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The evolution of a complex multistate system is often interpreted as a continuous-time Markovian process.
To model the relaxation dynamics of such systems, we introduce an ensemble of random sparse matrices which
can be used as generators of Markovian evolution. The sparsity is controlled by a parameter ϕ, which is the
number of nonzero elements per row and column in the generator matrix. Thus, a member of the ensemble is
characterized by the Laplacian of a directed regular graph with D vertices (number of system states) and 2ϕD
edges with randomly distributed weights. We study the effects of sparsity on the spectrum of the generator.
Sparsity is shown to close the large spectral gap that is characteristic of nonsparse random generators. We show
that the first moment of the eigenvalue distribution scales as ∼ϕ, while its variance is ∼√

ϕ. By using extreme
value theory, we demonstrate how the shape of the spectral edges is determined by the tails of the corresponding
weight distributions and clarify the behavior of the spectral gap as a function of D. Finally, we analyze complex
spacing ratio statistics of ultrasparse generators, ϕ = const, and find that starting already at ϕ � 2, spectra of the
generators exhibit universal properties typical of Ginibre’s orthogonal ensemble.
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I. INTRODUCTION

Continuous-time Markov chains (CTMCs) [1] provide a
popular framework to model dynamics of multistate systems
in diverse fields ranging from physics, chemistry, and biol-
ogy [2–4] to economics [5,6] and game theory [7,8]. CTMCs
are used to model chemical reactions [9–15], gene regulation
processes [16–20], quantum dynamics (approximated by rate
equations) [21–25], evolutionary game dynamics [8,26,27],
and many other processes. CTMCs are also the key element
of such celebrated models of statistical physics as contact
processes [28–30], zero-range processes [31,32], and exclu-
sion processes like the asymmetric simple exclusion process
(ASEP) [2,31,33–39]. In some fields, CTMCs are known un-
der the names classical Markovian master equations and rate
equations.

A continuous-time Markovian evolution in finite discrete
space consisting of D states can be specified with a transition
rate matrix K [1], which is a generator of Markovian evo-
lution. (It is called Kolmogorov operator in Ref. [40]). The
equation governing the evolution of a probability vector P(t ),
defined on the state space,

d

dt
P(t ) = KP(t ), (1)

has the formal solution, P(t ) = exp(tK)P0, where P0 = P(0)
is the initial probability vector. The evolution of P(t ) is thus
fully determined by the generator K, especially by its spectral
properties. The fact that the operator Mt = exp(tK) should
map a non-negative vector onto another non-negative vector
while preserving �1 norm means that K satisfies a set of

constraints and these constraints have an effect on its spectral
properties [1].

To model the evolution of a complex system with CTMCs,
we would have to first design a specific Kolmogorov operator.
Taking into account the large variety of existing models, it
would be beneficial to figure out universal properties of K
generators, i.e., properties that are typical rather than specific
to a particular model. The first step in this direction is to
define random ensembles of generators. A similar situation
arises in the case of unitary time-continuous evolution, where
the corresponding generators (quantum Hamiltonians) were
explored and classified by using the powerful toolbox of ran-
dom matrix theory (RMT) [41–45]. Implementation of this
idea resulted in the creation of Quantum Chaos theory [46–48]
which made—and is still making—a strong impact on many-
body quantum physics, both theoretical [49] and experimental
(see, e.g., Ref. [50]).

Recently, RMT-based approaches were developed to an-
alyze spectral properties of random generators of open
quantum (Lindblad operators) [51–54] and classical (Kol-
mogorov operators) [40,55,56] Markovian evolution. The
considered generators, both quantum and classical, were con-
structed on purpose in a completely random way—up to the
constraints that make them legitimate generators. In the case
of Kolmogorov operators, this means that they are represented
by dense matrices [40,55]. It was shown that the spectral
density of such operators represents a free sum of a uniform
disk and a Gaussian distribution which results in a distinctive
spindlelike shape [40], as shown in Fig. 2(a). This density is
universal in the sense that the particular way the operators
are sampled does not affect the shape of the spindle (but may
affect its position on the real axis and its overall scaling) [40].
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FIG. 1. Spectra of generators of Markovian evolution, Eq. (1). (a) Dense (nonsparse) random generator with χ2
2 edge weight distribution,

(b) totally asymmetric simple exclusion process (TASEP) on a ring with staggered hopping probabilities [76], (c) asymmetric simple exclusion
process ASEP on a chain with open boundary conditions and next-nearest-neighbor terms, (d) a process of particle hopping on an open
boundary grid with random hopping probabilities, (e) a contact process on a chain [28], and (f) a gene transcription model from Ref. [20]. In
each plot, the real and imaginary axes have the same scale. The models are described in Appendix A.

In contrast to the random Kolmogorov operators, for most
applications and known models, the corresponding K genera-
tors are represented by sparse matrices. This is a consequence
of locality and other topological constraints imposed on the
allowed transitions in the state spaces of the models. For
many-component or many-particle systems, elements of the
generator matrix typically represent changing multiple (or
all) components of the system simultaneously, e.g., for an
exclusion process, a generic matrix element could represent
correlated hopping of many particles. Since such processes are
usually absent in physically (biologically, economically,...)
motivated models, most elements of the corresponding K
matrices are zeros.

Sparsity affects the spectra, {λi}, i = 1, 2, ..., D, of the
corresponding generators. Most noticeably, the spectral gap,
i.e., the distance between λ1 = 0 and the eigenvalue closest
to it, γ∗ = min{| Re λi|}, does not grow with the increase of
number of states D. This is in sharp contrast to the case of
dense random generators [51,53,54]. In Fig. 1, we contrast
the case of dense random stochastic matrices, Fig. 1(a), with

various model systems described by sparse Markov genera-
tors, Figs. 1(b)–1(f).

The large gap of dense random generators implies that even
the slowest decaying mode of a generic initial probability vec-
tor converges rapidly to the equilibrium state, the relaxation
time (inverse of the spectral gap) decreasing inversely in the
state space size D. In contrast, physical generators of CTMCs,
in general, have spectral gaps and relaxation times function-
ally depending on D very differently than (anti)linearly; see,
e.g., Refs. [57–60] for the example of the exclusion process.
This difference of behavior suggests that it is more suitable to
model physical CTMC generators by sparse rather than dense
random matrices.

Our motivation is to refine the RMT approach to random
Kolmogorov operators by including sparsity which is char-
acteristic to physically relevant K generators. We specify an
ensemble of random matrices of fixed sparsity ϕ as an ensem-
ble of negative combinatorial Laplacians of random regular
directed graphs. The sparsity is controlled by the vertex degree
ϕ, which is equal to the number of nonzero elements per

FIG. 2. Spectral densities of random Kolmogorov operators with χ2
2 weight distribution. The matrix size is D ≈ 8000 and the densities

are estimated with 100 samples. White areas contain no eigenvalues. (a) Dense matrix without the zero eigenvalue, (b) sparse matrix with
ϕ = √

D nonzero elements per row and column, (c) ϕ = ln D, and (d) ϕ = 3. The insets show spectra of single realizations. In each plot, the
real and imaginary axes have the same scale. The red dots mark the location of μ(λ), given by Eq. (6), and the intervals shown in black are
[μ(λ) − σ (λ), μ(λ) + σ (λ)], where σ (λ) is given by Eq. (8).
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row and column of the generator matrix. In graph terms, this
means that each vertex has exactly ϕ incoming and ϕ outgoing
edges. The nonzero elements (edge weights) are taken to
be random, positive, independent, and identically distributed
(iid).

A similar setup was studied in Ref. [56], where an en-
semble of oriented Erdős-Rényi graphs [61], parameterized
with edge probability distribution p(D), was used. The vertex
distribution in this case is binomial distributed [61] and not
constant as in our case. However, one might expect simi-
lar behavior in the D → ∞ limit with the correspondence
p(D) = ϕ/D. The authors of Ref. [56] considered the regime
Dp(D) � (ln D)6, which they found to have the same uni-
versal properties as in the nonsparse case. In this paper, we
consider sparsity beyond this limit, including, specifically,
ϕ ∼ D0 (vertex degree not growing with D) and ϕ ∼ ln D.

In this paper, we investigate the dependence of spectral
properties of the sparse Kolmogorov operators on sparsity
parameter ϕ, number of states (dimension of the state space)
D, and on the edge weight distribution, i.e., on the distribution
of the nonzero elements of matrix K. Explicit results are
mostly derived for uniform and χ2

2 distributions. The latter
is the sum of two squared, independent standard Gaussians or,
equivalently, the squared absolute value of a complex Gaus-
sian [62]. However, our results can be adapted to other weight
distributions.

We consider both the bulk of the spectral distribution and
its edges.

As for the bulk, we focus on its position μ (the mean of
the corresponding eigenvalue distribution) and its variances
along the real and imaginary axes (standard deviations of
the distribution of the real and imaginary eigenvalue parts,
respectively). The first variance estimates the spread of the
relaxation rates, while the second one gives the timescales of
the oscillations during the relaxation.

As for the edges, we address the spectral gap and the
extent of the spectrum along the real axis (the real part of the
eigenvalue with largest absolute real part). These determine,
respectively, the slowest and fastest timescales of relaxation
to the steady state. The spectral gap is of physical interest for
multistate Markov processes, see, e.g., Refs. [57–60,63–67]
for the ASEP and [68,69] the contact process. The horizontal
extent, in addition to its interpretation as the fastest timescale
for CTMCs, is also relevant in the graph theory interpretation,
e.g., to quantify the computational complexity of the com-
munity detection problem [70,71] and the max-cut [72,73]
problems.

We demonstrate that the position and variance of the spec-
tral bulk of sparse Kolmogorov operators scale as ∼ϕ and
∼√

ϕ, respectively. These characteristics do not depend on
D but on the first and second moments of the weight distri-
bution. The dependence of the spectral edges on the weight
distribution is less straightforward and highly nonuniversal.
In particular, we show that, in the regime of high sparsity,
ϕ 	 D, the spectral gap (horizontal extent) depends only on
the left (right) tail of the weight distribution. We evaluate
the dependence of the spectral gap on ϕ and D for weight
distributions with exponential and power-law tails.

