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A fundamental problem in the analysis of complex systems is getting a reliable estimate of the entropy of
their probability distributions over the state space. This is difficult because unsampled states can contribute
substantially to the entropy, while they do not contribute to the maximum likelihood estimator of entropy, which
replaces probabilities by the observed frequencies. Bayesian estimators overcome this obstacle by introducing
a model of the low-probability tail of the probability distribution. Which statistical features of the observed
data determine the model of the tail, and hence the output of such estimators, remains unclear. Here we show
that well-known entropy estimators for probability distributions on discrete state spaces model the structure of
the low-probability tail based largely on a few statistics of the data: the sample size, the maximum likelihood
estimate, the number of coincidences among the samples, and the dispersion of the coincidences. We derive
approximate analytical entropy estimators for undersampled distributions based on these statistics, and we use
the results to propose an intuitive understanding of how the Bayesian entropy estimators work.
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I. INTRODUCTION

Estimating entropy—that is, the measure of uncertainty
[1,2]—of a random variable from its samples is often a key
question in the analysis of complex systems. This estima-
tion from a finite (and often small) set of samples is a hard
problem, especially for high-dimensional systems, where the
number of states that a variable can take quickly overwhelms
the number of samples N . Then many of the states, here-
after called low-probability states, have probability <1/N .
Collectively, we refer to all of these states as the tail of the
probability distribution. While there may be many samples
in the tail, each low-probability state will typically not be
sampled or will be sampled at most once. Because of the tail,
the entropy estimator that replaces probabilities of states by
their empirical frequencies [the so-called naive or maximum
likelihood (ML) estimator [3]] has a large sample-size-
dependent bias [4]. Corrections have been derived to over-
come this bias [5–7], but these tend to be valid only in the
well-sampled regime. Outside of this regime, Bayesian [8–10]
and some nonparametric [11–13] estimators may still result in
low bias estimates by imposing a priori assumptions on the
probabilities of the low-probability states.

Although these Bayesian and nonparametric estimators
perform well on some data sets, it is known that no estimator
can be universally unbiased in this regime [4,14]. Thus it is
crucial to understand how these estimators extract information
about entropy from data, and hence when they will fail. Unfor-
tunately, such a theoretical understanding is missing for many
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estimators. Ma was the first to point out that estimation of en-
tropy is possible for poorly sampled uniform distributions by
analyzing particular statistics of the data: coincidences [15].
Nemenman extended the theoretical idea that coincidences
determine entropy to nonuniform distributions obeying some
Bayesian priors [16]. However, a similar theoretical under-
standing is still missing in a broader context, and it remains
unclear which statistics of data, in addition to the number of
coincidences, may contribute to entropy estimation and why.

In this paper we analytically investigate two Bayesian esti-
mators: that of Nemenman, Shafee, and Bialek [9,17] and that
of Archer and Pillow [10]. We focus on the regime, which is
arguably the most important for real-life applications, where
the number of states with at least one sample, K1, is similar
to the total number of samples, K1 ∼ N � 1, and yet K1 < N ,
so that there are coincidences in the data. Outside of this
regime, the probability distribution is either well sampled (so
that many different methods for entropy estimation would
work) or there are no coincidences at all (so that entropy esti-
mation is impossible). In our regime of interest, we show that
the result of the estimation by the studied estimators depends
on the ML entropy estimate S0, the number of coincidences,
and on two measures of dispersion of coincidences. The first
of these, K2, is the number of states with at least two samples.
The second, which we call Q1, characterizes the spread of
coincidences over states with three or more samples.

We show that the values of these statistics are related to
the structure of the tails of the probability distribution that is
assumed by the estimators. Specifically, a short, exponential
tail is more likely to be inferred by the estimators when
there many coincidences or they are dispersed. If the num-
ber of coincidences is intermediate, and the coincidences are
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FIG. 1. Relation between assumptions about the tail structure
and the statistics that determine entropy estimation. The set of
unsampled states, qi � 1/N , which we refer to as the tail, may
contribute substantially to the entropy. However, the ML estimation
overlooks this contribution. If the rank-ordered plot of the tail is
exponential with the scale α (top panel), then the tail has effec-
tively α states, which contribute δS ∼ log α to the entropy. While
the tail cannot be observed directly, it pulls samples from the head
of the distribution, so that the number of coincidences, �, in the
head decreases as α grows. Thus one can estimate α and hence
the entropy itself from �. Alternatively, if the rank-ordered plot
of the tail has a power-law structure with the exponent −1/d , then
the tail does not have a finite effective size (bottom panels). Then its
contribution to entropy depends on d as δS ∼ (1 − d )−1. In this case
one can estimate d , and hence the entropy, from the dispersion of the
coincidences, which depends, in part, on how many samples happen
once or more, K1, or twice or more, K2, in the dataset.

concentrated, then the estimators infer a long tail. Between
these two regions, a mixed tail dominates. We show that the
studied estimators correct maximum likelihood and that the
correction is larger when there are fewer coincidences and
they are concentrated, which in turn happens with a large
exponential tail or a slowly decaying long tail. This under-
standing relates the observable data statistics to assumptions
that Bayesian estimators make about the underlying probabil-
ity distributions (see Fig. 1) and hence provides an intuitive
explanation for how these estimators work and, crucially,
when they fail.

