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Translation-invariant low-dimensional systems are known to exhibit anomalous heat transport. However, there
are systems, such as the coupled-rotor chain, where translation invariance is satisfied, yet transport remains
diffusive. It has been argued that the restoration of normal diffusion occurs due to the impossibility of defining a
global stretch variable with a meaningful dynamics. In this Letter, an alternative mechanism is proposed, namely,
that the transition to anomalous heat transport can occur at a scale that, under certain circumstances, may diverge
to infinity. To illustrate the mechanism, I consider the case of a composite chain that conserves local energy and
momentum as well as global stretch, and at the same time obeys, in the continuum limit, Fourier’s law of heat
transport. It is shown analytically that for vanishing elasticity the stationary temperature profile of the chain is
linear; for finite elasticity, the same property holds in the continuum limit.
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I. INTRODUCTION

Heat transport in solids is described on a phenomenolog-
ical level by Fourier’s law; the description fails, however,
in low-dimensional systems, where heat transport takes an
anomalous character such that the thermal conductivity of
the material diverges with the sample size [1–3]. A standard
method for the evaluation of thermal conductivity in solids is
provided by the Green-Kubo formula [4] (see [2] for a simple
derivation). In low-dimensional systems, however, the heat
current fluctuation correlation, on which the formula is based,
diverges at large scale, which prevents direct application of
the method and suggests breakup of normal transport. Indeed,
analysis of such divergences by renormalization techniques
first allowed researchers to determine the anomalous scaling
exponent for the thermal conductivity in low-dimensional sys-
tems [5] and implied that a coarse-grained description of the
fluctuations in terms of field variables in a laboratory refer-
ence frame must take into account advection terms analogous
to those in the Eulerian description of a fluid.

The analogy in the relation between Lagrangian and
Eulerian description in a fluid, and the dynamics in the contin-
uum limit, of a low-dimensional solid, was recognized in [6]
and constitutes the basis for the derivation of the nonlinear
fluctuating hydrodynamic (NFH) theory [7]. The relevance
of the fluid mechanics point of view in the description of
heat transport in a low-dimensional solid is corroborated by
the fact that the same anomalous behaviors are observed in
one-dimensional particle models where the only interaction is
provided by collisions, and which, at a coarse-grained level,
can be described as bona fide one-dimensional fluids [8,9].

The key mechanism leading to the divergence of the field
equations, and hence to anomalous heat conduction in the
systems under consideration, appears to be the simultaneous
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conservation locally of energy and momentum [5,10,11].
More recently, an additional condition has been identified in
the fact that the global stretch of the system must have a
dynamical content [12,13]. If any such condition is violated—
e.g., if the atoms in the chain interact with a substrate, leading
to translation invariance violation, or if, as in the case of the
coupled-rotor chain [14,15], it is not possible to define a total
stretch for the system—normal diffusion is recovered. In the
same way, systems, such as the zero-range model [16] and the
Kipnis-Presutti model [17] to name a few, in which energy
is randomly exchanged between atoms without momentum
conservation, are characterized by normal heat conduction.

To date, all analytical models of low-dimensional heat
transport are based on mimicking the role of anharmonic-
ity in spatially redistributing the vibration energy along the
chain, by adding a stochastic component to the dynamics.
The strategy to microscopically implement stochasticity is not
unique. In [18], random collisions are assumed, with pairs of
neighboring atoms exchanging momentum while their total
energy remains constant. In other models, three-atom inter-
actions are required to accommodate the joint conditions of
energy and momentum conservation. In [19], the stochastic
component of the dynamics is realized by a random walk
in momentum space on the constant energy surface of the
system. NFH predicts that for generic interaction potentials
the large-scale dynamics of energy and momentum preserving
one-dimensional chains should fall in the universality class of
the Kardar-Parisi-Zhang model [7]. There are special cases,
however, in which the predictions of the NFH theory do not
apply [7,20], with finite-size effects, as well as weak chaos
in the interaction, making the detection of universal behaviors
difficult [21].