We consider the cases of χ2
2 and uniform weight distri-

butions in detail. For these distributions, we find that the

spectral gap and the horizontal extent of the spectrum can
be approximated by the largest and smallest diagonal entry
of the generator matrix, respectively. Using the conjecture
that this correspondence holds in general, we use extreme
value theory (EVT) [74,75] to analytically derive dependen-
cies of the spectral edges on ϕ and D. In particular, we infer
that the distributions of spectral edges only depend on the tails
of the weight distributions.

Finally, we analyze correlations of the eigenvalues of
sparse Kolmogorov operators. We show that, for ϕ � 2, the
complex spacing ratio (CSR) distributions [76] of the spectral
bulks follow the distribution typical to Ginibre’s orthogonal
ensemble.

The paper is organized as follows. In Sec. II, we introduce
an ensemble of sparse random Kolmogorov operators. We
analyze the bulk of the spectral distributions of the ensembles
in Sec. III. In Secs. IV and V, we address the spectral gap
and the horizontal extent of the spectrum, respectively. A
discussion on correlations between eigenvalues in terms of
the CSR follows in Sec. VI. We conclude with a summary
of our results in Sec. VII. Appendixes contain information on
the models whose spectra are presented in Fig. 1, details of
the sampling of sparse random Kolmogorov operators, and the
details of analytical derivations.

II. RANDOM SPARSE KOLMOGOROV OPERATORS

In this section, we first recall some basic properties of
Kolmogorov operators and review the case of full random
K matrices. We then define an ensemble of random sparse
operators. In what follows, matrices will be referred to by cal-
ligraphic letters (e.g., K) while their elements will be denoted
by noncalligraphic letters (e.g., Ki j).

A. Basic information

To be qualified as a Kolmogorov operator, a matrix K has
to fulfill two conditions: (i) all its off-diagonal elements have
to be real and non-negative, Ki j � 0, i 
= j, and (ii) the sum
over every column should be zero. The latter is fulfilled by
setting all the diagonal elements as

Kii = −
∑
j 
=i

Kji. (2)

The first condition guarantees the preservation of the non-
negativity of a vector during the evolution induced by Eq. (1),
while the second one guarantees the preservation of the �1

norm of the vector.
The spectrum of K is, in general, complex. Since K

maps real vectors onto real vectors, the spectrum is invari-
ant under complex conjugation, so all complex eigenvalues
come in conjugated pairs. The spectrum contains at least
one eigenvalue λ1 = 0 with right eigenvector corresponding
to the steady state. By virtue of the Perron-Frobenius theo-
rem [77–79], the components of the steady-state vector can be
chosen to be non-negative, which makes it, after normaliza-
tion, a probability vector.

Any Kolmogorov operator can be represented in terms of a
real non-negative matrix, M, Mi j � 0,

K = M − J , (3)
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where elements of the diagonal matrix J are Jj j = ∑
i Mi j .

We now briefly review the case of dense (nonsparse) ran-
dom Kolmogorov operators [40,55,56]. Elements Mi j > 0 are
iid sampled from a distribution with density p(x) and first
two moments μ0 = ∫

xp(x)dx and σ 2
0 = ∫

(x − μ0)2 p(x)dx.
The particular choice of distribution does not play an essential
role (provided that it is not very pathological). For example,
we could sample a matrix Z from Ginibre’s Unitary Ensemble
(GinUE) and then square its elements, Mi j = |Zi j |2 [40]). The
matrix M is then full in the sense that, with probability 1, all
its elements are different from zero.

The elements of the matrix M are iid, thus, in the asymp-
totic limit, its spectral density is a uniform disk of radius√

Dσ0, with the center at 0. In the dense limit, the elements
of J are sums of D independent random variables, so its ele-
ments can be approximated with Gaussian-distributed random
variables with mean Dμ0 and variance Dσ 2

0 .
Following the RMT approach [40], the Kolmogorov oper-

ator in Eq. (2) can be modeled as

KRM = −μ0D · 1l + σ0

√
D(G − D), (4)

where G is a member of Ginibre’s orthogonal ensemble (Gi-
nOE) and D is a diagonal matrix. Elements of G and D are
sampled from the normal distribution of zero mean and unit
variance. Here σ0

√
D · G models M while J is approximated

as μ0D · 1l + σ0

√
D · D.

The spectral density of the nontrivial part, K′ = G + D, is
a free convolution of a disk and a Gaussian distribution along
the real axis, which results in a spindlelike shape. Figure 2(a)
presents both the spectrum of a single random dense Kol-
mogorov operator and histogram obtained with 100 samples.

Alternatively, we can state that the spectral density of the
rescaled generator

K′ = 1

σ
√

D
(K + μ0D · 1l) (5)

is expected, in the asymptotic limit, to be the D-independent
spindle (“an additive Gaussian deformation of the circular
law,” according to Ref. [56]).

The spectrum of the random nonsparse generator has a
large gap which scales as D, as seen in Figs. 1 and 2. We will
see that this feature is strongly affected when we introduce
sparsity.

B. Ensemble of sparse random Kolmogorov operators
as a set of oriented graphs

The operator K described in the Introduction can be con-
sidered as the negative Laplacian of a random directed graph
with positive, iid edge weights, without self-loops, and with
fixed vertex degree equal to ϕ.

For example, the graph corresponding to the K generator of
a process of a particle hopping on a d-dimensional hypercubic
lattice with periodic boundary conditions and random hopping
rates is a particular (to the nearest-neighbor connections) re-
alization of the ensemble with ϕ = 2d . Figure 1(d) shows an
example spectrum for d = 2.

The regularity of the graphs ensures that, with probability
1 − O(D−ϕ−1), they are strongly connected as long as ϕ �
2 [80]. Strong connectivity is a good feature because it means

that the matrix K is not of block-diagonal structure and the
state space is not partitioned into disconnected subsets. As
there is only one strongly connected component, there is only
one absorbing component. This implies that the multiplicity
of the zero eigenvalue is one and the steady state is unique.
Finally, every state in the state space is reachable from every
other state. The steady state, therefore, has all states popu-
lated.

Some physical models motivating this study, presented
in Fig. 1, are—except for the contact process—all strongly
connected. The contact process is only effectively strongly
connected. It has two strongly connected components, where
one is a single vertex and the other includes the remaining
D − 1 vertices. The giant component is the only absorbing
component and, consequently, the steady state is unique.

We will focus on sparse generators with ϕ � 2 and will
discuss ϕ = 1 in Sec. VI.

The physical models presented in Fig. 1 motivate us to
focus on two types of dependencies of ϕ on the matrix
size D, namely, ϕ = const and ϕ ∼ ln D. For generators of
single-particle hopping models—an example is shown in
Fig. 1(d)—the average number of nonzero elements per col-
umn and row is constant and independent of D. It increases
logarithmically with D in many-body hopping models such
as the ASEP or the contact process, Figs. 1(b), 1(c) and 1(e).
There is no simple dependence of ϕ on D in the gene tran-
scription model, Fig. 1(f), as the matrix size D is controlled
by multiple parameters, see Appendix A.

What can we say about spectral densities of the ultrasparse
K-generators, with ϕ = const? A naive adjustment of the
RMT approach, which consists of describing the elements of
a sparse matrix M with probability density function p̃(x) =
(1 − ϕ

D )δ(x) + ϕ

D p(x), rescaling the mean and variance ac-
cordingly, and then using the RMT model, Eq. (4), would
not work here for two reasons. First, the spectral densities of
such sparse matrices cannot be approximated with members
of dense RMT ensembles. Second, the central limit theorem
no longer applies and the entries of matrix J cannot be ap-
proximated with normal random variables (the entries become
distribution-specific).

III. POSITION AND WIDTH OF THE BULK OF
THE SPECTRUM

In this section, we analyze the dependence of the position
and horizontal width of the bulk of the spectrum on the spar-
sity parameter ϕ and the matrix dimension D. We first provide
(Secs. III A and III B) expressions and bounds for the position
and the width, characterized, respectively, by the mean μ(λ)
of all eigenvalues and the standard deviation σ (Re λ) of the
real parts of the eigenvalues. These results are expressed in
terms of the mean and standard deviations of the weight dis-
tribution (distribution of nonzero elements of the Kolmogorov
operator K), denoted by μ0 and σ0, respectively.

Since the most prominent effect of sparsity is to reduce
the parametrically large gap seen in the full random case, it
is instructive to analyze the ratio α = |μ(λ)|/σ (Re λ). This
quantity provides insight into the distance of the bulk of the
spectrum from the origin, relative to the size of the bulk.
Section III C is devoted to an analysis of the ratio α.
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Numerical results presented in this section are obtained by
sampling edge weights from the χ2

2 and the standard uniform
distribution.

The spectrum of dense generators (ϕ = D − 1) consists of
two distinct parts: an eigenvalue λ1 = 0 and the rest of the
eigenvalues forming the spectral bulk away from the imag-
inary axis, as shown in Figs. 1(a) and 2(a). In contrast, the
bulk of the spectrum is much closer to the imaginary axis for
ϕ 	 D, as seen in Fig. 2 for (b) ϕ = √

D, (c) for ϕ = ln D,
and (d) for ϕ = 3. For ϕ = √

D, the bulk of the spectrum is
visibly separated from the zero, as in the dense case. In fact,
the spectral boundary is given by the same spindle (properly
rescaled). Whether the spectral distribution is separated from
zero for ϕ = ln D and φ = 3 is difficult to say with certainty
from the available numerical data (D ≈ 8000).

A. Position

The position of the spectral bulk of K can be identified with
the mean μ(λ) of eigenvalues λi,

μ(λ) =
〈

1

D

D∑
i=1

λi

〉
, (6)

where the average 〈. . . 〉 is taken over the ensemble of random
Kolmogorov operators described in Sec. II. Because the eigen-
values are either real or come in complex conjugate pairs, the
mean of the spectral bulk is real, μ(λ) = μ(Re λ).