II. OVERVIEW OF BAYESIAN ENTROPY ESTIMATION

Given a probability distribution {qx} = q for a discrete one-
dimensional random variable X , its entropy is defined as [1]

S(q) = −
∑

x

qx log qx. (1)

Note that we use the natural logarithm throughout this paper,
and hence entropy is measured in nats. One is often faced with
a problem when S must be estimated for unknown qx from
a set of N samples {x1, . . . , xN } from the probability distri-
bution. The ML estimator of entropy, S0, is then defined by
replacing the probabilities with frequencies qx → q̂x = nx/N ,

S0 = S(q̂) = −
∑

x

nx

N
log

nx

N
. (2)

States with zero frequencies in the sample do not contribute
to S0 resulting typically in underestimation of the entropy [4].
In general, because of this low-probability tail, estimation of
entropy from data is very hard when the number of samples
is smaller than the number of effective states of the variable,
N � exp(S).

Bayesian estimators address the problem by imposing var-
ious a priori assumptions p(q). One then uses Bayes’ theorem
to infer the a posteriori distribution of q, and finally integrates
over q to get the a posteriori distribution or moments of
entropy. Specifically, the mean posterior entropy Ŝ = 〈S|n〉
given the counts n = {nx} of how many times state x was
sampled is given by

Ŝ = 〈S|n〉 =
∫

S(q)p(S|q)p(q|n) dq

=
∫

S(q)δ

(
S +

∑
x

qx log qx

)
p(q|n) dq, (3)

where p(q|n) is the posterior over q under some prior p(q),

p(q|n) = p(n|q)p(q)

p(n)
=

∏
x qnx

x p(q)

p(n)
. (4)

For distributions with known finite size A of the space of
the possible outcomes (a.k.a. the alphabet size), the Dirichlet
distribution is often chosen as a prior due to its conjugacy with
the categorical distribution:

p(q) = Dirichlet(q|λ) ∝
A∏

i=1

qλ
i , (5)

where λ is known as the concentration parameter.
Note that any chosen prior p(q) implicitly imposes as-

sumptions on the structure of the low-probability tail (and
hence its contribution to the entropy) based on the observed
statistics of the well-sampled part of the probability distri-
bution. However, these implicit assumptions usually are not
made explicit, and they remain mysterious even for the most
commonly used Bayesian estimators. Lifting this veil is the
goal of this work.

A. The Nemenman-Shafee-Bialek (NSB) estimator

Nemenman et al. [9] showed that for variables with the
finite alphabet size, A, Dirichlet priors on q with a fixed
value for the concentration parameter λ correspond to a highly
concentrated a priori distribution on entropy, which persists
for large sample sizes. This bias induces incorrect entropy
estimates, which nonetheless have low variance and hence
are certain about their outputs. To address this issue, Ref. [9]
suggested a Dirichlet-mixture prior

pNSB(q) =
∫

Dirichlet(q|λ)pprior (λ) dλ, (6)

where p(λ) are the mixture weights determined by

pprior (λ) ∝ ∂λ〈S|λ〉 = Aψ1(Aλ + 1) − ψ1(λ + 1), (7)

and where 〈S|λ〉 is the a priori expected entropy under the
Dirichlet(q|λ) prior, and ψ1(·) is the tri-gamma function [18].
This choice of weights implies a nearly uniform a priori
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distribution for the entropy S on the interval [0, logA]. As
was argued by Nemenman et al. [9], absent prior knowledge of
the underlying distribution of the data, a uniform prior on the
entropy S is more likely to result in its unbiased estimation for
a wide class of probability distributions. The resulting entropy
estimate is then

ŜNSB = 〈S|n〉 =
∫∫

S(q)p(q|n, λ)p(λ|n) dq dλ

=
∫

〈S|n, λ〉 p(n|λ)pprior (λ)

p(n)
dλ. (8)

Here 〈S|n, λ〉 is the posterior mean entropy under the prior
Dirichlet(q|λ), and p(n|λ) is the evidence (which has a Polya
distribution) [19]

p(n|λ) =
∫

p(n|q)p(q|λ) dq

= N!�(Aλ)

�(λ)A�(N + Aλ)

A∏
i=1

�(ni + λ)

ni!
, (9)

where �(·) is the gamma function [18]. Using the analyti-
cal expressions for the first two moments of posterior mean
entropy 〈S|n, λ〉 (available from Refs. [8,9]), one then uses
one-dimensional numerical integration over λ to obtain ŜNSB.