The situation as regards experiments and numerical
(atomistic) simulation of more realistic systems is equally
complicated. Results are indeed often dependent on the prop-
erties of the material and the experimental or numerical tech-
nique adopted (see [3] and references therein for an extended
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FIG. 1. Sketch of the composite chain: The two-bead assemblies
(blue online) represent the individual atoms; the cells underneath
(magenta online) represent the zero-mass mobile inclusions and the
thermal baths.

discussion). Of particular interest is the possible presence of a
diffusive range at small scales, complicating the measurement
of the anomalous scaling exponents predicted by the the-
ory; such crossover behaviors are indeed predicted in particle
systems [9].

The purpose of the present Letter is to study the crossover
from small-scale thermal diffusion to large-scale anomalous
heat conduction in the specific example of a “composite”
chain, in which atoms interact with their neighbors through
harmonic forces and inclusions acting as random sources and
sinks of kinetic energy. Composite materials such as, e.g.,
semiconductor perovskites find application in photovoltaics,
and proper characterization of their thermal properties is par-
ticularly important [22]. The total momentum and energy
of the atoms and the inclusion involved in an interaction
are conserved, the ends of the chain are fixed, and thus all
the conditions for anomalous heat conduction in the system
are satisfied. Yet, the analysis that follows shows that the
range in which heat transport is diffusive can greatly exceed
the range in which the dynamics of the chain is viscous. In
particular, heat transport becomes diffusive at all scales in the
continuum limit.

II. OUTLINE OF THE MODEL

The geometry of the system is illustrated in Fig. 1.
Each two-bead assembly represents an atom, with the bars
joining the beads assumed rigid. The cells in the middle
represent the inclusions, which for simplicity are taken to be
massless; the cells at the extremes of the chain are the heat
baths, whose position is fixed. Indicate with N the number of
atoms in the chain and with L = Nη the chain’s length. The
inclusions act on the beads as Langevin baths with friction
coefficient �/2 and noise amplitude

〈ξk+1/2(0)ξ j+1/2(t )〉 = 2m�〈ε〉k+1/2δk jδ(t ). (1)

The adopted Langevin dynamics may be interpreted as the
result of coarse graining the fast internal degrees of freedom
in the inclusions, with εk+1/2 an energy variable [23] that is
going to be determined dynamically from the condition of
local energy conservation (see below).

The thermal baths at the chain extremes act on the respec-
tive atoms in the same way as the inclusions, with energy
variables ε1/2 and εN+1/2 replaced in Eq. (1) by fixed tempera-
tures TL/2 and TR/2, TL − TR = 2�T (the Boltzmann constant
kB is set equal to 1 throughout the calculation).

Indicate with qk the displacement of the atoms from
their equilibrium position and with pk = mq̇k the associated

momentum. As illustrated in Fig. 1, the elastic force acts in
parallel with that by the inclusion; the chain dynamics is then
described by the system of equations, in the bulk 1 < k < N ,

ṗk = �(pk+1 + pk−1 − 2pk )/2

+α(qk+1 + qk−1 − 2qk )/2 + ξk−1/2 − ξk+1/2, (2)

while at the ends of the chain

ṗ1 = �(p2 − 2p1)/2 + α(q2 − 2q1)/2 + ξ1/2 − ξ3/2, (3)

ṗN = �(pN−1 − 2pN )/2 + α(qN−1 − 2qN )/2

+ ξN−1/2 − ξN+1/2 (4)

(Itô’s prescription is assumed throughout the Letter). The con-
servative nature of the noise in Eqs. (2)–(4) should be noted,
which distinguishes the present model from ones in which
local heat baths force the dynamics, such as, e.g., [24,25].

