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Prevailing diffusion-limited analyses of evaporating sessile droplets are facilitated by a quasisteady model for
the evolution of vapor concentration in space and time. When attempting to employ that model in two dimen-
sions, however, one encounters an impasse: the logarithmic growth of concentration at large distances, associated
with the Green’s function of Laplace’s equation, is incompatible with the need to approach an equilibrium
concentration at infinity. Observing that the quasisteady description breaks down at large distances, the diffusion
problem is resolved using matched asymptotic expansions. Thus the vapor domain is conceptually decomposed
into two asymptotic regions: one at the scale of the drop, where vapor transport is indeed quasisteady, and
one at a remote scale, where the drop appears as a point singularity and transport is genuinely unsteady. The
requirement of asymptotic matching between the respective regions furnishes a self-consistent description of the
time-evolving evaporation process. Its solution provides the droplet lifetime as a universal function of a single
physical parameter. Our scheme avoids the use of a remote artificial boundary, which introduces a nonremovable
dependence upon a nonphysical parameter.
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Introduction. The evaporation of sessile droplets plays a
role in numerous physical and technological fields and has
been actively investigated for decades [1]. Often, the quan-
tity of interest is the lifetime of the droplet—the time it
takes to evaporate completely from a specified initial geome-
try [2,3]. In modeling drop evaporation, a natural idealization
is that of a semibounded vapor domain, with an equilibrium
concentration specified at infinity. Modeling is significantly
simplified by identifying the rate limiting processes [4], with
the most common description postulating diffusion-limited
transport [5–7]. With the atmosphere at the drop boundary
assumed saturated with vapor, the evaporation process is
completely described by diffusive transport, driven by the
difference between the saturation and equilibrium concentra-
tions. Due to the large disparity between that difference and
the liquid-drop density, the diffusive process is quasisteady,
with the diffusion equation approximated by Laplace’s equa-
tion.

While prevailing configurations are obviously three-
dimensional (3D), there is an interest in the companion 2D
problem, where advanced mathematical methods (e.g., con-
formal maps) may provide useful insight [8]. The use of
idealized 2D models goes back to Yarin et al. [9] who,
following Deegan et al. [10,11], analyzed deposit patterns
in evaporating droplets. Making use of their amenity to an-
alytic methods, 2D configurations have been employed to
investigate interactions between neighboring droplets [8]—a
challenging contemporary research area [12,13]. Recently, a
2D model was used for studying the effect of chemically
patterned substrates [14].

Unfortunately, these efforts have been frustrated by an
inherent incompatibility of Laplace’s equation in 2D. In-
deed, with a finite vapor flux emanating from the drop,
the vapor concentration approaches a sourcelike behavior at
large distances. With the associated logarithmic growth, it is

impossible to approach the uniform equilibrium concentration
at infinity. As a remedy, it has been common [8,9,14] to
replace the condition at infinity by an alternative condition
at an artificial remote boundary, effectively rendering the va-
por domain bounded. This procedure, however, introduces
a superfluous dependence upon the distance to the remote
boundary that does not disappear at any later stage (as is
evident by the underlying logarithmic growth in the origi-
nal unbounded domain). One may claim that the calculated
quantities of interest may still exhibit the correct qualita-
tive dependence upon the remaining (physically meaningful)
parameters of the problem. That said, we cannot avoid the
discomfort which follows from a persistent dependence upon
a nonphysical parameter—a dependence which, in a sense,
undermines the very premise underlying the use of 2D models
at the first place.

In this Letter we propose a resolution of the problem, based
upon the observation that the quasisteady approximation,
which holds in the vicinity of the drop, breaks down at large
distances away from it. At these distances, where the diffusion
equation cannot be approximated by Laplace’s equation, the
drop appears as a point singularity. The separate solutions
in the two regions are linked using the method of matched
asymptotic expansions [15]. With the goal of presenting the
simplest possible calculation that nonetheless exhibits the key
physical features, we employ the “constant-radius” model [5],
where the drop base is fixed while the contact angle instanta-
neously adjusts to the time-evolving area.