B. The Dirichlet and the Pitman-Yor processes

When the size of the state space is unknown or infinite,
the standard NSB construction does not work. Then one com-
monly uses one of the following two stochastic processes to
construct a prior p(q) over a countably infinite state space:
the Pitman-Yor process (PYP) [20] and its special case, the
Dirichlet process (DP) [21]. To specify these processes, one
requires two inputs: a parameter vector and a base distribution.
Parameters of the PYP are known as the discount parameter
d , 0 � d < 1, and the concentration parameter α. The pa-
rameters control the shape of typical distributions generated
by the process. Specifically, d controls the structure of the
low-probability tail of q, so that the tail typically decays
as qx ∝ x−1/d . The concentration parameter α controls the
probability mass near the head of the distribution. In the limit
d → 0, PYP(d, α) becomes the Dirichlet process, DP(α). In
other words, the DP generates distributions with short tails.

When the base distribution is the Beta distribution,
one draws samples qx ∼ PYP(d, α) via the so-called stick-
breaking process [22], which uses an infinite sequence of in-
dependent Beta-distributed random variables βx ∼ Beta(1 −
d, α + xd ), so that

q̃x = βx

x−1∏
y=1

(1 − βy). (10)

Thus obtained q̃ are not strictly decreasing with x, and so one
obtains a strictly nonincreasing distribution q from them by
rank ordering.

C. Expectations over DP and PYP posteriors

Previous studies [23] showed that PYP priors (for multi-
nomial observations) yield a posterior p(q|n, α, d ), which

consists of two parts: the probability of K1 states that ex-
ist in the sample with the counts of, at least, one, and the
probability of states that are not sampled. We will denote the
set of states with nonzero counts as K, and its cardinality is
K1 = ||K||. Then the first term of the posterior is given by
the Dirichlet distribution, p(q ∈ K|μ) ∝ ∏

x qμx
x , where μ is

a concentration vector μ = (n1 − d, . . . , nK1 − d, α + K1d ).
This leaves the probability of q∗ = 1 − ∑

x∈K qx for the unob-
served states. In other words, the states with nonzero counts
contribute the following to the posterior:

p(q ∈ K|n) = p(q1, . . . , qK1 , q∗|n)

= Dirichlet(n1 − d, . . . , nK1 − d, α + K1d )

∝ qα+K1d
∗

K1∏
i=1

qni−d
i . (11)

For the states that have no samples, the posterior is equal to
the prior. Thus their contribution to the posterior is the PYP,
normalized by their total probability being q∗:

p(q �∈ K) = p(qK1+1, qK1+2, . . . ) = q∗PYP(d, α + K1d ).

(12)

Overall, this yields a closed-form solution for the posterior
mean and variance of the entropy S. Specifically, the resulting
posterior mean 〈S|n, α, d〉 is

〈S|n, α, d〉 = ψ (α + N + 1) − α + K1d

α + N
ψ (1 − d )

− 1

α + N

(
K1∑

x=1

(nx − d )ψ (nx − d + 1)

)
, (13)

where ψ (x) = ∂x log �(x) is the di-gamma function [18]. Un-
fortunately, this is usually not a good estimate of entropy
since, for fixed α and d , the prior PYP(d, α) on q corresponds
to a highly concentrated a priori distribution on entropy, just
like was noted before in the context of the NSB estimator. To
counter this, Archer and Pillow [10] followed the NSB pre-
scription and introduced a prior (mixture) over the parameters
of PY P(d, α), pprior (α, d ), which uniformized the induced
prior over entropy (with the caveat that, for a distribution
on a countable alphabet, the entropy may be infinite, and
hence strict uniform distribution over entropy is impossible).
Specifically, they used

pprior (α, d ) = p(γ ) = e−10/(1−γ ), where (14)

γ = [ψ (1) − ψ (1 − d )]/[ψ (α + 1) − ψ (1 − d )], (15)

and then they confirmed numerically that this choice of the
prior leads to good estimates of entropy for various test data
sets. In other words, they proposed a new estimate of entropy,
the Pitman-Yor mixture (PYM):

ŜPYM = 〈S|n〉 =
∫

〈S|n, α, d〉pposterior (α, d|n) d (α, d )

=
∫

〈S|n, α, d〉 p(n|α, d )pprior (α, d )

p(n)
d (α, d ), (16)
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where 〈S|n, α, d〉 is given in Eq. (13). The evidence p(n|α, d )
is then given by (see Ref. [10] for a detailed derivation)

p(n|α, d ) = �(1 + α)
∏K1

l=1(α + ld )
∏K1

x=1 �(nx − d )

�(1 − d )K1�(α + N )
. (17)

Note that taking d → 0 in Eqs. (16) and (17) and making the
identification α = Aλ in the limits λ → 0 and A → ∞ such
that α is finite, result in a countably infinite analog of the NSB
estimator.