A simple calculation, presented in Appendix C, shows that
μ(λ) can be expressed as

μ(λ) =
〈

1

D
tr(K)

〉
= −ϕμ0, (7)

The averaging 〈. . . 〉 over the matrix ensemble in Eqs. (6)
and (7) is, in principle, not needed since typicality is expected,
i.e., for large enough D, a single sample will display all the
spectral features of the ensemble. This is because the quan-
tity 1

D tr(K) is concentrated around its average 〈 1
D tr(K)〉 for

increasing D, as shown in Appendix C.
For the four different dependencies of ϕ on D shown in

Fig. 2, Eq. (7) implies the following: For ϕ = const, the mean
is independent of the matrix size D. For ϕ = ln D (ϕ = √

D),
the mean decreases logarithmically with D (as ∼√

D) and for
ϕ = D the mean decreases linearly with D as is expected for
the dense generators [55].

In Fig. 2, the location μ(λ) of generator matrices K is
indicated with a red dot in each panel. The real part of the
dot resides in the bulk of the spectrum for every dependence
of ϕ on D shown in Fig. 2.

B. Horizontal width

In Sec. III A, we investigated where the bulk of the spec-
trum is located in the complex plane. We now analyze the
width of the distribution. We are especially interested in the
horizontal width.

We characterize the width of the bulk spectrum, both in
the real and imaginary directions, Re λ and Im λ, using the
estimated variances

σ 2(Re λ) =
〈

1

D

D∑
i=1

⎛⎝Re λi − 1

D

D∑
j=1

λ j

⎞⎠2〉
, (8)

σ 2(Im λ) =
〈

1

D

D∑
i=1

(Im λi )
2

〉
, (9)

where we used the fact that
∑D

j=1 λ j is real.
Because the eigenvalues appear in complex conjugate

pairs, σ 2(Re λ) and σ 2(Im λ) are related to the estimated
complex pseudovariance via

σ 2(λ) =
〈

1

D

D∑
i=1

⎛⎝λi − 1

D

D∑
j=1

λ j

⎞⎠2〉

= σ 2(Re λ) − σ 2(Im λ). (10)

The estimated pseudovariance lower bounds the estimated
variance of the real parts of the eigenvalues, σ 2(λ) �
σ 2(Re λ).

The complex pseudovariance can be analytically calculated
for the ensemble of random generator matrices as

σ 2(λ) =
〈

1

D
tr(K2)

〉
−
〈

1

D2
tr(K)2

〉
= ϕ

(
σ 2

0 + ϕ

D
μ2

0 − 1

D
σ 2

0

)
. (11)

Details of the calculation are provided in Appendix C. The
bound of the estimated real variance by the pseudovariance
together with Eq. (11) leads to the asymptotic lower bound of
σ (Re λ) in terms of the sparsity parameter ϕ. As 1 � ϕ � D,
the estimated horizontal width of the bulk spectrum cannot
grow asymptotically slower than

√
ϕ:

σ (Re λ) � √
ϕ. (12)

Numerically, we find that the bound in Eq. (12) is asymptoti-
cally sharp for ϕ 	 D, as shown in Fig. 3 through the ratio α

of mean μ(Re λ) and width σ (Re λ). The collapse of the data
points in Fig. 3(c) implies that σ (Re λ) ∼ √

ϕ.

C. Ratio of mean and horizontal width

In this section, we combine the information of the location
of the spectrum given by Eq. (6) and the horizontal width of
the bulk given by Eq. (8) into the ratio

α = |μ(Re λ)|
σ (Re λ)

. (13)

This quantifies how close the bulk spectrum is, relative to its
size, to the stationary value λ1 = 0. i.e., to the imaginary axis.
For α = O(1), the estimated width of the bulk is of the same
order as the estimated mean, thus the spectrum is located close
to 0. For α � 1, the estimated mean is much bigger than the
horizontal width of the bulk and the bulk of the spectrum is
far away from 0.

The analytical result for the estimated mean of the spec-
trum, Eq. (7), together with the asymptotic bound on the
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FIG. 3. Ratio α of mean μ(Re λ) and horizontal width σ (Re λ)
of the bulk of the spectrum of sparse random Kolmogorov operators
with (a) χ 2

2 and (b) standard uniform weight distributions. (c) α as a
function of

√
ϕ. The bottom markers correspond to χ 2

2 and the top to
uniform distribution. Dependencies of ϕ on D are ϕ ≡ constant, ϕ =
ln D, ϕ = 2 ln D, and ϕ = D1/3. The black solid lines correspond to
α = c1 + c2

√
ϕ (c1,2 given in the main text) and the dashed lines

denote α = μ0/σ0
√

ϕ.

standard deviation of the real parts of the spectrum, Eq. (11),
imply the following asymptotic bound on α:

α � √
ϕ. (14)

Numerically, we observe that the bound in Eq. (14) is asymp-
totically tight for ϕ 	 D, i.e.,

α ≈ c1 + c2
√

ϕ, (15)

for constants c1 and c2. Since μ(λ) scales linearly with ϕ, this
behavior is consistent with σ (Re λ) ∼ √

ϕ, stated previously.
The constants are found to be c1 ≈ 0.15 (≈0.1) and c2 ≈ 0.84
(≈1.3) for the χ2

2 (uniform) distribution.
Numerical results for α are summarized in Fig. 3. For each

combination of ϕ and D, α is averaged over n samples of
random generators such that nD = 50′000. The weight dis-
tribution is the χ2

2 distribution in Fig. 3(a) and in the lower
part of Fig. 3(c), and is the uniform distribution in [0,1] in
Fig. 3(b) and in the upper part of Fig. 3(c). We have found
that these results are qualitatively the same for exponentially
distributed edge weights.

In Figs. 3(a) and 3(b), we show the value of α as a function
of D and ϕ. On the x axis, D varies in steps of 103 between
103 and 104. We observe that α increases with ϕ and is
independent of D, as predicted by Eq. (15). In Fig. 3(c), we
show α as a function of ϕ for different dependencies of ϕ on
D. In all cases, values of α collapse onto the black solid line
given by Eq. (15).

For ϕ ∼ D, the ratio α scales as ∼√
D, thus recovering the

parametrically large gap in the nonsparse case. For constant
ϕ, the location of the bulk relative to its size is constant and
independent of D, i.e., if measured relative to the size of
the bulk, the bulk does not move away from the imaginary
axis with increasing D. We have thus quantified how sparsity
cures one of the less physical aspects of the nonsparse random
model of Markov generators.

IV. SPECTRAL GAP

In this and the following section, we will consider the spec-
tral edges, namely, the locations of the eigenvalues nearest
and farthest from the imaginary axis. In this section, we will
investigate the spectral gap γ∗ of K:

γ∗ = min{| Re λi| : Re λi < 0}. (16)

The spectral gap γ∗ is asymptotically, approximately bounded
by the right extent of the bulk |μ(λ)| − σ (λ), which depends
on ϕ as ∼ϕ − √

ϕ ∼ ϕ. So, for constant ϕ, the spectral gap
is bounded from above, while for ϕ increasing with D the
spectral gap can increase with D.

Here the edge weights are distributed according to the χ2
2

and the standard uniform distributions. We first demonstrate
that, for ϕ = const, the average spectral gap 〈γ∗〉 decreases
as D−1/ϕ , while 〈γ∗〉 is constant if ϕ increases logarithmi-
cally with D. We then show that the spectral gap is well
approximated by the smallest (in magnitude) diagonal term
of J (K) and use the theory of extreme values to underpin
the numerical observations. The results are then generalized
to weight distributions with power-law left tails in that, for
constant ϕ, the average spectral gap decreases as a power law
in D and the crossover from decreasing to increasing 〈γ∗〉
happens when ϕ ∼ ln D.

A. Numerical results

In Fig. 4, we show the average spectral gap 〈γ∗〉 for edge
weights distributed as χ2

2 [(a)–(c)] and according to the stan-
dard uniform distribution [(d)–[f)] . For every combination
of ϕ and D, the average of the spectral gap is estimated
with 100 samples. In Figs. 4(a) and 4(d), we show 〈γ∗〉 as
a function of D for different dependencies of ϕ on D. The
average spectral gaps for constant ϕ = 3, 5, 8, 13 (presented
with colored circles) clearly follow a power-law scaling with
D.

In Figs. 4(b) and 4(e), we show the average spectral gap
〈γ∗〉 as a function of ϕ and D. The black dashed lines are
contour lines of constant 〈γ∗〉. They are near straight lines,
showing that for a logarithmic increase of ϕ in D the spectral
gap is constant.

We show the average spectral gap 〈γ∗〉 as a function of D
for ϕ = 4

5 ln D + 8 in Figure 4(a) and ϕ = 7
10 ln D + 8 in (d)

as black diamonds. These dependencies of ϕ on D agree well
with the top dashed contour lines in (b) and (e), respectively.
The average spectral gap of ϕ depending logarithmically on D
is constant in Figs. 4(a) and 4(d).
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FIG. 4. The average spectral gap 〈γ∗〉 with χ 2
2 (top) and standard uniform (bottom) weight distributions. Solid lines in the log-log plots

are analytical predictions from Eq. (25) in (a) and Eq. (28) in (d). Black dashed lines in the heat maps denote contours of constant gap. White
circles in the heat map in (e) are given by Eq. (30).

