § = 1 and consider system sizes
L =32, 64, 128, 256, and 512 such that the system remains
in the transition regime from weak to strong disorder where
avalanche dynamics can be observed.

IV. RESULTS

We now move on to describe the behavior of the inequality
indices g, h, and k for the avalanche statistics of the FBM and
the RFM. We first present the analytical results for the FBM
in the mean-field (ELS) limit and then go on to discuss the
local load sharing version and the RFM results.

A. Inequality indices for the FBM in the mean-field limit:
Analytical results

The FBM in the mean-field (ELS) limit is analytically
tractable [18]. The system size (initial number of fibers) is
denoted by N, and the applied load is W, making the load per
fiber 0 = W/N, with o, denoting the critical value at which
catastrophic breakdown happens. The fraction of intact fibers
at load per fiber o for a threshold distribution uniform in (0,1)
is given by

U(o) =U*(o.) + (0. — a)'/% (1)

The magnitude of the change in this fraction for a differen-
tial increment in the load per fiber value is therefore
dU(o) 1

T | = 30— (2)

S(o):‘
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This is a measure of avalanche size at o, when the load
increment is done by a fixed amount A = do at every step.
Note that while Egs. (1) and (2) are written for uniform
threshold distribution in (0,1), they are valid, up to a prefactor,
for a broad class of threshold distributions [18]. Therefore, all
the subsequent results are valid for the same class of threshold
distributions. For distributions that are outside this class and
can change the failure mode of the bundle from quasi-brittle
to an individual fiber breaking dynamics, the inequality esti-
mates for avalanches will also change, as we will see later on.

1. Terminal values of the inequality indices

The function in Eq. (2) is monotonically increasing up to
the failure point ¢ = o.; hence, the Lorenz function at the
point of collapse of the system is given by

P‘Tr(o_c _ O_)—I/Zdo,

L = 20 )
r(p) (0 — o) Pdo

3)

On simplification, this gives

Li(p)=1-1—=p, “4)

where o, cancels out, giving the function the robustness it
shows against various threshold distributions (see Fig. 11 in
Ref. [11]). The Gini index g at the point of collapse is then

1
1

g=1-2 Lipup=1. )
0 3

The Kolkata index k at the point of collapse can be found from

1— kf = L}‘(kf) =1 \/1_7]9(,’ (6)

which gives

k= ~ 0.618, 7)

V5-1
2
which is the inverse golden ratio. The other solution is irrele-

vant.

It is also known [18] that for a fiber bundle model with
an equal amount of load increase in each step, the number
of fibers broken due to the increase of load between mA and
(m + 1)A is given by

A
S = 8
) = A=A ®
where m =0,1,2,...,N/4A. This suggests a monotonic

increase in the avalanche size, which is strictly true for equis-
paced thresholds (given by i/N,i =1, ..., N), but the scaling
relations are valid for nonequispaced thresholds as well. To
find the Hirsch index 4, the avalanches should first be sorted
in descending order, which we do with the transformation

N o .
m — o —m, giving

N A A
VI-®GE-m 5

Then the value of the Hirsch index at the point of collapse can

be found from

A

Ahs

= hy, (10)

N
-|E

which gives
hy oc N'/3. (11)
This scaling is in contrast to the previously conjectured form

(see Ref. [10]). However, as we shall shortly see, this is
obeyed in accurate numerical simulations of the model.

2. Off-critical scaling

Now, if the loading is done up to o = go,, where g < 1,
then the Lorenz function can be found from

OP‘IUr(O,C _ 0_)71/2d0,

L(p,q) = =5 ) 12
(P ) T (. — o) Pds (12)
which gives
1—J1—
L(p,q) = 1——\/1quq’ (13)

which, in the limit ¢ = 1, gives Ly in Eq. (4). It is then possible
to calculate the evolution of g and k as the load is increased
using

1
glg)=1- 2/ L(p, ¢)dp, (14)
0
which gives, on simplification,

M -yT—q+6q-4

(15)
3q(1 — V1 —=¢q)
Similarly, the equation for k(g) reads
1 — 1 —k(q)q
g =1- ———=A (16)
1—-J1—gq