III. DETERMINING DATA STATISTICS THAT DEFINE
ENTROPY ESTIMATES

In the section we approximate the likelihood function of
the PYP, Eq. (17), analytically in terms of coincidence-based
data statistics. We then numerically show that the resulting
analytical entropy estimates are close to the exact PYMe
estimator. We focus on the regime where the ML entropy esti-
mator fails dramatically. For this, we study random variables
with many accessible states in the regime where the number
of unique samples, K1, is of the order of the total sample size
N . This regime corresponds to K1 � N � exp(S), where N is
the number of samples and S is the true entropy.

We start by considering the log-likelihood function, which
is the logarithm of the evidence p(n|α, d ) in Eq. (17):

L(n|α, d ) = log �(1 + α) − log �(N + α) + log �

(
α

d
+ K1

)

− log �

(
α

d
+ 1

)
+

K1∑
i=1

log �(ni − d )

− K1 log �(1 − d ). (18)

We now define Km as the number of states with at least m
counts in the total sample of size N , Km = ∑

ni�m 1. We de-
note by m f the largest occupancy of any state in the sample.
Further, we define K as the vector whose mth element is Km.
We note that for any function f (n),∑

i

f (ni ) =
∑

m

(Km − Km+1) f (m). (19)

Thus, in particular, the log likelihood L(n|α, d ) can be viewed
as L(K|α, d ). With this, we can expand Eq. (18) around d = 0
to get (see Appendix A 1 for details):

L(n|α, d ) ≈ La(K|α, d ) ≡ log �(1 + α) − log �(N + α)

+ log �
(α

d
+ K1

)
− log �

(α

d
+ 1

)
+ (K1 − 1) log d + K2 log(1 − d ) − Q1d

+ O(d2), (20)

where

Q1 =
m f∑

m=3

Km

m − 1
, (21)

and the subscript a denotes the d → 0 asymptotic nature of
the expression.

By rewriting the ML estimate S0 of Eq. (2) in terms of
coincidences (see Appendix A 2), using the identity Eq. (19),

and approximating certain terms that are finite in the limit
d → 1 via a Taylor expansion around d � 1, the mean poste-
rior entropy, Eq. (13), results in (see Appendix A 3):

〈S|n, α, d〉 ≈ 〈S|K, α, d〉a ≡ ψ (N + α + 1) −
(

α + K1

α + N

)

× ψ (1 − d ) + 1

α + N

[
N (S0 − log N ) − K1

+ K2(log 4 − 1 − ψ (2 − d )) + Q1d

+ O

(
d2,

∑
m=3

Km

(m − 1)2

)]
, (22)

where O(d2,
∑

m=3 Km/m2) means that we kept terms that are
at most linear in d and at most proportional to

∑
m=3

Km
(m−1) .

Interestingly, within this approximation, the log likelihood
and the posterior mean entropy depend on the sample size N ,
the ML entropy estimate S0, and the three characteristics of
the coincidence vector: K1, K2, and Q1.

The final step in approximating the estimator ŜPYM,
Eq. (16), is to integrate the expected entropy for fixed hyper-
parameters 〈S|K, α, d〉a over the posterior pposterior (α, d|n) ∝
p(n|α, d )pprior (α, d ) to form the PYM. Then the variance of
the resulting estimator is dominated by the contribution from
the uncertainty in the posterior distribution of the parame-
ters α, d , which is about 80% of the total variance in our
simulations.

This procedure of replacing 〈S|n, α, d〉 with the asymptotic
expression 〈S|K, α, d〉a in Eq. (16) leads to a new estimator
of entropy, which we call the approximate PYM estimator, or
aPYM. This estimator is fully determined by just a few data
statistics, N , S0, K1, K2, and Q1. There are also two limiting
cases of this estimator. First, by taking d → 0 in Eqs. (20) and
(22), we define the approximate version of the NSB limit of
the PYM estimator on a countably infinite number of possible
outcomes, which we denote as aNSB. At the other extreme,
taking α → 0 in Eqs. (20) and (22), corresponds to a prior
that favors distributions with long tails. We denote the corre-
sponding estimator as Ŝlong.

The above observation that, in the undersampled regime
where exp(S/2) < N < exp(S), the PYM entropy estimator
and its relatives are determined approximately by just a few
statistics of the data, {N, S0, K1, K2, Q1}, is the main result
of our paper. To corroborate this, we explore the quality of
the approximation numerically for different distributions q.
Figure 2 presents results for three distributions with different
structures of tails, generated from the PYP: a distribution
with an exponential tail [Fig. 2(a), PYP(d = 0, α = 400) =
DP(400)], one with a mixed tail [Fig. 2(b), PYP(d = 0.4, α =
100)], and one with a long tail [Fig. 2(c), PYP(d = 0.6, α =
0)]. In the lower panels we show the results of estimating
entropy for different dataset sizes using the ML estimator, the
PYM estimator, the NSB estimator with a large alphabet size
A = 20K1, and the three approximations: aPYM, aNSB, and
Ŝlong. All results are averaged over ten sets of random samples.
In all cases, the differences between NSB and aNSB on the
one hand and PYM and aPYM on the other are negligible,
supporting the accuracy of the approximation. All four of
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(a) (b) (c) 