It is possible to identify a microscopic elastic timescale
ω−1

η = √
m/α, with the magnitude of the ratio

r = ωη/� (5)

determining whether the microscopic dynamics is dominated
by elasticity or by the effective friction generated by the in-
clusions. We can take the continuum limit of Eq. (2), and the
result is [26]

∂2
t q = ∂2

x

(
c2

s + ν∂t
)
q + ∂xξ, (6)

〈ξ (x, t )ξ (0, 0) = 2(η〈ε〉ν/m)δ(x)δ(t ), (7)

which describes wave propagation in a viscoelastic (Kelvin-
Voigt) medium with sound speed and viscosity, respectively:

cs = ηωη and ν = η2�. (8)

From here, it is possible to define a viscous scale

lν = ν/cs = η/r, (9)

which identifies the upper limit of the viscosity-dominated
range for the dynamics.

To study the fluctuation dynamics, one needs an equa-
tion for the energy variable εk+1/2. One obtains such
equation by imposing energy conservation in the interaction
between atoms and inclusions. The energy budget in the in-
teraction between atoms k and k + 1, and inclusion k + 1/2
is obtained, for 1 < k < N , by evaluating the contribution to
the variation of kinetic energy of the two atoms, Kk+1/2 =
(pk+1 − pk )2/(4m) := p2

k+1/2/(4m), from the forcing by the
inclusion. One can write in general

K̇k+1/2 = −Ėk+1/2 + . . . , (10)

where Ek+1/2 = E (εk+1/2) is the internal energy of the inclu-
sion and the dots stand for the contributions from the elastic
forces and the neighboring inclusions. Substituting Eq. (2) in
the left hand side of Eq. (10) yields then

Ėk+1/2 = 2�

(
p2

k+1/2

4m
− εk+1/2

)
− pk+1/2ξk+1/2

m
, (11)

where one recognizes in the term �p2
k+1/2/(2m) the work

by the friction forces, and in 2�εk+1/2 the average energy
provided to the two atoms by the fluctuating force.
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III. THE PURELY VISCOUS CHAIN

In the α → 0 limit, the system provides an example of heat
transport by Brownian motion. Exactly as in the elastic case
[27], it is possible to evaluate the heat flow from the dynamics
of the one-time correlations [28]. Define

�ik = 〈pi pk〉, Zik = 〈qi pk〉, Qik = 〈qiqk〉. (12)

For α = 0, qi is an irrelevant variable, and the equation for �

and those for Z and Q decouple. The last two variables can
then, for the moment, be disregarded.

Let us focus first on the bulk; from Eq. (2), one obtains the
equation for �ik :

2�−1�̇k,k+l = �k+1,k+l + �k−1,k+l − 2�k,k+l

+�k,k+1+l + �k,k−1+l − 2�k,k+l

+ 4m[(δl0 − δl1)〈ε〉k+1/2

+ (δl0 − δl,−1)〈ε〉k−1/2], (13)

where 1 < k, k + l < N . At stationarity, one gets from
Eq. (11)

4m〈ε〉k+1/2 = 〈
p2

k+1/2

〉 = �kk + �k+1,k+1 − 2�k,k+1, (14)

which, substituted into Eq. (13), yields

−2�kk + �k+1,k+1 + �k−1,k−1 = 0, (15)

−2�k,k+1 + �k,k+2 + �k+1,k−1 = 0, (16)

�k+1,k+l + �k−1,k+l + �k,k+1+l

+ �k,k−1+l − 4�k,k+l = 0, |l| > 1. (17)

The same procedure can be carried out at k = 1:

�22 − 3�11 + 2mTL = 0, (18)

�13 − 2�12 = 0, (19)

�2l − 4�1l + �1,l−1 + �1,l+1 = 0, l > 2, (20)

and a similar set of equations is produced at k = N . The
system of Eqs. (15)–(20) has the remarkable property that
Eqs. (16), (17), (19), and (20), which involve out-of-diagonal
terms, decouple from Eqs. (15) and (18) on the diagonal.
Equations (15) and (18) tell us that �kk has a linear profile:

2(mTL − �11) = �kk − �k+1,k+1

= 2(�NN − mTR) = 2m�T/N. (21)

On the other hand, Eqs. (16), (17), (19), and (20) admit
the zero solution �kl = 0, k �= l , which is also necessarily
unique, since a nonzero solution could have arbitrary ampli-
tude and lead to negative 〈(pl + pk )2〉). From Eq. (21), it is
then possible to write [29]

�kl = m

(
TL + 2k − 1

N
�T

)
δkl . (22)

The temperature profile along the purely viscous chain,
Tk ≡ �kk/m � 2〈εk+1/2〉, is thus linear.

For α = 0, the heat transfer along the chain is mediated by
the work on the atoms by the inclusions; the average work by

inclusion k − 1/2 on the atom to its right thus coincides with
the heat flux at site k:

Jk = �

[
〈ε〉k−1/2 − 〈pk (pk − pk−1)〉

2m

]
, (23)

where it is understood that p0 = 0. At stationarity, from
Eqs. (14) and (22),

Jk

�
= TL

2
− �11

2m
= �k−1,k−1 − �kk

4m
= �NN

2m
− TR

2
,

which, using again Eq. (22), implies Fourier’s law; after rein-
stating Boltzmann’s constant,

J = κ
TL − TR

L
, κ = kBν

4η
. (24)

Setting TL = TR = T , it is easy to verify from Eqs. (14), (22),
and (23) that at equilibrium Jk = 0 and equipartition holds:
〈ε〉k+1/2 = �kk/(2m) = T/2.

IV. THE EFFECT OF FINITE ELASTICITY

For finite α, part of the heat transfer is mediated by the
elastic forces, with a contribution to the heat flux [1]:

δJel
k = α(Zkk − Zk+1,k )/(2m). (25)

To evaluate δJel
k , we need an equation for Zik . Indicate

Aik = �Zik + αQik . (26)

The stationarity conditions Żk,k+l + Żk+l,k = 0 and Żk,k+l −
Żk+l,k = 0 take the form, in the bulk, from Eq. (2):

−4�k+l,k/m = Ak+l,k+1 + Ak+l,k−1 − 2Ak+l,k

+ Ak,k+l+1 + Ak,k+l−1 − 2Ak,k+l , (27)

Ak+l,k+1 + Ak+l,k−1 − 2Ak+l,k

= Ak,k+l+1 + Ak,k+l−1 − 2Ak,k+l . (28)

Equations (27) and (28) imply −2�k+l,k/m = Ak+l,k+1 +
Ak+l,k−1 − 2Ak+l,k , better rewritten as

∂2
k Alk = −2�lk/m, 1 < k, l < N, (29)

where ∂k indicates finite difference: ∂2
k f = fk+1 + fk−1 − 2 fk .

Identify with a bar the zero-viscosity component of quantities
and with a tilde the respective correction, � = �̄ + �̃, and
make the ansatz (to be verified a posteriori) that if the chain is
sufficiently short viscosity will dominate thermal fluctuations.
It is then possible to set in Eq. (29) �lk � �̄lk = �̄llδlk [see
Eq. (22)], which yields the solution

Alk � al + blk − �̄ll |k − l|/m. (30)

To determine the coefficients al and bl , one needs boundary
conditions, which are provided by imposing stationarity at the
ends of the chain, Ż1k = ŻNk = 0; exploiting Eqs. (2)–(4),

2�l1/m = 2Al1 − Al2,

2�lN/m = 2AlN − Al,N−1, 1 < l < N. (31)

From �1l � �lN � 0, 1 < l < N , the following relations are
then obtained:

Al2 � 2Al1, Al,N−1 � 2AlN , 1 < l < N. (32)
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Substituting Eq. (30) into Eq. (32) yields

al � l�̄ll

m
, bl � �̄ll

m

N + 1 − 2l

N + 1
, 1 < l < N. (33)