B. Gap ≈ minimum of J
Let us assume for a moment that the generator matrix

K is Hermitian with eigenvalues λD � · · · � λ2 < λ1 = 0.
Then 1 = (1, . . . , 1)t is the eigenvector with eigenvalue 0 and
all other eigenvectors are orthogonal to it. By the Courant-
Fischer theorem [81],

γ∗ = −λ2 = min
|v|=1,v⊥1

vt (−K)v, (17)

where the minimum runs over all vectors v ∈ RD, which have
Euclidean norm |v| = 1 and are perpendicular to 1. Choosing
1 � l � D as arbitrary and v as (see Appendix D for more
details)

vi =
⎧⎨⎩
√

1 − 1
D i = l

− 1√
D(D−1)

i 
= l,
(18)

a simple calculation shows that (at least for ϕ 	 D)

γ∗ � min
1�l�D

Jll + O(D−1). (19)

Similarly, by using the Courant-Fisher theorem, for the eigen-
value with largest magnitude λD, we find

−λD = max
|v|=1

vt (−K)v, (20)

and with v as the lth vector of the standard basis of RD:

−λD � max
1�l�D

Jll . (21)

Under some mild conditions on random weights Ki j , a re-
sult from Ref. [71] shows that the inequality Eq. (21) becomes
an equality in the large D limit with probability approaching
1. Motivated by this observation and the bound from Eq. (19),

we expect a similar asymptotic tightness for Eq. (19). How-
ever, it is an open question whether the result from Ref. [71]
applies to the bound of the spectral gap, Eq. (19). Further,
the proof presented in Ref. [71] makes use of the central
limit theorem for the diagonal elements Jll of J , and so the
corresponding result does not apply to the case of constant or
logarithmically increasing (with D) sparsity parameter ϕ.

Nevertheless, the above arguments allow us to conjecture
that in the limit of large D and ϕ 	 D, the following,

γ∗ ≈ min
1�l�D

Jll , (22)

holds for general, non-Hermitian random generator matrices
K, with iid and nonexotic weight distributions. We support
our conjecture with numerical data presented in Figs. 5(a)
and 5(b). We quantify the approximation in Eq. (22) by the
relative error between the spectral gap γ∗ and the minimum
min1�l�D Jll of the diagonal of J :

δγ∗ = |γ∗ − min1�l�D Jll |
γ∗

. (23)

Figure 5 shows 〈δγ∗〉 as a function of ϕ and D for the χ2
2

distribution and the standard uniform distribution. The aver-
age relative error is at least two orders of magnitude smaller
than the average spectral gap shown in Figs. 4(b) and 4(e). For
increasing D, the approximation in Eq. (22) improves. Thus,
the approximation in Eq. (22) works well in the case ϕ 	 D.

C. Extreme value theory

The distribution of the right-hand side of Eq. (22) can be
tackled with the theory of extreme values. As all nonzero
entries of M (edge weights) are identically and independently
distributed random variables, so are the diagonal entries of J .
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FIG. 5. The average relative error between the spectral gap and
the minimal value of J in the top row (a) and (b) and between
the horizontal extent and the maximum of J in the bottom row
(c) and (d). The weight distribution is χ 2

2 on the left and the standard
uniform distribution on the right. Averages are over 100 samples. See
Eqs. (23) and (38) for the definition of the relative errors δγ∗ and δγ̃ ,
respectively.

Let the cumulative distribution function (cdf) of the diagonal
entries Jll of J be denoted by F and its probability density
function by f (x) = d

dx F (x). If the edge weights are distributed
according to a χ2 distribution (or any gamma distribution),
the cdf F of Jll is a gamma distribution function. If the edge
weights are uniformly distributed, F is an Irwin-Hall distribu-
tion function, see Table I. The expected value of min1�l�D Jll

is given in terms of F (and f ) by〈
min

1�l�D
Jll

〉
= D

∫
dxx f (x)(1 − F (x))D−1. (24)

Equations (22) and (24) imply that

〈γ∗〉 ≈ D
∫

dxx f (x)(1 − F (x))D−1. (25)

We demonstrate the validity of Eq. (25) with Fig. 4(a),
where the solid lines, given by Eq. (25), perfectly match
numerically sampled average spectral gap 〈γ∗〉. In the next
section, we will use the theory of extreme values to handle
the integral in Eq. (25).

TABLE I. The distributions of the off-diagonal elements Mi j of
K (edge weights) and the corresponding distributions of the diagonal
elements Jll of K and the corresponding constants C and β for the
convergence of Jll to the Weibull distribution �β in Eq. (27). (*)
constants obtained by a power-law approximation of the left tail of
the gamma distribution.

off-diag. K = Mi j χ 2
k Uniform

diag. K = Jll gamma( kϕ

2 , 2) Irwin-Hall

C 2ϕ

ϕ! * 1
ϕ!

β k
2 ϕ* ϕ

1. Power-law tail distributions

Let us consider first the case ϕ = const and increasing
D. By the Fisher-Tippet-Gnedenko (or extreme value) the-
orem [75], min1�l�D Jll converges in law, under some mild
assumptions on the distribution of Jll and properly renormal-
ization, to the Weibull distribution. The Weibull cdf is given
by �β (x) = e−xβ

, where β > 0 and the support is on the
positive real line.

For distributions of Jll with a power-law left tail, the renor-
malization of min1�l�D Jll for convergence to the Weibull
distribution is well-known, see, e.g., Theorem 3.3.2, p. 137 in
Ref. [75]. We use a version modified to our case. Let a positive
random variable X have cdf F with β-power left tail, i.e.,

F (x) = Cxβ for 0 � x � C1/β, (26)

where C > 0 is a constant. Further, let mD = min1�l�D Xl ,
where the Xl are iid copies of X . Then,

(DC)1/βmD → �β in law. (27)

The Irwin-Hall distribution has a left power-law tail given by
F (x) = xϕ

ϕ! for 0 � x � 1. The constants for the Irwin-Hall
distribution are listed in Table I.

We assume that the convergence in Eq. (27) is not only
in distribution but that the renormalized moments of mD

converge as well. If the convergence of the moments is suf-
ficiently fast, then Eq. (27) together with Eq. (22) imply

〈γ∗〉 ≈ 〈mD〉 ≈ 

(
1 + 1

ϕ

)
(ϕ!)1/ϕD−1/ϕ (28)

when the weight distribution (distribution of nonzero off-
diagonal elements of K) is such that the diagonal of J has
a power-law left tail and the coefficients C and β are given by
C = 1/ϕ! and β = ϕ.

Finally, we consider the case that the weight distribution is
uniform. We observe that the approximation in Eq. (28) works
very well in this case. The solid lines in Fig. 4(d) are given by
the right-hand side of Eq. (28) and they match the numerically
calculated average spectral gap.

Equation (28) implies that, for constant ϕ = const and
increasing D, the average spectral gap decreases as

〈γ∗〉 ∼ D−1/ϕ. (29)

In Fig. 4(f), we show that the numerically retrieved power-law
exponents of the average spectral gap, Fig. 4(d), match the
scaling in Eq. (29).

We find that the large deviation result is not only valid for
constant ϕ and increasing D but also for ϕ increasing loga-
rithmically with D; see Fig. 4(d). This allows us to estimate
the crossover from decreasing to increasing spectral gap. Let
c denote a constant and let 〈γ∗〉 = c. Then, by Eq. (28):

D ≈
[


(
1 + 1

ϕ

)
c

]ϕ

ϕ!. (30)

In Fig. 4(e), the contour lines of constant average spectral gap
c perfectly line up with the functional dependence of D on ϕ

through Eq. (30) shown as white dots.
To find ϕ as a function of D such that the average spectral

gap is constant, we assume that ϕ is reasonably large and
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approximate (1 + 1
ϕ

) ≈ 1 and, by Stirling’s formula,

(ϕ!)1/ϕ ≈ ϕ

e . Denoting y = ln ϕ

ce and rearranging Eq. (30)
gives us

ln D

ce
≈ yey, (31)

which can be inverted by the Lambert W function. Resubsti-
tuting ϕ = ceey, we arrive at

ϕ ≈ ce · eW ( ln D
ce ), (32)

which for ln D � ce2 behaves as [82]

ϕ ≈ ln D

(ln ln D − ln c − 1)1−η(D) , (33)

where η(D) → 0 slowly, as η(D) ∼ (ln ln D)−1. So, in the
limit 1 	 ϕ 	 D, the crossover from decreasing to increasing
spectral gap happens at ϕ ∼ ln D with corrections of the order
ln ln D. This confirms our numerical observations that the
average spectral gap 〈γ∗〉 appears to be constant for ϕ ∼ ln D
in the range of matrix sizes D we considered.

2. Approximate power-law distributions

If the weight distribution is a χ2 or exponential distribu-
tion, the diagonal elements of J are distributed according to
gamma distribution, see Table I. The left tail of the gamma
distribution only approximately follows a power law. Approx-
imating the left tail by a Taylor expansion, we obtain constants
C and β presented in Table I. Especially, for the χ2

2 distribu-
tion, so far we have presented the power-law approximation of
the gamma distribution in the main text and the large deviation
result in the previous subsection, suggesting that the average
spectral gap 〈γ∗〉 decreases for constant ϕ and increasing D as
a power in D with exponent given −1/ϕ; see Eq. (29).

In Fig. 4(c), we present the numerically calculated ex-
ponents of the power-law decrease of 〈γ∗〉, for χ2

2 weight
distribution, with D and compare it to the prediction −1/ϕ.
We find excellent agreement for small ϕ � 5. For larger ϕ,
the deviation between the numerical exponent and −1/ϕ is
visible but the agreement is still good.

A quantitative comparison between the numerically calcu-
lated spectral gap 〈γ∗〉 and the EVT prediction by a power-law
approximation of the left tail of the gamma distribution re-
sulted in poor agreement. As the expected minimum value of
the diagonal of K perfectly agrees with 〈γ∗〉, we attribute the
disagreement to the power-law approximation of the left tail
and slow convergence of Eq. (27) for diagonal elements of J
distributed according to the gamma distribution.

D. Summary

We presented numerical and analytical arguments that, for
the weight distributions considered, the average spectral gap
decreases as a power law for constant ϕ and increasing D with
the exponent given (approximately) by −1/ϕ. The crossover
between decreasing and increasing spectral gap happens at
ϕ ∼ ln D, with ln ln D corrections, for uniform weight dis-
tribution. For χ2

2 distributed edge weights, the crossover was
observed at ϕ ∼ ln D. If ϕ increases with D faster than ln D,
then the average spectral gap increases.