(d) (e) (f) 

FIG. 2. Comparison between PYM and related estimators and their approximations for distributions with different tails. The upper panels
(a–c) show the distributions, whose entropy is being estimated. The lower panels (d–f) show the corresponding entropy estimates as a function
of the number of samples, averaged over ten sets of samples. The full estimators, PYM and NSB (with a large alphabet size A = 20K1), almost
overlap with our approximations, aPYM and aNSB. The insets in the lower panel (d–f) show the logarithm of the absolute deviation |�S| of
the entropy estimates from the true entropy. In all panels we show results for the ML (black), NSB (blue [dark-gray]), aNSB (dashed blue
[dark gray]), PYM (orange [light gray]), aPYM (dashed orange [light gray]), and Ŝlong (green [top curve]) estimators. The dashed gray line
represents the true value of entropy for each of the studied distributions.

these estimators produce high-quality estimates for all sample
sizes. Further, we also checked that the approximation of the
posterior error of the estimators is close to that of the full ver-
sions (not shown). In contrast, Ŝlong performs well only when
the distribution has a long tail, and the maximum likelihood
never works well.

IV. TAIL HYPOTHESIS AND ENTROPY ESTIMATION
PHASE DIAGRAMS

The above discussion shows that the PYM estimator and its
relatives work by first estimating the most likely α and d from
the sampled data, and then using these estimated parameters
to approximate the structure of the low-probability tail (from
short to long) and hence of its contributions to the entropy.
We further showed that, in the regime of interest, the log
likelihood of α and d is dominated by just few statistics:
N , S0, K1, K2, and Q1. It is thus illustrative to understand,
which combinations of these statistics select which hypothesis
on the structure of the tail. Building the corresponding phase
diagram of the selected tail structure as a function of the data
statistics is the goal of this section.

We will consider three classes of tails: exponential (d =
0 selected, denoted as hypothesis H = 1), long tail (α = 0
selected, denoted as hypothesis H = 2), and a mixed tail
(arbitrary α and d , denoted as H = 3). Our goal is then to
evaluate which of the three tail hypotheses has a higher prob-
ability given the data. Long and short tail hypotheses have
one parameter each, while the mixed tail hypothesis has two
parameters and contains the other two hypotheses as special
cases. Thus when evaluating the log likelihoods of each of
the hypotheses, we must penalize them for having a different

number of parameters, which we do using the Bayesian infor-
mation criterion [24]. To do this, we evaluate the likelihoods

LH = log p(K|α̂, d̂ ) + log pprior (α̂, d̂ ) − nH

2
log N, (23)

where α̂ and d̂ are the ML values of the parameters within
each hypothesis, and nH is the number of parameters for the
hypothesis (nH = 2 for H = 3, and nH = 1 otherwise). We
remind the reader that, by construction, α̂ = 0 for the long tail
hypothesis, H = 2, and d̂ = 0 for the short tailed hypothesis,
H = 1.

We determine the regions of the N, S0, K1, K2, Q1 space,
where one of the three LH dominates, and plot the slice of this
phase diagram in Fig. 3. Specifically, in the figure, we vary the
total number of coincidences, � = N − K1, and the number
of states with coincidences, that is, the number of states with
more than two counts, K2. By sampling many distributions,
we empirically observe that the value Q1 ∼ 0.6(� − K2)/2
is when the rest of the � − K2 counts are uniformly dis-
persed, and Q1 tends to zero when the rest of the counts are
concentrated in a single state. Note that the maximum value
Q1 can take is Qmax = �−K2

2 . For this reason, we choose the
intermediate representative value Q1 = 0.3Qmax = 0.3�−K2

2 .
To simplify the presentation, we plot the winning tail hy-

pothesis as a function of �/N and K2/K1. Normalized in
this way, the diagram is constrained to a square of size 1,
as 0 � �/N, K2/K1 � 1. In addition, K2 � �, which means
that the upper left corner is not accessible. The ratio �/N
determines how common are the coincidences, and the ratio
K2/K1 describes whether the coincidences in the data are
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(a) (b)

FIG. 3. (a) Phase diagram of the dominant tail hypothesis se-
lected by the PYM estimator as a function of various statistics of
the data sample. The explored statistics are the fraction of coin-
cidences in the sample, �/N , and dispersion of the coincidences,
K2/K1. This diagram is evaluated at the third crucial data statistics
set at Q1 = 0.3 Qmax = 0.3(� − K2)/2. (b) Schematic diagram that
illustrates how sample sets with different �, K1, and K2 may look.
An empty or gray circle above a state xi represents a single sample
for that state. Gray circles denote coincidences.

concentrates in a few states, or dispersed over many states [see
Fig. 3(b)].