Exploiting Eq. (30) and the relation �̄kk − �̄k+1,k+1 =
2m�T/N [see Eq. (21)], we obtain the expression, valid for
1 < l � k < N ,

Zlk � Alk − Akl

2�
= l (N + 1 − k)(�̄ll − �̄kk )

m�(N + 1)

= 2l (N + 1 − k)(l − k)�T

�N (N + 1)
. (34)

Substituting Eq. (34) into Eq. (25) finally yields

δJel
k � −α(1 + k)(N + 1 − k)�T

�mN (N + 1)
(35)

and hence, by comparing with Eq. (24), the estimate

δJel/J ∼ r2N = ηL/l2
ν , (36)

which tells us that as long as

L 
 lκ = l2
ν /η (37)

heat transport remains diffusive. A similar estimate holds
for the momentum fluctuation amplitude, �̃/�̄ ∼ r2N (see
Supplemental Material [30]), which confirms the ansatz at the
basis of Eq. (30). Note that in the continuum limit η → 0
(all macroscopic quantities L, NkBT , Nm, ν, and cs fixed and
finite) the diffusive scale lκ goes to infinity and Fourier’s law
holds irrespective of the sample size.

An interesting question concerns the role of possible vi-
olations of stretch conservation in the regime L 
 lκ . By
construction, for finite α, the total stretch δL is controlled
by elasticity, which means that, strictly speaking, the total
stretch is conserved. One may nevertheless argue that if, for
lν 
 L 
 lκ (that is the range where the dynamics of the
chain is elastic), the ratio δL/L in the continuum limit were
to diverge to infinity the chain would be behaving as if its end
points were unconstrained. In other words, diffusive transport
for lν 
 L 
 lκ could be the consequence of insufficient con-
servation of stretch. We show below that this is not the case.

The continuum limit η → 0 (L, NkBT , Nm, ν, and cs

fixed and finite) corresponds to a regime L 
 lκ such that
Eq. (22) applies. It is then possible to estimate for the
stretch δL ∼ √

N〈q2
k+1/2〉, where qk+1/2 = qk+1 − qk ; for

small deviations from equilibrium, TL � TR ∼ T , 〈q2
k+1/2〉 ∼

v2
thm/α = (vth/ωη )2, where vth = √

kBT/m is the thermal ve-
locity, which remains finite in the limit. From Eqs. (8) and (9)
one then gets

δL

L
∼ N1/2vth

Lωη

= N1/2ηvth

Lcs
=

√
lνη

L

vth

cs
, (38)

which tells us that the relative stretch vanishes in the
continuum limit (all quantities in the right hand side of the
formula remain finite, except η, which vanishes); this suggests
that stretch conservation violations do not play a role in the
dynamics under consideration. (An alternative derivation of
the result is provided in the Supplemental Material [30].)

V. CONCLUSION

The present analysis shows that heat transport in a com-
posite chain with a purely viscous microscopic dynamics
obeys Fourier’s law. By construction, no internal forces are
generated in response to stretching of the system, and we
thus have another example, beside that of the coupled-rotor
chain, of a system conserving local energy and momentum,
in which global stretch is not conserved and heat transport
is diffusive.

If elasticity is finite, but there is a viscous range extending
to macroscopic scales, the range of scales where heat transport
is diffusive greatly exceeds the viscous range, and extends
to infinity in the continuum limit. This is the main result of
the Letter. The global stretch fluctuations vanish in the limit,
which means that diffusive heat transport in such composite
chain, contrary to the case of the coupled-rotor chain, cannot
be explained by nonconservation of the stretch.

Some questions remain open. Is anomalous heat transport
in the composite chain recovered at scales larger than the
diffusion length lκ? Is the existence of an extended diffusive
range a common property of viscoelastic one-dimensional
chains? The answer is probably yes in both cases, but, to
prove the statement, going beyond the present perturbative
model-dependent analysis would be required.
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