Problem formulation. A 2D droplet (density ρ) is placed
upon an infinite substrate. The drop base is 2a and the ini-
tial contact angle is α0. The drop evaporates by a diffusive
process, with a uniform vapor diffusivity D. At the drop
boundary, the vapor concentration is set to the saturation con-
centration csat; at large distances it approaches the equilibrium
concentration c∞. Assuming that a is small compared with
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FIG. 1. (a) Dimensionless geometry, with a description of the diffusion-limited problem. (b) An approximate quasisteady description for
thin droplets.

the capillary length, capillarity dominates the shape of the
free surface, which is therefore of uniform curvature. In the
above description, evaporation is animated by the difference
�c = csat − c∞. We similarly define �ρ = ρ − c∞.

We employ a dimensionless notation where length vari-
ables are normalized by a, the time t by a2α0�ρ/D�c, the
concentration c (measured relative to c∞) by �c, and the mass
flux (per unit length) J by D�c. We use Cartesian coordinates
(x, y), with the x axis coinciding with the substrate and the y
axis bisecting the drop, with vapor transport taking place for
y > 0, outside the drop. In that domain, the excess concentra-
tion c is governed by (i) the diffusion equation,

ε

α0

∂c

∂t
= ∂2c

∂x2
+ ∂2c

∂y2
, (1)

where ε = �c/�ρ, (ii) the initial condition, c = 0 for t = 0,
(iii) the saturation condition, c = 1 at the circular-arc bound-
ary, (iv) the no-flux condition,

∂c

∂y
= 0 on y = 0 for |x| > 1, (2)

and (v) the decay condition, limr→∞ c = 0, where r =√
x2 + y2. The dimensionless geometry and diffusion-limited

problem are described in Fig. 1(a).
For a given distribution of c, the instantaneous mass flux

J (t ) may be determined as an integral of ∂c/∂n over the drop
boundary. For a given J (t ), the drop evolves according to the
global balance,

α0J (t ) + (1 − ε)
dA

dt
= 0, (3)

wherein A is the drop area (normalized by a2). With the drop
boundary constrained to a circular arc of base 2, an (instanta-
neous) contact angle α uniquely sets the area as

A(α) = 2α − sin 2α

2 sin2 α
. (4)

The lifetime T is therefore obtained by integration of (3) sub-
ject to the initial condition α(0) = α0 and the final condition
α(T ) = 0, giving

α0

∫ T

0
J (t ) dt = (1 − ε)A(α0). (5)

Quasisteady transport from thin droplets. Since the liq-
uid density is much larger than the vapor concentration in
all realistic scenarios, ε is exceedingly small. The diffusion
equation (1) degenerates to Laplace’s equation. The vapor
transport becomes quasisteady, with the time t entering as a
parameter.

Assuming further a thin droplet [16–19] we are naturally
led to the limit

ε � α0 � 1, (6)

where the quasisteady approximation remains valid. The
focus on thin droplets results in the following useful simpli-
fications. First, to leading order, the drop boundary coincides
with the segment (−1, 1) on the x axis. The saturation condi-
tion thus becomes

c = 1 for |x| < 1 at y = 0. (7)

Second, since the drop shape does not affect the transport
problem, the flux J (t ) is independent of the instantaneous
contact angle α(t ). Third, as α(t ) < α0, the droplet area is
O(α0). Specifically, we observe from (4) that A(α) ∼ 2α/3.
The global balance (5) readily yields∫ T

0
J (t ) dt = 2

3
, (8)

where the dependence upon α0 enters only through J (t ). The
simplified form (8) justifies the choice of the normalizing
time scale. The quasisteady description for thin droplets is
illustrated in Fig. 1(b).

Quasisteady analysis. With a nonzero flux J and the no-flux
condition (2), Laplace’s equation implies that

c ∼ −J (t )

π
ln r as r → ∞. (9)

Thus it is impossible to satisfy the far-field decay. This is the
familiar obstacle in 2D analyses.

At this point we depart from previous investigations. Thus,
instead of introducing an artificial remote boundary, we em-
ploy the method of matched asymptotic expansions [15],
conceptually decomposing the vapor domain into two asymp-
totic regions. The first is at the scale of the drop, where the
quasisteady description is valid, and the second at appropriate
large distances (to be specified soon). With that approach,
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the decay condition is inapplicable on the drop scale, so no
incompatibility arises.