Figure 3(a) shows that the exponential tail hypothesis
dominates when there are many coincidences, �/N ∼ 1, or
when the coincidences are dispersed, that is, K2/K1 ∼ 1 or
K2/� ∼ 1. Both cases can be explained as corresponding to
distributions that are relatively uniform on some fixed num-
ber of states and have zero probability elsewhere. A long
tail dominates only when the fraction of coincidences has
an intermediate value, but the coincidences are highly con-
centrated, K2/K1 � 1. In other words, in this case, there are
dominant states, but many samples still fall outside of them.
For other values of �/N and K2/K1, the mixed tail hypothesis
dominates.

Equipped with this picture of which tail hypothesis is se-
lected by the PYM estimator as a function of data statistics,
we now can calculate how the estimator corrects the ML
entropy value S0 for different data statistics. Integrating the
mean posterior entropy 〈S|K, α, d〉a, Eq. (22), over our ap-
proximation of the posterior, pa(α, d|K), which we obtain
by exponentiating Eq. (20), we get the approximate PYM
estimator ŜPY M,a. The ML estimate S0 enters linearly in the
posterior mean entropy, Eq. (22). Thus we write

〈S|K, α, d〉a = bα,d S0 + δSα,d , (24)

where bα,d and δSα,d can be read off from Eq. (22). Perform-
ing the integral over the approximate posterior, this becomes

Ŝ = δS + b S0, (25)

where δS and b are averages of the corresponding α- and
d-dependent quantities. Thus independent of the ML entropy
value, within our approximation, the PYM estimator obtains
the entropy estimate by decreasing the ML contribution from
the well-sampled head of the distribution and adding an off-
set that comes from the low-probability tail. This is similar
to so-called partition-based entropy estimators [12,17,25,26],

which divide the state space into subspaces, estimate entropy
in each subspace, and then add the estimates weighted by
the probability of being in a corresponding subspace. How-
ever, here this partitioning arises naturally from the Bayesian
framework within our approximations.

Both the scale factor and the offset depend on the dominant
α and d contributing to the estimator, and hence on the usual
statistics of the data, �, K1, K2, and Q1. Specifically, we
numerically observe that the value of b obtained from Eq. (25)
satisfies

b = 〈N/(α + N )〉 � 1, (26)

where the average is over the product of the approximate
posterior obtained by exponentiating Eq. (20) and the prior
p(γ ) = e−7γ /100 with γ defined in Eq. (15). Note that α is a
measure of how much probability is concentrated in the tail.
Thus the ratio N/(α + N ) approximates the overall weight of
the the well-sampled head of the distribution, requiring the de-
crease of the contribution to the entropy from the head by this
factor. This matches our assertion that the aPYM estimator is
a partition-based estimator, separating the head from the tail.

In Fig. 4 we show results of numerical estimation of the
offset δS and the scaling factor b as a function of the fraction
of coincidences, �/N , and the dispersion of coincidences,
K2/K1. As in the previous case, we keep Q1 = 0.3Qmax. We
also set N = 104. Figure 4(a) shows that the additive term
grows when the fraction of coincidences �/N decreases and
when K2/K1 is small, so that coincidences are concentrated.
Both of these cases correspond to substantial mass in the
tail [see the corresponding long tail region in Fig. 3(a)].
The largest values of δS occur along the boundary strip
(�/N, K2/K1 � 1) and the boundary K2 = �. Figure 4(b)
shows that the scaling factor b is close to 1 in most areas,
except near the boundary edge K2 = �. Along this boundary,
the scaling factor becomes the largest when the number of
coincidences decreases, �/N � 1. Figure 4 clearly highlights
when Bayesian corrections to the ML estimation of entropy
are essential: regions of few and concentrated coincidences.

V. DISCUSSION

The major finding of this work is an excellent approx-
imation for the PYM estimator, one of the best Bayesian
entropy estimators, and its various relatives (such as NSB).
The approximation relies on just a few summary statistics of
the data and hence simplifies the numerics considerably, while
working about as well as the PYM estimator in various data
regimes. We emphasize that the approximation shows that the
output of the PYM entropy estimator depends on just a few
statistics of the data, namely, the ML entropy estimate, the
fraction of coincidences �/N , and the dispersion of coinci-
dences K1/K2 and Q1. We showed that the workflow of the
estimator can be interpreted as first estimating the parameters
d and α based on the aforementioned statistics and with them
the tail structure and the total weight of the tail. Then the
estimator rescales the ML entropy estimate by the weight of
the well-sampled head of the distribution and adds to it the
estimated entropy of the tail. The phase diagrams of which
tail structure the estimator selects (Fig. 3) and how it corrects
the ML estimate (Fig. 4) illustrate these points.
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FIG. 4. Corrections to entropy estimation as a function of determining data statistics. We break down the final estimation for entropy
in two parts, as Ŝ = δS(�/N, K2/K1) + b(�/N, K2/K1) S0, where δS is the additive correction and b is scaling factor or weight for the ML
estimate. Well-sampled distributions are located in the upper-right corner where δS = 0 and b = 1. As in the previous plots, we leave Q1 =
0.3 (� − K2)/2. (a) Additive correction to entropy. (b) Scaling correction to entropy.