For any value of ¢, the value of k(g) can be numerically
estimated with arbitrary accuracy from the equation above.
In Fig. 1, the values obtained for k(q) from the above equa-
tion are plotted against those obtained for g(q) from Eq. (16).
The phenomenologically derived expression k = % + % g [13]
is also plotted for reference. Furthermore, simulation results
for two threshold distributions, uniform in (0,1) and Weibull
(with a shape parameter value of 1.3), are also shown. For
lower values of g, for which the phenomenological argument
is valid, the two expressions match. For higher values of g, the
simulations follow the analytical estimate. Given that g and
k are almost linearly related, for the subsequent part of this
work, we keep the focus on calculating g, which can be done
in closed form. From Eq. (15), the ¢ — 1 limit (¢ — o)
yields

§—8rxy1l—gq, (17)

meaning that we can write all response functions in terms of
the interval |g — g/| instead of o — o, with the appropriate
changes in the scaling exponent (see Ref. [37] for details). An
important consequence of the above equation is the finite size
scaling of the terminal value of g. We can define a correlation
length exponent as § o« |0 — o.|™" [38], which will span the
system size at the critical point. We should then have, for
a finite size system at its critical point, |0.(N) — o.(N —
00)| o« N~/ Also, at the critical point of the finite system,

014103-4



INEQUALITY OF AVALANCHE SIZES IN MODELS OF ...

PHYSICAL REVIEW E 108, 014103 (2023)
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0.6 - 1
X
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I "»4*  analytical estimate
o k=1/2+3g/8
0.5 &= = . . .
0 0.1 0.2 0.3 0.4
9

FIG. 1. The plot of k(q) [obtained numerically from Eq. (16)]
against g(g) [obtained from Eq. (15)] for the mean-field FBM. The
numerical simulations are also shown for two threshold distributions:
uniform and Weibull. The line k£ = % + % g is plotted for reference
and matches well the analytical estimate for small values of g. The
failure point values of g and k, given by g = 1/3 [see Eq. (5)] and
kp = (\fS —1)/2 = 0.618 [see Eq. (7)], are indicated by a vertical
line and a horizontal line, respectively. These results indicate that
the values of k and g are universal for a broad class of threshold
distributions.

we should have, from Eq. (17),
gf(N) — gr(N — 00) o |o.(N) — 0.(N — 00)['/?
o N~/ (18)

Given that v =3/2 [32,38], we should have |g;(N)—
gr(N — 00)| o« N3 which is what we see in Fig. 2.

To find the load and size dependence of h, consider
again Eq. (8). Suppose we stop the loading at m = myx =

%, where g < 1, as before. The avalanches arranged in

2
10
N

0.337 —

% (N)

0.335

0.333 L L L
200000 400000 600000

N

95 ()-g¢(N)

-4
10 10" 10
N

FIG. 2. Finite-size scaling of g for different system sizes
(N/10° = 5, 30, 50, 60, 80, 100, 200, 300, 400, 500, 700) for the
mean-field fiber bundle model. From this plot, we can see that g,
shows the finite size scaling mentioned in Eq. (18) in the limit of
large system sizes. The inset shows the variation of g,(N) with
system size (V).

descending order would then read

A A
S(Mpax —m) = = .
4A 4A (gN
V1= B —m) 1= (8~ m)
(19)
The Hirsch index can then be found, as before, from
A
= h. (20)
4A (gN
S tredl)
This can be simplified to
N( — NA
pyNi=a,, NA_, Q1)

4A 4

This cubic equation can be solved (see the Appendix). But the
expression for 4 is then too complex to figure out the scaling
form near the critical point. Instead, we can approximate that
near the critical point (¢ — 1), the cubic term in / will be the
most dominant and hence be responsible for the leading order
scaling. In that case, the quadratic term can be replaced by its
value exactly at the critical point, h? = (%)2/ 3. Then, near
the critical point o, = 1/4,

4A AN\?3
—RBrAT—d-¢—) . 22
N ( 61)( 7 ) (22)
This gives
NA 1—gN [AN\?"?
[ S (k) T (23)
4 4 A\ 4

On simplification, this gives

3 AN 1—gN (AN 23
Ty 4 A\ 4
A i 1 2/3
~N Z—(O’C—O')N m . (24)
L=1k ——
) L=10k ——
10% | L=100k 1
L=1M

x

(0]

s 10 e 10° ¢ 3
Z 107 :
< 3 o z \\

1381 i

102 X, . s s |

|

10" 10% 10! 1?2 10° i

o (csc-cs)N23 \‘
10 ‘ ‘ ‘ ‘
10° 10 10° 102 1071

Gy-C

FIG. 3. The finite size scaling of the s-index, following Egs. (22)
and (23) for the mean-field FBM. In the inset, the limiting behavior
of the scaled function is also indicated; it saturates to (5/2)'/3 with
loading step size A = 10 for small values of the argument and decays
as a power law with an exponent of —1/2 for large values of the
argument (see text).
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g g 9

