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A famous consequence of the detailed fluctuation theorem (FT), p(X)/p(—%) = exp (¥), is the integral FT
(exp(—X)) = 1 for a random variable ¥ and a distribution p(¥X). When X represents the entropy production in
thermodynamics, the main outcome of the integral FT is the second law, (X) > 0. However, a full description of
the fluctuations of ¥ might require knowledge of the moment generating function (MGF), G(«) := (exp(¢ X)).
In the context of the detailed FT, we show the MGF is lower bounded in the form G(«) > B(«, (X)) for a given
mean (X). As applications, we verify that the bound is satisfied for the entropy produced in the heat exchange
problem between two reservoirs mediated by a weakly coupled bosonic mode and a qubit swap engine.
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Introduction. The second law of thermodynamics states
that the entropy production is non-negative. Although the
random nature of ¥ is practically negligible in large systems,
it dominates the physics of the entropy production at a small
scale due to thermal and quantum fluctuations [1-13]. In this
context, the second law is stated as an average, (X) > 0.

The detailed fluctuation theorem (DFT) is a stronger state-
ment, which defines a random variable (typically the entropy
production) in terms of the ratio of probabilities,

() := In P(T)/P(I'"), (1)

where T is some process and I'" is a conjugate (involution),
such that I''" =T'. As a consequence of (1), for instance,
we have the integral FT, (exp(—X(I"))) = 1, and the second
law, (¥) > 0, from Jensen’s inequality. The definition (1) is
used to define the trajectory level entropy production [14] in
stochastic thermodynamics, and a form of (1) is also called
the strong detailed fluctuation theorem [2], Evan-Searles fluc-
tuation theorem [15], Gallavotti-Cohen relation [9], and it
appears in the heat exchange problem [16]. The structure of
(1) might also be used to define generalizations of entropy
production that contain information terms [17] and in quan-
tum systems beyond the two-point measurement scheme [18].
For that reason, we treat (1) as a definition of a general random
variable.

Beyond the second law, the DFT (1) has known con-
sequences for the statistics of ¥. For instance, a form of
thermodynamic uncertainty relation (TUR) can also be de-
rived from it [19-22], which can be understood as a lower
bound for the variance in terms of the mean of X. Another
example is a lower bound for apparent violations of the second
law [23], defined as the cases for which ¥ < 0.

The randomness of X is encoded in the moment generating
function (MGF),

Gla) = (%) = )™ OP(D), )
r

where the sum above might be replaced by an integral and «
is a real number. Derivatives of (2) at « = 0 have information
of statistical moments. For instance, the first derivative is
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related to the second law, G'(0) = (X) > 0. In general, we
have G™(0) = (X") for higher-order moments. The MGF (2)
is non-negative, G(«) > 0, but a stronger bound comes from
Jensen’s inequality, where G(«) > exp(af) > 0.

In this Letter, we propose the following question: What is
the impact of the DFT (1) in the MGF (2)? The first immedi-
ate known consequence of (1) is the known Evan-Searles or
Gallavotti-Cohen symmetry property for (2),

Gl@) =G(=1 —a), 3)

as a direct application of the definition (1). Moreover, in terms
of the MGF (2), the integral FT for X(I") is obtained for
o = —1 using (3),

(e7*) = G(—1) = G(0) = 1, )

and the second law follows from it. Our main result is to show
that the DFT (1) implies a tight lower bound for the MGF (2)
for a given mean X,

cosh[(a + 1/2)g(%)]
cosh[(1/2)g(2)]

for o € R, where g(x) is the inverse function of
h(x) := xtanh(x/2), defined for x >0 and ¥ := (%) =
> Z(M)P(I'). We show that the distribution that saturates
(5) is the distribution that saturates the TUR [20]. This
bound explores the DFT (1) directly to improve on the bound
exp(aX).

This Letter is organized as follows. First, we present a
general formalism for (1) in terms of involutions to derive (5).
Then, we discuss how the result can be framed using informa-
tion theory in terms of Rényi relative entropy. As applications,
we show that the bound is satisfied in three different cases: a
Gaussian distribution, and the heat exchanged between two
reservoirs mediated by a bosonic mode in weak coupling and
a qubit swap engine.

Formalism. Let I € S be an element of a set S and m:S— S
is any involution m(m(X)) = X, where we define the nota-
tion I'" := m(X). Let P:T" — [0, 1] be a probability function
such that P(I'") = 0 — P(I'") = 0 (absolute continuity). For

G(a) 2

&)
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instance, one could choose S = R and m(x) = —x. More gen-
erally, in stochastic thermodynamics, I' = (x;, ..., x,) € R”
is a sequence and I'" = (x,,, ..., x1) is the conjugate.