As a guide to the reader, we summarize the three different
limits of the PYM estimator considered in this work (aNSB,
Slong, aPYM), their limitations, and regimes of validity. The
aNSB estimator is a limit of the PYM estimator where the tail
exponent d → 0. This limit is valid if the rank-ordered plot
of the sample data has an exponential tail. The approximation
may not work if the underlying distribution has a heavy tail.
The Slong approximation is a limit of the PYM estimator where
the head exponent α → 0. Therefore, it is applicable for
distributions that have a heavy tail in their rank-ordered plot
of the form t−1/d for any 0 < d < 1. The approximation may
not produce a reliable estimate of entropy for data with ex-
ponentially decaying tails in their rank-ordered plot. Finally,
the aPYM approximation assumes that the underlying distri-
bution’s tail exponent d � 1, and that the coincidence tail,
summarized by the parameter Q = ∑

m�3 Km/(m − 1), satis-
fies Q � ∑

m�3 Km/(m − 1)2. It will work for distributions
whose tail is a product of an exponential and a heavy tail, as
long as that tail exponent satisfies the conditions above. aPYM
may not work well if the decay of the tail of the rank-ordered
plot of the data has an extremely slow and heavy-tailed decay,
e.g., t−1/d where 1 − d � 1.

In this work we relied on priors that were previously shown
to yield nearly flat priors on entropy. A useful extension to
our work could be in testing the sensitivity of our results to
other choices of priors. However, finding additional priors
that result in relatively uniform prior entropy distributions
is a hard task, which we leave for the future. Early work
of Ma [15] showed that when states are equiprobable, in
the undersampled regime, the coincidences in counts can
help with the inference of the entropy of a system. Later
Nemenman [16] showed that in the severely undersampled
regime (K1 close to N), entropy estimation depends on the
number of coincidences K1. Further, he pointed out how re-
liable entropy estimates may be obtained by partitioning the
overall state space of the variable into subspaces with sim-
ilar sampling properties [26]. Here we extend these results

to the whole regime where entropy estimation is challeng-
ing for multinomial observations, exp(S/2) < N < exp(S), by
approximating the more general PYM estimator. Our identifi-
cation of the small set of statistics, which define the output of
the estimator, lifts the veil from its inner workings, allowing
for a simple, semianalytical estimation procedure. In particu-
lar, this allows us to predict if a particular estimator will be
biased simply by looking at the values of the select statistics
of the data.

Using uninformative Bayesian priors requires clarity on
what it is we are ignorant about. For example, being igno-
rant about the probability distribution usually means being
a priori nearly certain about the entropy of this probability
distribution and vice versa [9]. Thus our whole approach can
be viewed as finding priors over the alphabet that correspond
to analytically or computationally tractable maximum entropy
priors on entropy for various classes of underlying probability
distributions, such as distributions with different tail struc-
tures. How to match a priori assumptions about the underlying
distributions to the data to allow for an unbiased estimation of
quantities of interest—such as entropy [10,17] or the mutual
information [27]—is an open problem [28]. It requires under-
standing the relation between the a priori assumptions and the
data features that influence the inference. In this study, we es-
tablish such a connection for entropy estimation, anticipating
that analogous connections could potentially exist for other
complex estimation issues.
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APPENDIX

1. Marginal likelihood approximation for a Pitman-Yor process

In this Appendix we show how to approximate the
marginal posterior of a Pitman-Yor process in the regime
K1 � N � exp(S). We start by manipulating each term in the
logarithm of the evidence L = log p(n|α, d ) from Eq. (17),

L(n|α, d ) =
K1−1∑
l=1

log(α + ld )

+
K1∑

i=1

log �(ni − d ) − K1 log �(1 − d )

+ log �(1 + α) − log �(N + α). (A1)

To simplify the first term in Eq. (A1), we rewrite it in terms of
coincidences K1 as follows:

I1 =
K1−1∑
l=1

log(α + ld )

=
K1−1∑
l=1

[
log d + log

(
α

d
+ l

)]
= (K1 − 1) log d

+
K1−1∑
l=1

[
log �

(
α

d
+ l + 1

)
− log �

(
α

d
+ l

)]

= (K1 − 1) log d + log �

(
α

d
+ K1

)
− log �

(
α

d
+ 1

)
.