The presented results generalize. Let us assume that the
spectral gap is well approximated by the smallest (in mag-
nitude) diagonal of J , at least in the regime of large D and
ϕ 	 D. Then, after appropriate renormalization, the distri-
bution of the spectral gap is given by the limiting extreme
value distribution of the diagonal elements of J . Thus, the
classification of functional dependencies of the spectral gap
on ϕ and D with respect to weight distributions reduces to
the classification of limiting extreme value distributions and
renormalizations. Extensive research has been conducted on
the latter and the renormalizations of a lot of common distri-
butions are well-known [74,75]. Thus, the presented approach
allows the calculation of the distribution of the spectral gap
for broad classes of weight distributions.

V. HORIZONTAL EXTENT (LARGEST ABSOLUTE
REAL PART)

In this section, we investigate the horizontal extent γ̃ of
the spectrum given by the eigenvalue with the largest absolute
real part:

γ̃ = max
1�i�D

| Re λi|. (34)

We focus on the averaged horizontal extent 〈γ̃ 〉. We show that
for ϕ ∼ ln D, the average horizontal extent increases logarith-
mically with D for χ2

2 or uniformly distributed edge weights.
For constant ϕ and increasing D, the dependence of 〈γ̃ 〉 is
qualitatively very different for the two distributions. For the
χ2

2 distribution, 〈γ̃ 〉 increases logarithmically while for the
uniform distribution, the average horizontal extent converges
to ϕ as a power law in D. Ultimately, this is because the
support of the uniform distribution is bounded, while the right
tail of the χ2

2 distribution extends to infinity.
The structure of this section follows closely the one from

Sec. IV. We first present numerical results demonstrating the
above statements. We then argue that the horizontal extent
is given by the largest, in magnitude, diagonal element of K
and invoke again EVT to analytically underpin the functional
dependencies of 〈γ̃ 〉 on ϕ and D.

A. Numerical results

In Fig. 6, we show the average horizontal extent as a
function of D for constant ϕ and ϕ ∼ ln D for edge weights
distributed according to a χ2

2 [Figs. 6(a) and 6(c)] and the stan-
dard uniform distribution [Figs. 6(b) and 6(d)]. In Fig. 6(a),
the dependence of 〈γ̃ 〉 on D for constant ϕ shows a clear
logarithmic increase with D for χ2

2 distributed edge weights.
In contrast, for the uniform distribution, the average horizontal
extent increases with ϕ as a power law; see Fig. 6(b). The
power-law behavior sets in for small ϕ only for larger D.
For ϕ = 4 and ϕ = 5, deviations from the straight lines in
Fig. 6(b) are visible for D < 105 and D < 104, respectively.
The average horizontal extent for constant ϕ = 2 and ϕ = 3
is not shown. We found that it does not converge to ϕ in the
range of matrix sizes D we investigated.

For ϕ ∼ ln D, the dependence of 〈γ̃ 〉 on D is logarithmic
for both the χ2

2 and the uniform distribution, as shown in
Figs. 6(c) and 6(d).
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FIG. 6. Average horizontal extent 〈γ̃ 〉 with χ 2
2 (left) and standard

uniform (right) weight distributions. ϕ is constant (top) and ϕ ∼ ln D
(bottom). Solid lines are given by Eq. (39) (left) and Eq. (44) (right).

In the remainder of this section, we will present analytic
arguments similar to Sec. IV. We will explain the difference
of the dependence of 〈γ̃ 〉 on D for constant ϕ between χ2

2 and
uniformlike distributions. We show that 〈γ̃ 〉 ∼ ln D for both
distributions and ϕ ∼ ln D.

B. Extent ≈ maximum of J
By the Perron-Frobenius theorem, the spectrum of K is

confined to the ball centered around mini Kii < 0 with radius
r = | mini Kii|. Thus, 2 max1�l�D Jll � | Re λ| for all eigen-
values λ, so

γ̃ � 2 max
1�l�D

Jll . (35)

For symmetric generator matrices K, we showed in
Sec. IV B that

max
1�l�D

Jll � γ̃ (36)

and stated a result from Ref. [71] that for symmetric random
generator matrices under mild conditions on the weights Ki j ,
max1�l�D Jll concentrates around the largest eigenvalue in
magnitude, γ̃ . This together with the upper bound by the
Perron-Frobenius theorem Eq. (35) leads to our conjecture
that the concentration of max1�l�D Jll around γ̃ in the sym-
metric case extends to the non-Hermitian case as well:

γ̃ ≈ max
1�l�D

Jll . (37)

A concentration result similar to the one in Ref. [71] for non-
Hermitian random generator matrices M has, to the best of our
knowledge, not appeared in the literature.

TABLE II. Top: The normalizing parameters c and d (D) for
max1�l�D Jll to converge to the Gumbel distribution, where Jll is
gamma distributed with shape and rate parameter k and θ , respec-
tively, see Eq. (40). Bottom: The relation between the χ 2 and the
gamma distribution.

gamma(k, θ )
c 1

θ

d (D) θ (ln D + (k − 1) ln ln D − ln (k))

χ 2
n gamma(k = n

2 ϕ, θ = 2)

To quantify the deviation in Eq. (37), we introduce the
relative error of γ̃ and max1�l�D Jll :

δγ̃ = |γ̃ − max1�l�D Jll |
γ̃

. (38)

In Figs. 5(c) and 5(d), we show the average relative error
〈δγ̃ 〉 as a function of D and ϕ. If the edge weights are χ2

2
distributed, then for 2 � ϕ � 20 and 103 � D � 105 the av-
erage relative error is smaller than ≈10−3 and decreases with
increasing D. Thus, Eq. (37) is a good approximation for large
D and ϕ 	 D and the error appears negligible in the limit of
large D. For uniformly distributed edge weights, the average
relative error 〈δγ̃ 〉 is smaller than 10−1 for 2 � ϕ � 20 and
103 � D � 105, and for ϕ � 4 decreases with D. For 2 �
ϕ � 3, the error does not seem to decrease for increasing D.
We conclude that Eq. (37) is an excellent approximation for
large D and 4 � ϕ 	 D.

C. Extreme value theory

Recall that the diagonal elements of J are iid random
variables. Similar to the minimum extreme value statistics, the
expected value of max1�l�D Jll is〈

max
1�l�D

Jll

〉
= D

∫
dxx f (x)F (x)D−1, (39)

where we denoted the cdf of the diagonal elements Jll of J
by F and the pdf by f = d

dx F . A numerical calculation of the
integral in Eq. (39) for χ2

2 distributed edge weights is shown
in Figs. 6(a) and 6(c) and compared to the average horizontal
extent 〈γ̃ 〉. The quantities agree excellently.

The remainder of this section is devoted to employing
the Fisher-Tippet Gnedenko or extreme value theorem to
max1�l�D Jll and thus analytically calculate the integral in
Eq. (39).

1. Gamma distribution

Recall that if the edge weights are distributed according
to a χ2 distribution, then the diagonal elements of J are
gamma distributed. The maximum of D gamma distributed iid
random variables Xl converges in law to a standard Gumbel
distribution Gum [71],

c

[
max

1�l�D
Xl − d (D)

]
→ Gum in law, (40)

with parameters c and d (D) given in Table II for the gamma
and χ2 distributions. The cdf of the Gumbel distribution
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is x → e−e−x
with mean γ , where γ denotes the Euler-

Mascheroni constant, not to be confused with the horizontal
extent γ̃ . The assumption that the first moment converges and
the convergence is fast enough together with Eq. (37) yields

〈γ̃ 〉 ≈
〈

max
1�l�D

Jll

〉
≈ γ

c
+ d (D). (41)

For constant ϕ and increasing D, the dominant contribution
of d (D) is 2 ln D for the χ2 distribution. Thus, the increase
is expected to be logarithmic. This is qualitatively consis-
tent with numerical calculations of the average horizontal
extent of random generator matrices K with χ2

2 distributed
edge weights and constant ϕ shown in Fig. 6(a). There, γ̃

increases logarithmically with D. Quantitatively, the deviation
between the average horizontal extent and the right-hand side
of Eq. (41) is not small. The deviation decreases for increasing
D (not shown). We attribute the slow convergence to a subop-
timal choice of parameters c and d (D), as the right-hand side
of Eq. (39) agrees perfectly with the numerically calculated
〈γ̃ 〉.

Let us assume that Eq. (41) is valid for ϕ increasing
logarithmically. Note that for the χ2 distribution, the rate
parameter of the corresponding gamma distribution is linear
in ϕ. Thus, for large enough ϕ, by Stirling’s formula, the
dominant term in Eq. (41) is logarithmic in D. Hence the aver-
age horizontal extent 〈γ̃ 〉 should increase logarithmically for
ϕ ∼ ln D. This is again qualitatively confirmed by numerical
results shown in Fig. 6(c), where 〈γ̃ 〉 as a function of D for
ϕ ∼ ln D increases logarithmically with D.

2. Power-law tail distributions with bounded support

If the distribution of the diagonal of J has bounded support
and the right tail decreases as a power law, then we can reuse
the extreme value result from Sec. IV C. For a random variable
X with right support endpoint x0 and cdf F with power-law
right tail, i.e.,

F (x) = C(x0 − x)β for x0 − C1/β � x � x0, (42)

then mD = max1�i�D Xl , where Xl are iid copies of X , con-
verges, properly renormalized, in law to a Weibull distribution

(DC)1/β (x0 − mD) → �β in law. (43)

Again, assuming that the first moment converges as well
and the convergence is fast enough, we get for edge weights
distributed according to the standard uniform distribution,

〈γ̃ 〉 ≈ 〈 max
1�l�D

Jll〉 ≈ ϕ − 

(
1 + 1

ϕ

)
(ϕ!)1/ϕD−1/ϕ. (44)

We find excellent numerical agreement of the right-hand side
of Eq. (44) with the average horizontal extent 〈γ̃ 〉 for ϕ � 4.
In Fig. 6(b), we show 〈γ̃ 〉 as a function of D for fixed ϕ. The
solid lines denote the right-hand side of Eq. (44). They agree
perfectly for large enough D and ϕ � 4. For 4 � ϕ � 6 and
small D, the agreement is still reasonable but deviations are
clearly visible. Thus for fixed ϕ � 4 and increasing D, 〈γ̃ 〉
converges to ϕ as a power in D with exponent −1/ϕ:

ϕ − 〈γ̃ 〉 ∼ D−1/ϕ. (45)

Numerically, we find that Eq. (44) is valid for ϕ increasing
with D logarithmically, see Fig. 6(d). There we show the
average horizontal extent as a function of D for ϕ = ln D.
It increases logarithmically with D. The logarithmic increase
can be justified analytically by extending Eq. (44) beyond
constant ϕ. In the limit of large enough ϕ, we approximate
(1 + 1/ϕ) ≈ 1 and, by Stirling’s formula, (ϕ!)1/ϕ ≈ ϕ/e and
we get

〈γ̃ 〉 ≈ ϕ(1 − D−1/ϕ ) ∼ ϕ. (46)

Thus, in the limit of large ϕ the average horizontal extent
increases as ∼ϕ ∼ ln D.