The quasisteady problem thus consists of Laplace’s
equation, the saturation condition (7), and the no-flux condi-
tion (2). These constitute a homogeneous problem for c′ =
c − 1. It follows that c′ is defined to within a multiplicative
constant, which may be identified with the flux J (t ). For
convenience, we shall temporarily regard (9) as an imposed
(inhomogeneous) condition, which will uniquely determine c′
for a given J (t ). The problem governing c′ is formulated in
the upper-half xy plane. To solve it, we form an odd extension
of c′ about the x axis. As Laplace’s equation is invariant under
such an extension, we are led to a problem governing c′ in
the entire plane. Since the homogeneous Dirichlet condition
associated with (7) is trivially satisfied, the only remaining
condition at y = 0 is the Neumann condition (2), which also
applies to c′. Condition (9) now implies c′ ∼ ∓π−1J (t ) ln r as
y → ±∞.

The resulting problem is analogous to that governing the
velocity potential of 2D irrotational flow through an aper-
ture [20]. The solution is best described in the complex plane.
Thus, writing c′ = Re{φ(z)}, where z = x + iy and φ is an
analytic function, we find that φ(z) is given by the implicit
relation

z = cosh
πφ

J (t )
. (10)

For the purpose of asymptotic matching with the remote re-
gion, all we need is the local inversion of (10) as Im{z} →
∞, φ ∼ −π−1J (t )ln(2z), where the asymptotic error is al-
gebraically small. Forming the real part of that inversion
provides the requisite refinement of (9),

c ∼ 1 − J (t )

π
ln(2r) as r → ∞ (y > 0). (11)

As anticipated, the drop-scale solution, and in particular its
large-r asymptotic behavior (11), are defined up to the un-
known flux J (t ). This flux is set by the requirement of far-field
decay, which so far has not been implemented. To that end, we
consider now the remote transport.

Remote analysis. In what follows, we supplement the drop-
scale solution by a comparable solution in a remote region.
The extent of that region is determined from the approxi-
mation of (1) by Laplace’s equation, based upon (6). The
resulting quasisteady approximation clearly breaks down at
distances of order (α0/ε)−1/2, where both sides of (1) become
comparable.

We accordingly consider the unsteady transport at these
remote distances. It is described using the stretched coor-
dinate, r̃ = (ε/α0)1/2r, with similar definitions of x̃ and ỹ.
Writing c(x, y; t ) = c̃(x̃, ỹ; t ), we see that at leading order c̃
is governed by the diffusion equation [cf. (1)]

∂ c̃

∂t
= ∂2c̃

∂ x̃2
+ ∂2c̃

∂ ỹ2
, (12)

the initial condition, c̃ = 0 at t = 0, and the decay condition,
limr̃→∞ c̃ = 0. Since the drop shrinks to the origin in the
stretched coordinates, the no-flux condition (2) becomes

∂ c̃

∂ ỹ
= 0 on ỹ = 0 for x̃ �= 0. (13)

c̃ ∼ J(t)
π

ln r̃ as r̃ → 0

lim
r̃→∞

c̃ = 0

c̃ = 0 for t = 0

∂c̃

∂ỹ
= 0

x̃

ỹ

∂c̃

∂t
=

1
r̃

∂

∂r̃
r̃
∂c̃

∂r̃

FIG. 2. Description of the remote problem governing c̃(r̃; t ).

The saturation condition does not apply. Rather, the singular
behavior at the origin is set by asymptotic matching with (11),
giving c̃ ∼ −π−1J (t ) ln r̃ for r̃ � 1. Since this inhomoge-
neous forcing is radially symmetric, we anticipate that so is
c̃, whereby the no-flux condition (13) is trivially satisfied. The
remote problem governing c̃(r̃; t ) is described in Fig. 2.

To solve the remote problem we employ the Laplace trans-
form, generically defined by f̂ (s) = ∫ ∞

0 f (t )e−st dt . Forming
the transform of (12) gives, upon making use of the homoge-
neous initial condition and the radial symmetry,

sĉ = 1

r̃

d

dr̃

(
r̃

dĉ

dr̃

)
, (14)

where ĉ is the transform of c̃. This second-order equation must
be solved subject to the decay requirement, ĉ(∞, s) = 0. The
solution is ĉ(ρ, s) = A(s)K0(s1/2r̃), wherein K0 is the modi-
fied Bessel function of the second kind. Making use of the
small-argument approximation of K0 [21] gives

ĉ(r̃, s) ∼ A(s)

(
ln

2

s1/2r̃
− γE

)
for r̃ � 1, (15)

where γE is the Euler-Mascheroni constant. Just as in (11), the
asymptotic error is algebraically small.