FIG. 4. Plot of g(g) against k(q) for different interaction ranges (R = 1, 100, 500, 1000, 3000, 5000, 7000) for three different system sizes
(L = 10000, 30000, 50000) in the LLS fiber bundle model. The plot shows that terminal values of g and k are independent of the system
sizes. With an increasing value of R, the terminal values of g and k approach the values obtained analytically in the mean-field limit.

l—q

where —* = o, — o (recalling that 0 = go,). This is now in
the scaling form

h~N'3fl(c. — )N, (25)

with v = 3/2 [32] being the correlation length exponent.

Figure 3 shows the numerical validation of the scaling form
above. The simulation was done for a fixed load increase with
A = 10. So, as 0 — o, the quantity 1/N'/3 should tend to
(5/2)'/3 & 1.357, which it does (as can be seen from the inset
of Fig. 3). Also, away from the critical point, the quantity
should be proportional to (0. — o)~!/2, which is also seen.
The data collapse for the three orders of magnitude system
size variation confirms the scaling hy ~ N1/3.

B. Inequality indices in the non-mean-field limit of the FBM:
Simulation results

This is the case in which the load of a broken fiber is
redistributed to the nearest R surviving fibers when they are
arranged in a one-dimensional lattice of size L. Here we
take the threshold distribution to be uniform between 0 and
1. Here R = 1 means that the sharing of the load is fully
local. In this case, we take three different system sizes (L =
10000, 30 000, 50 000) and vary the value of R and then cal-
culate the values of 4, g, and k. In Fig. 4 we plot g against &,
and we observe numerically that when the interaction range
R is increased, the gy and k; values are very close to the

analytical results obtained for the mean-field case. Prior to
reaching the terminal values, the variation of g vs k almost
follows the mean-field variation, except that the growth stops
earlier (usually, there are fewer avalanches for local load
sharing). In Fig. 5 the variation of % is plotted for different
values of R. Here also, the terminal values are smaller for
lower values of R, and so is their system size scaling. Indeed,
from Fig. 6 it can be seen that for fully local load sharing
(R =1), scaling of hy shows logarithmic dependence on L,
but as we increase the interaction range, the scaling of &y
shows power-law dependence on L'/3, similar to what we
expect in the mean-field limit.

C. Inequality indices for the RFM: Simulation results

Finally, we compare the above results with a more realistic
model of fracture, the RFM on a tilted square lattice. In this
case, the threshold distribution is a power law with an expo-
nent of —1, as mentioned before. The limits of the distribution
are between 10~# and 10#. We choose the value of 8 = 1 for
system sizes L = 32, 64, 128, 256, and 512. We calculated the
inequality measures using 500 samples for system sizes up to
L = 256 and 40 samples for L = 512. Given that N =L x L,
if we expect a scaling similar to that in the case of the FBM,
we should have iy ~ L?3 (since N = L x L here). In Fig. 7,
the function //L*3 collapses on a single curve, indicating
scaling similar to that in the FBM.
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FIG. 5. The variation of the h-index with rescaled time #/L for different interaction ranges (R = 1, 5, 10, 500, 1000, 3000) for three
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different system sizes (L = 10000, 30 000, 50 000) for the LLS fiber bundle model.
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10?

10° 10*
L

FIG. 6. System size L dependence of the terminal values of & =
hy for different interaction ranges R for the one-dimensional LLS
fiber bundle model in a log-log scale. It is seen that for R = 1, when
the load sharing is fully local, /1y shows a logarithmic dependence,
and when R = 100 and 500, i, shows the power-law dependence.
Here the solid (blue) and dashed (black) lines indicate the log(L) and
L'73 functional form, respectively.