D. Summary

We showed numerically and analytically that the hori-
zontal extent increases logarithmically for χ2

2 and uniformly
distributed edge weights if ϕ ∼ ln D. For constant ϕ � 4
and uniformly distributed edge weights, the horizontal extent
increases to ϕ as ∼ϕ − D−1/ϕ , while 〈γ̃ 〉 increases logarith-
mically for constant ϕ and χ2

2 distributed edge weights.
The difference of the dependence of the average horizontal

extent on ϕ between the χ2
2 and uniform distribution goes back

to the difference of the right tails. When edge weights are
uniformly distributed, the diagonal has bounded support and
a power-law right tail, while it has unbounded support and
an exponentially decaying right tail for χ2

2 distributed edge
weights.

Similar to the spectral gap, the limiting distribution of the
horizontal extent is given by the limiting extreme value dis-
tribution of the diagonal elements of K, under the assumption
that the largest (in magnitude) diagonal of K is approximating
γ̃ well enough. Thus, the classification of the horizontal extent
with respect to weight distributions reduces to the classifica-
tions of convergence in EVT.

VI. COMPLEX SPACING RATIOS

So far, we have considered the marginal distribution of
eigenvalues of sparse random generator matrices. But correla-
tions between the eigenvalues are also of interest. Correlations
between eigenvalues of real spectra are often quantified with
the distribution of consecutive level spacings or their ratios.
The latter avoids the need to unfold the corresponding spec-
trum [83,84] and has been generalized to complex eigenvalues
in Ref. [76]. The CSR of eigenvalue λ of matrix K is defined
as

z = λNN − λ

λNNN − λ
, (47)

where λNN and λNNN denote the closest, by the Euclidean dis-
tance, and second closest eigenvalue (of K) to λ, respectively.
By definition, the density of CSRs is supported on the unit
disk on the complex plane.

If eigenvalues λ are uncorrelated, the CSR density is uni-
form. Eigenvalues of generic random matrix ensembles are
typically correlated and feature mutual repulsion. This leads
to vanishing CSR density at z = 0 and z = 1. According to
Ref. [85], complex level spacings categorize random ma-
trix ensembles in three universality classes. Generic random
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FIG. 7. Density of complex spacing ratios for (a) real Ginibre
ensemble and (b)–(d) sparse Kolmogorov operators with ϕ = 1, 2, 3.
The number of states D = 104 and densities are obtained from 102

samples. Edge weights are distributed according to the χ2
2 distribu-

tion. The color range is from 0 to 0.8 in (a), (c), and (d) and from 0
to 260 in (b).

matrices fall into one of these classes according to their sym-
metries. The random generators considered in this paper have
real entries, so they obey the same symmetry as real Ginibre
matrices (GinOE).

In Fig. 7, we show the CSR densities of (a) GinOE
members with Gaussian entries and (b)–(d) sparse random
generators with χ2

2 distributed edge weights and ϕ = 1, 2, 3.
The densities are estimated from 100 samples for D = 104.
We also checked that the obtained densities are independent
of the weight distribution. As suggested in Ref. [76], we avoid
eigenvalues close to the real line (by excluding all eigenvalues
from the strip Im λ < 10−14) when sampling CSR densities.

The CSR density of GinOE matrices shown in Fig. 7(a)
exhibit typical depletion at z = 0 and z = 1. In Ref. [40], it
was shown that the CSR density obtained for dense random
Kolmogorov operators agrees well with the distribution shown
in Fig. 7(a). The CSR density of sparse generators with spar-
sity ϕ � 2 [Figs. 7(c) and 7(d)] agrees remarkably well with
the GinOE case.

The CSR density for ϕ = 1 is anomalous, see Fig. 7(b).
It has an extremely high density around z = −1 while being
nearly flat on the rest of the unit disk. In this ultimate case, the
operator can be presented as

K = V · (P − 1l), (48)

where V is a diagonal matrix (with elements distributed
according to, e.g., χ2

2 ) and P is a circulant permutation
matrix corresponding to a cyclic unit shift. The spectrum
of P − 1l lies on a circle of unit radius centered at λ =
−1 and constitutes a set of equidistant roots of unity. This
spectrum is slightly deformed and split into several loops
by multiplication of P − 1l with V . Away from λ = −1, V

FIG. 8. Spectrum of a random Kolmogorov operator with ϕ = 1
and χ 2

2 weight distribution. The matrix size is D = 103. Inset: Same
data plotted with both axes having the same scale.

dominates, which results in the appearance of a real “tail”;
see Fig. 8.

In graph theory terms, such a sparse random graph frag-
ments into a set of disjoint elementary cycle graphs. The
independence of the spectra of these cycles leads to the flat-
ness of the density away from z = −1, while the elementary
cycle structure of the connected components is responsi-
ble for the CSR peak at z = −1. To quantify the distance
between CSR densities, we use the average length 〈r〉 and the
average cosine of the angle −〈cos θ〉 of spacing ratios, where
〈. . . 〉 again denotes the average over the random matrix en-
semble [76]. We numerically estimate 〈r〉GinOE ≈ 0.7379 and
−〈cos θ〉GinOE ≈ 0.2347 for 100 104 × 104 matrices. These
agree well with 〈r〉 and −〈cos θ〉 for ϕ = 2 and ϕ = 3, as
shown in Table III. We found similar results for ϕ > 3 (not
shown). In contrast, the corresponding quantities for ϕ = 1
deviate substantially from 〈r〉GinOE and −〈cos θ〉GinOE, as also
shown in Table III. We conclude that, for ϕ � 2, correlations
between eigenvalues of sparse random Kolmogorov operators
agree with correlations of eigenvalues of GinOE matrices.

VII. DISCUSSION

A. Summary of results

Motivated by the incapability of dense random Kol-
mogorov operators to capture spectral features of model
Markov processes, we introduced and analyzed an ensemble
of sparse random Kolmogorov operators. We showed that,
if the number of nonzero elements per column (and row) ϕ

increases with the matrix size D, the bulk of the spectrum
is shifted away from the stationary eigenvalue 0 in the limit

TABLE III. Mean and angle of spacing ratio distributions ob-
tained with 102 samples of random 104 × 104 matrices rounded to
the fourth digit. The matrix ensembles correspond to the ones shown
in Fig. 7.

GinOE ϕ = 1 ϕ = 2 ϕ = 3

−〈cos θ〉 0.7379 0.7871 0.7359 0.7372
〈r〉 0.2347 0.3516 0.2225 0.2284
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of large matrix size D. This is independent of the weight
distribution, i.e., of the distribution of the nonzero matrix
elements.

In contrast, the spectral edges depend on the tails of the
weight distribution. The tails of the weight distribution de-
termine, together with ϕ, the tails of diagonal elements of
generator matrices. We numerically showed that the spectral
edges are well approximated by the extremes of the diagonal
elements. From EVT, it follows that for diagonal distribu-
tions with power-law left tails (this includes, among others,
edge weights being uniform, exponential, χ2, gamma, or beta
distributed), the average spectral gap decreases as a power
law in D for fixed ϕ, is constant for ϕ ∼ ln D and increases,
whenever ϕ increases with D, substantially faster than ln D.

A similar approach was used to calculate the horizontal
extent, given by the eigenvalue with the smallest real part. We
linked the horizontal extent to the largest diagonal element (in
magnitude) of the generator matrix and used EVT to calculate
the latter.

Finally, we showed that CSR distributions of generator
matrices with ϕ � 2 follow the distribution typical of Gini-
bre’s orthogonal ensemble, while there is a strong anomaly
for ϕ = 1.

B. Open questions

(1) We have introduced sparsity to model K generators of
physical Markov processes, and have used the sparsity to tune
spectral features of the generators. There are other ways of
providing random matrices with a structure that models phys-
ical constraints (e.g., locality), e.g., one could consider banded
matrices [86–95] or matrices with decaying off-diagonal
terms [94,96,97] or temperature-based models [98]. These are
alternate routes to tuning spectral features. To the best of our
knowledge, generators of CTMCs with such structures have
not yet been considered.

(2) The application of EVT to find the limiting distribution
of the spectral edges relied on the observation that the spectral
edges are well approximated by the minimum and maximum
of the diagonal of the generator matrix. By the Courant-Fisher
theorem, the extremes of the diagonal are upper and lower
bounds, respectively, for symmetric generators. In this case, a
concentration of the largest eigenvalue in magnitude around
the maximum of the diagonal was shown in Ref. [71]. An
analytical treatment of general nonsymmetric generators and
the spectral gap is to the best of our knowledge not known.
We hope that our results motivate a rigorous investigation of
the connection between the spectral edges and the diagonal of
the generator matrix.

(3) Generators of CTMCs have real entries and thus their
eigenvalues are real or come in complex conjugate pairs.
In the investigation of correlations between eigenvalues, we
left out real eigenvalues. The appearance of a large number
of real eigenvalues in the spectrum of non-Hermitian matri-
ces is a phenomenon of wide interest [55,99–108]. For real
Ginibre matrices, the average number of real eigenvalues is
∼D−1/2 [100–102] while, for dense generators of CTMCs, it
is substantially larger [55]. We observed that the fraction of
real eigenvalues is larger for small ϕ and smaller for larger ϕ

(not presented). Understanding of the functional dependence

of the number of real eigenvalues for sparse CTMC generators
is an interesting problem.