Calculating the flux. Forming the transform of (11) gives
1/s − Ĵ (s) ln(2r)/π , where Ĵ (s) is the transform of J (t ).
Comparing with (15) we find that A(s) = Ĵ (s)/π and hence

Ĵ (s) = π

s

(
1

2
ln

16α0

εs
− γE

)−1

. (16)

The flux J (t ) is provided by the inverse Laplace transform,

J (t ) = 1

2π i

∫ 0++i∞

0+−i∞
Ĵ (s)est ds. (17)

In what follows, we extend the interpretation of (16) by em-
bedding s in the complex plane, with ln s being understood
to apply in the principal-value sense. The function Ĵ (s) has
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FIG. 3. (a) Universal variation of T with α0/ε. (b) Variation of T with α0 for the indicated ε values.

a branch point at s = 0 and a branch cut along the nega-
tive real axis. Making use of Cauchy’s theorem and Jordan’s
lemma [22], the integration domain is transformed to two rays
that embrace the branch cut, where the integration variable s
possesses the respective parametrizations λ e±iπ , in which λ

extends from zero to infinity. Using these parametrizations,
we obtain J (t ) as the real-valued integral

J (t ) = π

2

∫ ∞

0
e−λt

[(
1

2
ln

16α0

ελ
− γE

)2

+ π2

4

]−1
dλ

λ
.

(18)
Since the integrand is of order λ−1(ln λ)−2 as λ → 0, the
integral converges at the lower end point. The integral may be
readily evaluated for any given value of α0/ε (not necessarily
	1) using standard numerical quadrature.

With the flux considered a known function of α0/ε, the
lifetime T may be obtained for any value of that ratio using
the implicit relation (8). The universal variation of T with
the single parameter α0/ε is portrayed in Fig. 3(a). While the
integral (18) exists for all values of α0/ε, only large values of
that parameter are consistent with (6). Illustrative results are
depicted in Fig. 3(b), where the variation of T with α0 (shown
here in degrees) is delineated for two representative values of
ε. In these illustrations we bound α0 by 10ε from below and
30◦ from above, ensuring that (6) is practically satisfied.

Concluding remarks. Quasisteady diffusive transport in un-
bounded 2D problems is ill posed due to the incompatibility of
the net flux with the need to approach a uniform concentration
at infinity. In certain physical problems, this apparent para-
dox is resolved by incorporating weak advective transport,
which enters the dominant balance at large distances [23]. In
the present evaporation problem, symmetry arguments would
exclude the possibility of regularization by the incorporation
of vapor advection. In fact, no need arises to incorporate ad-
ditional physicochemical mechanisms: the breakdown of the
very quasisteady description at large distances gives a hint for
resolving the incompatibility. A similar regularization is suit-
able for 2D diffusion from high-capacity solute beacons [24].

Our scheme avoids the unnecessary use of an artificial
boundary at large distances, which in turn introduces an
unwarranted dependence upon a nonphysical parameter that
cannot be eradicated. Rather, it introduces an essential de-
pendence upon the small parameter of the problem, given
here by the ratio of �c/�ρ to the initial contact angle. The
dependence of the droplet lifetime upon (the logarithm of) that
parameter is a signature of the inherently singular nature of the
quasisteady approximation in 2D.

Since the unsteady problem is well posed, one can imag-
ine solving it numerically, with the decay condition replaced
by an (approximately equivalent) homogeneous condition at
a sufficiently remote boundary. The above discussion clar-
ifies, however, that for the latter equivalence to be indeed
valid, the numerical solution must capture the genuinely un-
steady process occurring at distances of order (α0/ε)−1/2. This
presents a challenge for the integration scheme, which must
resolve two disparate length scales. Thus the smaller is ε,
the greater is the numerical challenge. In the present asymp-
totic scheme, the approximation level only improves as ε

diminishes.
With the purpose of illustrating our asymptotic scheme in

the simplest possible context, we have assumed thin droplets.
The extension to nonthin droplets requires a more detailed
analysis in the drop-scale region; the analysis in the remote
region remains intact. A different generalization involves the
modification of the “constant-radius” model used here, ac-
cording to which the drop area varies only through the contact
angle. Thus one may consider the alternative “constant angle”
mode or generalize to more sophisticated modes such as stick–
slide [25] and stick–jump [26].

A more ambitious extension involves the analysis of drop
arrays [27] where, following methodologies familiar from
acoustic interactions [28], the present matching approach is
naturally applicable to the limit of well-separated drops.
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