(A2)

In order to rewrite the rest of the terms of Eq. (A1) in terms
of various coincidence statistics, we use the identity Eq. (19).
Joining the second and third terms in Eq. (A1) and rewriting
them in terms of count multiplicities yields

K1∑
i=1

log �(ni − d ) − K1 log �(1 − d )

= −K2 log �(1 − d ) +
∑
m=2

(Km − Km+1) log �(m − d )

=
∑
m=2

Km[log �(m − d ) − log �(m − 1 − d )]

=
∑
m=2

Km log(m − 1 − d )

= K2 log(1 − d ) + Q(d ), (A3)

where

Q(d ) =
m f∑

m=3

Km log(m − 1 − d ), (A4)

where m f denotes the largest occupancy of any state in the
sample. Since the domain of 0 � d < 1 is small, Q(d ) is
approximately linearly varying with d , so that we can expand

it around d = 0:

Q(d ) = Q(0) −
∑
j=1

[∑
m=3

Km

(m − 1) j

]
d j

j

≈ Q(0) −
[∑

m=3

Km

m − 1

]
d

− 1

2

[∑
m=3

Km

(m − 1)2

]
d2 + lO(Q3),

= Q0 − Q1d − 1

2
Q2d2 + O(Q3),

where

Qj =
∑
m=3

Km

(m − 1) j
(A5)

for j � 1. As d approaches 1, the term K2 log(1 − d ) goes
to infinity, which renders any error in the Taylor expansion of
Q(d ) irrelevant. This makes the approximations above useable
even if we ignore O(d2) terms.

Putting all of the approximations above together, the ensu-
ing approximate logarithm of the evidence L(n|α, d ) is

L(n|α, d ) ≈ (K1 − 1) log d + log �

(
α

d
+ K1

)

− log �

(
α

d
+ 1

)
+ log �(1 + α)

− log �(N + α) + K2 log(1 − d ) − Q1d

+ O

(
d2

∑
m=3

Km

(m − 1)2

)
, (A6)

up to an additive constant. This is Eq. (20).

2. ML entropy in terms of coincidences

To relate the conditional entropy, Eq. (13), to the ML
entropy estimator S0, we need to rewrite the latter in terms
of coincidences. Utilizing the identity Eq. (19), we write

N[S0 − log N] = −
∑

i

ni log ni

= −
∑
m=2

(Km − Km+1)m log m

= −K2(2 log 2)

−
∑
m=3

Km[m log m − (m − 1) log(m − 1)].

(A7)

Rewriting the expression in brackets as

m log m − (m − 1) log(m − 1) = 1 + ψ (m) + O(m−2)

(A8)

and plugging this into Eq. (A8), we finally obtain

N[S0 − log N] = −K2 log 4 − (N − K1 − K2)

−
∑
m=3

Kmψ (m) + O

(∑
m

Km/m2

)
. (A9)
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3. Mean posterior entropy approximation for the Pitman-Yor process

Similar to Appendix Sec. A 1, here we approximate the posterior entropy, Eq. (13), in the limit of small d . To simplify the
notation, we use the shorthand S = 〈S|n, α, d〉 in this Appendix. Rearranging Eq. (13), we obtain

(α + N )[S − ψ (N + α + 1)] = −α ψ (1 − d ) − K1 d ψ (1 − d ) −
∑

i

(ni − d )ψ (ni + 1 − d ). (A10)

We now again use Eq. (19) and a Taylor expansion in small d to rewrite the last term on the right-hand side of Eq. (A11):

K1 d ψ (1 − d ) −
∑

i

(ni − d )ψ (ni + 1 − d ) = K1 d ψ (1 − d ) −
∑
m=1

(Km − Km+1)(m − d )ψ (m + 1 − d)

= −
∑
m=1

Km[(m − d )ψ (m + 1 − d ) − (m − 1 − d )ψ (m − d )]

= −
∑
m=1

Km[1 + ψ (m − d )] (A11)

= −
∑
m=1

Km −
∑
m=1

Kmψ (m − d )

= −N − K1ψ (1 − d ) − K2ψ (2 − d ) −
∑
m=3

Kmψ (m − d ),

where we used ψ (m + 1 − d ) = [ψ (m − d ) + 1
m−d ].

Since m � 3, we can Taylor expand the sum in this last term around d = 0 to obtain∑
m=3

Kmψ (m − d ) ≈
∑
m=3

Kmψ (m) + d
∑
m=3

Kmψ ′(m) + O[d2
∑

m

Kmψ ′′(m)]. (A12)

Now using the relations ψ ′(m) = 1
m−1 + O(m−2) and the expression for

∑
m=3 Kmψ (m) in Eq. (A10), we rewrite

Eq. (A13) as∑
m=3

Kmψ (m − d ) ≈ K2 log 4 + (N − K1 − K2) − N[S0 − log N] + d
∑
m=3

Km

m − 1
+ O(d2,

∑
m=3

Km/m2), (A13)

where O(d2,
∑

m=3 Km/m2) means that we kept terms that are at most linear in d and whose summands are at most proportional
to

∑
m=3 Km/m. Plugging these approximation in Eq. (A12) and noticing that Q1 = ∑

m=3
Km

m−1 , we obtain

(α + N )[S − ψ (N + α + 1)] = N (S0 − log N ) − α ψ (1 − d ) + K1[−1 − ψ (1 − d )] + K2[−1 − ψ (2 − d ) + log 4]

− Q1 d + O

(
d2,

∑
m=3

Km/m2

)
, (A14)

which after isolating S becomes Eq. (22).
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