(4) We focused on the location and extent of the bulk
spectrum as well as the spectral edges. One could inquire
about the evolution of other features of the spectral distribu-
tion as a function of sparsity, e.g., about the envelope of the
spectral distribution. In Ref. [40], the spectral density of dense
random CTMCs was described by the convolution of two
asymptotically free matrices, leading to the prominent spin-
dle shape. Free probability arguments break down for sparse
random CTMCs. Analytical tools which have been employed
to calculate the spectral density of sparse, random matrices
include replica tricks [109–113], single defect, and effective
medium approximations [114–116], supersymmetry-based
techniques [117,118] and the cavity approach [113,119–121].
Spectral properties of symmetric, sparse, random CTMCs
have been investigated with the cavity method [122–124] and
with supersymmetric approaches [118]. Investigations of the
spectral density of nonsymmetric sparse, random Kolmogorov
operators with the above methods might be an interesting
objective.

(5) We have considered sparse generators of CTMCs based
on strongly connected, sparse random graphs. It is an open
question whether our results can be generalized to other sparse
graph ensembles. One potential avenue to explore are directed
Erdös-Renyi (dER) graphs.

In dER graphs, the probability of an edge connecting any
two vertices is 0 < p � 1. For a dER graph to be strongly
connected with a high probability, the value of p must exceed
∼ ln D/D [125,126]. As a result, the average degree of the
vertices must increase logarithmically with D to ensure strong
connectivity. Consequently, the range of constant average ver-
tex degree and increasing vertex number D is excluded.

Nonetheless, modifying the dER graph by enforcing a
minimum (in- and out-) degree � 2 guarantees strong con-
nectivity with high probability [80]. Exploring the spectral
properties of CTMC generators based on dER graphs may rep-
resent a promising next step towards generalizing our results.

(6) Finally, there is an interesting question: What could
sparsity mean in the quantum limit? That is, what is sparsity
for Lindblad operators?

Here we start from the genetic link which allows us
to obtain a generator of a classical (quantum) Markovian
evolution as a properly normalized nonprobability (trace) pre-
serving stochastic map (channel). Equation (3), where M is a
no-probability-preserving map and J takes care of normaliza-
tion, illustrates this link in the case of Kolmogorov operators.
It seems to be intuitive that sparsity ϕ of a stochastic matrix
can be associated with rank r of a quantum channel [127].

Thus, in the ultimate limit ϕ = r = 1, quantum versions
of stochastic maps—that are permutations now—are rank-one
channels—that are unitaries. It is tempting to extend this anal-
ogy beyond the limit ϕ = r = 1 and state that mixed-unitary
channels (convex combinations of unitaries) are quantum ver-
sions of bistochastic matrices (that are, according to Birkhoff,
convex combinations of permutations [128]).

However, there is also a notion of double stochastic (or
unital) channels [127]. The two classes, mixed unitaries and
bistochastic channels, are not identical: there are double
stochastic channels that are outside of the convex hull of
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unitaries [129]. What class to associate with classical bis-
tochastic maps is then a matter of taste [130]. To resolve
the dichotomy, one could rely on the concept of superdeco-
herence [40] and state that all channels which have classical
bistochastic matrices as their fully decohered versions, are
quantum analogs of the matrices. In this case, the broader
class of double stochastic channels is chosen [130].

The superdecoherence-based reasoning can also be applied
to generators. In this case, the unitary (Hamiltonian) part of
a Lindblad operator does not play any role since it vanishes
in the limit of complete decoherence [40] and the quantum
sparsity is defined by the rank of the dissipative part (the
minimal number of jump operators).

Interestingly, Lindblad operators of ultralow rank r = 1
were considered in Refs. [52] and [131]. Features similar to
ones we detected for ultrasparse Kolmogorov operators were
reported (e.g., the spectral gap is defined by a real-valued
outlier with position independent of D).
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APPENDIX A: MODELS IN FIG. 1

In the following, we denote spin creation and annihilation
operators as σ+ and σ−, respectively. We split the generator
matrix K into an off-diagonal matrix M and a diagonal matrix
J such that K = M − J and the diagonal entries of J are
the sums of the columns of M.

In Fig. 1(b), we show the totally asymmetric simple ex-
clusion process on a ring with L = 12 sites and staggered
hopping amplitudes. The M matrix is given by [76]

M = 1

2
σ+

1 + 1

2
σ−

1 +
L∑

j=1

p jσ
−
j σ+

j+1, (A1)

where p j = 1 if j is even and p j = 0.2 if j is odd.
In Fig. 1(c), we show the ASEP on a chain of length L =

12 with open boundary conditions and next-nearest-neighbor
hopping. The M matrix is given by

M = σ+
1 + σ−

L +
L∑

j=1

σ−
j σ+

j+1 +
L/2∑
j=1

σ−
2 jσ

+
2 j+2. (A2)

In Fig. 1(d), we show the spectrum of a single particle
hopping on a 65 × 65 grid with periodic boundary conditions
and random hopping amplitudes. The M matrix is given by

M =
∑

〈(i, j),(i′, j′ )〉
p(i, j)→(i′, j′ )σ

−
i, jσ

+
i′, j′ , (A3)

where 〈. . . 〉 denotes summation over nearest neighbors and
p(i, j)→(i′, j′ ) are randomly uniformly chosen between 0 and 1
under the constraint that p(i, j)→(i′, j′ ) = 1 − p(i′, j′ )→(i, j). This
diffusion model can of course be extended to many particles,
but we choose to show the single-particle sector here.

In Fig. 1(e), we show the spectrum of a contact process [28]
on a chain with L = 12 sites and open boundary conditions.
The master equation is generated by −H , where H is given by

H =
L∑

i=1

Mi +
L−1∑
i=1

[niQi+1 + Qini+1] (A4)

and

M =
(

0 −1
0 1

)
, n =

(
0 0
0 1

)
, Q =

(
1 0

−1 0

)
. (A5)

Finally, in Fig. 1(f), we show the spectrum of the generator
matrix K of a gene transcription model taken from Ref. [20].
The following master equations model the accumulation and
release of mechanical strain of DNA during transcription.
The parameters chosen for the spectral data in Fig. 1(f) are
the mRNA transcription rate r = 2 and decay rate λ = 0.05,
the maximum number of transcripts until no further strain
can be put on the DNA mc = 10, the relaxation rate of the
DNA string g = 0.05 and a maximum number of transcription
events mmax = 400 to make the generator matrix M finite. By
m, we denote the number of current transcripts and by α the
number of transcripts made since the last relaxation event.
Then, for 0 � m � mmax and 1 � α � mc − 1, the master
equation reads

d

dt
Pα = − (r + g + λm)Pα (m, t ) + λ(m + 1)Pα (m + 1, t )

+ rPα−1(m − 1, t ), (A6)

while for α = 0 we have
d

dt
P0 = − (r + g + λm)P0(m, t ) + λ(m + 1)P0(m + 1, t )

+ g
mc∑

α=0

Pα (m, t ), (A7)

and for α = mc:

d

dt
Pmc = − (g + λm)Pmc (m, t ) + λ(m + 1)Pmc (m + 1, t )

+ rPmc−1(m − 1, t ). (A8)

APPENDIX B: SAMPLING OF SPARSE RANDOM
GENERATORS

To obtain a sparse random generator matrix, our approach
involves first sampling a random directed graph with D ver-
tices and both in- and out-vertex degrees of ϕ. Subsequently,
the nonzero elements of the corresponding adjacency matrix
are sampled from a common positive distribution. This pro-
cedure results in the off-diagonal matrix M. The random
Markov generator matrix is then constructed as K = M − J ,
where J is a diagonal matrix with diagonal elements equal to
the sums of the columns of M.

The random directed graph is generated by iteratively con-
necting each vertex to ϕ other vertices, while rejecting edges
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if the corresponding vertex already has ϕ incoming edges. For
the final vertices, it may not be feasible to connect to other
vertices without violating the constraint of ϕ incoming edges
for each vertex. In such cases, the entire process is restarted.
To mitigate the risk of restarting the procedure, we reduce the
probability of connecting to a vertex that already has a high
degree. Following this approach, we find that we rarely need
to restart the algorithm for the matrix sizes and vertex degrees
ϕ examined in this paper.

To compute the eigenvalues of the Markov matrices, we
utilize an exact diagonalization method, while the Arnoldi
method is employed to calculate the spectral gap. We deem an
eigenvalue to have converged once the norm of the residuals
of the Schur vectors is less than 10−12.

APPENDIX C: ANALYTICAL RESULTS FOR
THE BULK SPECTRUM

In this Appendix, we will derive the analytical results of the
estimated mean μ(λ) in Eq. (7) and the estimated pseudovari-
ance in Eq. (11) in the main text and show that 1

D

∑
j=1 λ j

concentrates around its average 〈. . . 〉.
Denote by ι the function ι : {1, . . . , ϕ} × {1, . . . , D} →

{1, . . . , D}2 with ι(l, j) = (i, j), where i is the lth nonzero
index in column j in M. Note that ι(l, j) = (i, j) implies
i 
= j and l → ι(l, j) is injective for fixed j. Further, in this
Appendix let the location of the bulk be denoted as

μ(λ) = 1

D

D∑
j=1

λ j = 1

D
tr(K)

and the pseudovariance as

σ 2(λ) = 1

D

D∑
j=1

λ2
j −

⎛⎝ 1

D

D∑
j=1

λ j

⎞⎠2

= tr(K2)

D
− tr(K)2

D2
.

(C1)

Here we explicitly do not include the averaging over the
matrix ensemble 〈. . . 〉 in contrast to the main text.