The values of g, and k; are set by the avalanche size distri-
bution exponent. Particularly, if the avalanche size distribution
exponent is §, then it is straightforward to see that when the
avalanches are arranged in ascending order of their sizes, the
resulting curve will diverge with an exponent n = 1/(6 — 1).
For g = 1.0, 6 & 1.99. Now, it is also possible to show [37]
that for n > 1, g = ky = 1. Therefore, in the finite size scal-
ing of their values, we would have to set gs(L — o0) — 1,
resulting in a scaling form as before |1 — g/(L)| o« L~1/?". In
Fig. 8, we do see a power-law decay of |1 — g(L)| with L, but
not with the expected exponent value (typically, v = 4/3 for
the RFM [39]). Nevertheless, the power-law scaling is seen,
with an exponent of —0.23.
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FIG. 7. The h-index (scaled by L*?) is plotted against the time
(scaled by time/L) for different system sizes (L = 32, 64, 128, 256)
for the two-dimensional random fuse model with a power-law dis-
tributed breaking threshold. The inset shows the variation of 4 with
time for the different system sizes.
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FIG. 8. The g-index is plotted against time for different system
sizes (L = 32,64, 128, 256, 512) for the random fuse model with
a power-law distributed breaking threshold. As can be seen, the
terminal values of g change with the system size. The inset shows
the variation of the terminal values of the g-index with time in the
log-log scale, exhibiting a power-law scaling.

V. DISCUSSION AND CONCLUSION

Near a critical point, the responses of a system show critical
divergence. This necessarily means that the responses are
highly unequal as a critical point is gradually approached.
In the case of disordered solids and their models, these un-
equal responses are observed in terms of the avalanche time
series, which are accumulated local breaking events, exper-
imentally detected as acoustic emissions. It is well known
that the statistical properties of such acoustic emissions are
useful for characterizing the “health” of a system, i.e., es-
timating the vicinity of an approaching critical (breaking)
point.

Recently, quantitative measures of the inequality of such
avalanches, e.g., the Hirsch index #, the Gini index g, and the
Kolkata index k, were used to forecast the imminent critical
point in physical systems [10]. Particularly, it was noted that g
and k reach universal terminal values gy and k; at the critical
point, irrespective of the details of the system (types of disor-
der present in them). It is therefore very useful to monitor the
inequality of the avalanche statistics to estimate the distance
from an approaching critical point [11]. It is more useful
to monitor the inequality indices than other universal quan-
tities, e.g., the avalanche size distribution critical exponent,
because such an exponent shows universal properties only in
the asymptotic limit of large avalanche sizes, where failure
is already extremely imminent. Indeed, extensive numerical
simulations and machine learning studies have indicated the
same thing [11]. This means that for experimental measure-
ments, inequalities of the acoustic emissions, not just their
sizes, could play an important role in the indication of an
approaching failure point.

Here we showed analytically, in the mean-field FBM, the
scaling behavior of the critical indices (h, k, and g). Par-
ticularly, for the terminal values of the inequality indices
we showed that iy ~ N3, where N is the system size,
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gr=1/3, and ky = (+/5 —1)/2. We also showed the off-
critical Widom-Stauffer-like scaling for & [see Eq. (25)].
These were also verified numerically (see Figs. 3 and 6). Some
of these scaling relations differ from what was conjectured
using only numerical simulations before [10].

We then studied the more realistic local load sharing non-
mean-field version of the FBM and also the RFM. In the LLS-
FBM, we saw that the scaling of & shifts from a logarithmic
dependence for very localized load sharing to the power-law
dependence mentioned above as the load sharing range R is
increased. However, the power-law scaling with system size
was observed for the RFM (see Fig. 7). We also showed the
finite size effect in g, for the FBM and the RFM (see Figs. 2
and 8).

In conclusion, the inequalities of the avalanche sizes in
models of fracture show universal scaling properties near the
failure point. Here we showed analytically (for the mean-
field FBM) and numerically (for the non-mean-field FBM and
RFM) the scaling properties of the inequality indices. These
results show that monitoring the inequality indices in stressed
disordered solids can indicate when a critical point is being
approached, as was conjectured from numerical and machine
learning analysis before.
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APPENDIX: THE EXACT SOLUTION FOR £

As mentioned before, a full solution of Eq. (21) is possi-
ble [40]. The equation can be compared with the general cubic
form ah® + bh* + ch +d = 0, witha = 1,b = Y052 ¢ = 0,

4A
and d = —%. Let us now define the quantities Dy = b*> —
3ac = MU0 and Dy = 2b° — 9abe + 27a%d = LU= —
2 __ 3
ZN2 Then we consider C = | DD Vf‘w".
Finally, the three roots are
1/N(1—gq) Dy
h=————+¢"C+ , Al
3 < 4A 3 mC S

with m € {1,2,3} and ¢ = # Of course, only the real
root will be physically meaningful.
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