1. Location

The average value with respect to 〈. . . 〉 of the location μ(λ)
can then be computed as

〈μ(λ)〉 =
〈

1

D
tr(K)

〉
= 1

D

D∑
j=1

〈Kj j〉

= 1

D

D∑
j=1

ϕ∑
l=1

〈Kι(l, j)〉 = −ϕμ0,

where we used that 〈Kι(l, j)〉 = −μ0. This is Eq. (7) in the main
text. Similarly,

〈tr(K)2〉 =
D∑

j1, j2=1

ϕ∑
l1,l2=1

〈
Kι(l1, j1 )Kι(l2, j2 )

〉

=
D∑

j=1

⎡⎣ ϕ∑
l=1

〈
K2

ι(l, j)

〉+ ∑
l1 
=l2

〈
Kι(l1, j)Kι(l2, j)

〉⎤⎦
+
∑
j1 
= j2

ϕ∑
l1,l2=1

〈
Kι(l1, j1 )Kι(l2, j2 )

〉
.

Although the off-diagonal elements of K are weakly depen-
dent because of the constraint that the number of nonzero
elements per row and column has to equal ϕ, the nonzero
elements Kι(l, j) are independent. Hence, 〈Kι(l1, j)Kι(l2, j)〉 =
〈Kι(l1, j)〉〈Kι(l2, j)〉 and 〈Kι(l1, j1 )〉〈Kι(l2, j2 )〉, so

〈tr(K)2〉 = Dϕ
(
σ 2

0 + μ2
0

)+ Dϕ(ϕ − 1)μ2
0 + D(D − 1)ϕ2μ2

0

= Dϕσ 2
0 + (Dϕμ0)2,

where we used that the second moment 〈K2
ι(l, j)〉 equals σ 2

0 +
μ2

0. This implies that

〈μ(λ)2〉 − 〈μ〉2 =
〈

tr(K)2

D2

〉
−
〈

tr(K)

D

〉2

= ϕσ 2
0

D
.

The right-hand side vanishes for increasing D and ϕ growing
slower with D than linear. Relatively to 〈μ(λ)〉, the typical
deviation of μ(λ) from its average value always vanishes for
either increasing D or ϕ as√

〈μ(λ)2〉 − 〈μ〉2

|〈μ(λ)〉| = σ0

μ0
(ϕD)−1/2.

2. Complex pseudovariance

The first term in the averaged pseudovariance given by
Eq. (C1) can be calculated as

〈tr(K2)〉 =
D∑

i, j=1

〈Ki jKji〉 =
D∑

i=1

〈
K2

ii

〉+∑
i 
= j

〈Ki jKji〉. (C2)

We proceed with
∑D

i=1〈K2
ii 〉 in Eq. (C2) and get

D∑
i=1

〈
K2

ii

〉 = D∑
i=1

〈⎛⎝−
∑
j 
=i

Kji

⎞⎠2〉

=
D∑

i=1

∑
j,l 
=i

〈KjiKli〉

=
D∑

i=1

∑
j 
=i

〈
K2

ji

〉+ D∑
i=1

∑
j,l 
=i; j 
=l

〈Kji〉〈Kli〉. (C3)

The former sum in Eq. (C3) is given by

D∑
i=1

∑
j 
=i

〈
K2

ji

〉 = D∑
i=1

ϕ∑
l=1

〈
K2

ι(l,i)

〉 = Dϕ
(
σ 2

0 + μ2
0

)
, (C4)

where again we used that 〈K2
ι(l,i)〉 = σ 2

0 + μ2
0, while the latter

sum in Eq. (C3) is

D∑
i=1

∑
j,l 
=i; j 
=l

〈Kji〉〈Kli〉

=
D∑

i=1

ϕ∑
k=1

ϕ∑
n=1;ι(n,i)
=ι(k,i)

〈Kι(k,i)〉〈Kι(n,i)〉

= Dϕ(ϕ − 1)μ2
0. (C5)
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Combining Eqs. (C4) and (C5), we get

D∑
i=1

〈
K2

ii

〉 = Dϕ
(
σ 2

0 + μ2
0

)+ Dϕ(ϕ − 1)μ2
0

= Dϕσ 2
0 + Dϕ2μ2

0.

Now we are left with calculating
∑

i 
= j〈Ki jKji〉, the second
term in Eq. (C2),∑

i 
= j

〈Ki jKji〉 =
D∑

i=1

ϕ∑
l=1

〈Kι(l,i)Mι(l,i)〉,

where the ι denotes swapping the first and second compo-
nent. Note that Kι(l,i) is not necessarily a nonzero entry of
K, hence Kι(l,i) and Kι(l,i) depend weakly on each other. In
the large D limit, we can assume that the dependence is
sufficiently weak and we treat Kι(l,i) and Kι(l,i) as independent,
thus 〈Kι(l,i)Kι(l,i)〉 = μ0〈Kι(l,i)〉. By the assumed independence
the mean of every entry in the ith row, except the diagonal, is
〈Kι(l,i)〉 = ϕ

Dμ0. Hence,

∑
i 
= j

〈Ki jKji〉 =
D∑

i=1

1

D
ϕ2μ2

0 = ϕ2μ2
0.

Collecting the above results, we arrive at

〈tr(K2)〉 = Dϕσ 2
0 + Dϕ2μ2

0 + ϕ2μ2
0

= Dϕσ 2
0 + (D + 1)ϕ2μ0.

The second term of the averaged pseudovariance in
Eq. (C1) has been calculated in the previous subsection,

〈tr(K)2〉 = Dϕσ 2
0 + (Dϕμ0)2.

Finally, we can evaluate

〈σ 2(λ)〉 =
〈

tr(K2)

D

〉
−
〈

tr(K)2

D2

〉
= ϕσ 2

0 + ϕ2μ2
0 + 1

D
ϕ2μ2

0 − 1

D
ϕσ 2

0 − ϕ2μ2
0

= ϕ

(
σ 2

0 + ϕ

D
μ2

0 − 1

D
σ 2

0

)
,

which is Eq. (11) in the main text.

APPENDIX D: BOUND OF SPECTRAL GAP FOR
SYMMETRIC M

In this Appendix, we give the proof of Eq. (19). Let
K = M − J be a symmetric generator matrix. By Eq. (17),
we have to show that vtKv � min1�l�D Jll + O(D−1) for the
vector v given

vi =
⎧⎨⎩
√

1 − 1
D i = l

− 1√
D(D−1)

i 
= l,

where 1 � l � D is arbitrary. It is easy to see that |v| = 1 and
v ⊥ v1. So, we proceed with

γ∗ � vt (J − M)v =
D∑

i, j=1

viv j (J − M)i j

=
D∑

i=1

v2
j J j j −

D∑
i, j=1

viv jMi j

=
D∑

i, j=1

v2
j Mi j −

D∑
i, j=1

viv jMi j

=
D∑

i, j=1

v jMi j (v j − vi ). (D1)

Note that any summand in Eq. (D1), where either i = j = l or
i 
= l , and j 
= l is zero. Inserting the definition of v, we get

γ∗ �
∑
i 
=l

vlMil (vl − vi ) +
∑
j 
=l

v jMl j (v j − vl )

=
∑
i 
=l

√
1 − 1

D
Mil

(√
1 − 1

D
+ 1√

D(D − 1)

)

−
∑
j 
=l

1√
D(D − 1)

Ml j

(
− 1√

D(D − 1)
−
√

1 − 1

D

)

=
(√

1 − 1

D
+ 1√

D(D − 1)

)

×
∑
i 
=l

[√
1 − 1

D
Mil + 1√

D(D − 1)
Mli

]
. (D2)

After collecting all the prefactors in Eq. (D2), the spectral gap
is upper bounded by

γ∗ �
∑
i 
=l

[
Mil + 1

D − 1
Mli

]
= Jll + 1

D − 1
J̃ll ,

where we denote J̃ll = ∑
i 
=l Mil . As the number of nonzero

elements of M in every row and column is the same, the
distribution of Jll and J̃ll coincide. In the limit of large D,
Jll , and J̃ll are independent. Thus, we can approximate γ∗ �
Jll + O(D−1) at least for ϕ 	 D. As the index l was chosen
arbitrarily, we get

γ∗ � min
1�l�D

Jll + O(D−1),

which is Eq. (19) in the main text.
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[91] L. Erdős and A. Knowles, Quantum diffusion and eigenfunc-
tion delocalization in a random band matrix model, Commun.
Math. Phys. 303, 509 (2011).

014102-18

https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1103/PhysRevLett.123.140403
https://doi.org/10.1088/1751-8121/ab4d26
https://doi.org/10.1063/5.0033486
https://doi.org/10.1088/1751-8121/ab9337
https://doi.org/10.1103/PhysRevE.80.021140
https://doi.org/10.1002/cpa.21496
https://doi.org/10.1103/PhysRevA.46.844
https://doi.org/10.1103/PhysRevE.52.3512
https://doi.org/10.1088/0305-4470/37/10/001
https://doi.org/10.1088/0305-4470/38/7/001
https://doi.org/10.1088/1742-5468/2006/12/P12011
https://doi.org/10.1088/1751-8113/41/48/485002
https://doi.org/10.1088/1751-8113/44/40/405002
https://doi.org/10.1088/1751-8113/47/37/375001
https://doi.org/10.1088/1751-8121/aa77de
https://doi.org/10.1088/0305-4470/34/16/301
https://doi.org/10.1103/PhysRevE.69.066140
https://doi.org/10.1109/TNSE.2014.2368716
https://doi.org/10.1007/s10208-016-9341-9
https://doi.org/10.1007/BF01585184
https://doi.org/10.1145/227683.227684
https://doi.org/10.1103/PhysRevX.10.021019
https://doi.org/10.1007/BF01449896
https://doi.org/10.1007/BF01023679
https://doi.org/10.1002/rsa.20759
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1103/PhysRevResearch.2.023286
https://doi.org/10.1103/PhysRevLett.64.1851
https://doi.org/10.1088/0305-4470/24/20/011
https://doi.org/10.1103/PhysRevLett.67.2405
https://doi.org/10.1103/PhysRevB.52.R11580
https://doi.org/10.4007/annals.2010.172.2223
https://doi.org/10.1007/s00220-011-1204-2


RANDOM SPARSE GENERATORS OF MARKOVIAN … PHYSICAL REVIEW E 108, 014102 (2023)
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