Define the function X:S—R as X(I):=
In[P(I")/P(T')] for P(I"), P(I'") > 0 asin (1) and Z(I') := 0
for P(I') = P(I'") = 0. Usually, this expression for X(I")
appears in nonequilibrium thermodynamics as the stochastic
entropy production or some generalization. The moment
generating function of ¥(I") is given by (2)

Gla) =) ™ P(I) = Z/OO e §(2(I) — o)P(MNdo,
r r Jv-

(6)
where we used f(x)= ff(y)&(y—x)dy and §(x) is the
Dirac’s delta function. Now define the probability density
function,

plo) =Y 8(Z(I) — o)P(D), (7)
r
such that the MGF (6) is given as
Ga) = / ¢ p(o)da = (&), ®)

where () are now understood as averages in p(o ). Similarly,
we have (o) = (X). From the definition of X(I"), we have the
property for p(o),

plo) =) 8(5(I) — o)™ P(I")
r
=¢" Y 8(3(M) —o)P(I'), )
r

and using X(I') = —3(I'"), definition (7), and the sum over
the involution, Y - f(I'") = 3" £(I), it results in
plo) = e’ p(—o). (10)
From (10), we have the useful property [24] for odd functions
u(—o) = —u(o),
(u(o)) = (u(o)tanh(c /2)). (11)
Now we decompose the MGF (8) in a sum of odd and

even functions, G(a) = (sinh(xo)) + (cosh(xo)), and we
use property (11) for u(o) = sinh(ao ), which results in

G(a) = (sinh(ao) tanh(c/2) + cosh(ac)).  (12)

Now we use the identity cosh(x + y) = cosh(x)cosh(y) +
sinh(x) sinh(y) to obtain the compact form from (12),

cosh[(a + 1/2)0]
cosh(c /2) '
Finally, we define the functions #(c) = o tanh(c /2) and the

inverse g(h(o)) = |o|. Inserting |o| = g(h(o)) in (13) leads
to

G(a) =< (13)

(14)

Gla) = <cosh[(oz + 1/2)g(h(o))]>.

cosh[(1/2)g(h(c))]

The final step is to use Jensen’s inequality in (14) in a strategy
analogous to previous results [24] as follows,

(flg(h(oN]) = (flg({h(o)] = flg(a D], (15)

which is true if w”(h) := d*w(h)/dh*> > 0, where w(h) :=
flg(h)] and f(x) = cosh[(« + 1/2)x]/ cosh(x/2) (see Ap-
pendix). Note that (o) = (o tanh(o/2)) = (h(0)), directly
from (11) with u(o) = o. Combining (14) and (15) and using
(X) = (o), we obtain (5).

Discussion. As in the case of previous results [20,22], it
can be checked directly that the bound is saturated by the
minimal distribution, p(X) = [§(X + a) exp(—a/2) + 6(X —
a)exp(a/2)]/[2 cosh(a/2)], where a = g(f).

We also point out that our main result (5) could also be
stated in terms of information theory as a bound for the Rényi
relative entropy as follows. The definition of Rényi relative
entropy for probabilities P and Q is

—1
Sa(PIQ) = 7——1In (Z P(F)“Q(F)“’). (16)
r

Now let (S, P, m) be defined as in the formalism, then Y =
D(P|P’) is the Kullback-Leibler (KL) divergence, D(P|Q) :=
> P In(P;/Q;), where P'(I') := P(m(I")). From (2) and (16),
we have G(«o) = exp[aS,11(P|P")]. In terms of (16), the main
result (5) reads

Se(PIP") >

1 (COSh[(O[ — 1/2)g(D(P|P/))])
In , (7
a—1 cosh[(1/2)g(D(P|P"))]

for any set S, probability P, and involution m. Actually, for
o — 1, the bound saturates as both sides of (17) converge
to D(P|P’). One might wonder how a result (5) that seemed
dependent on the DFT is actually as general as (17). As it
turns out, the involution property m(m(I")) = I" constrains the
pair of probabilities (P, P') in (17), creating the same effect of
the DFT. For instance, if m is the identity, then P = P’, and
in thermodynamics that would be equivalent to equilibrium
(or a detailed balance condition in the case of a Markov pro-
cess). For a general involution m, probabilities P and P’ will
differ (nonequilibrium), as represented by the KL divergence
D(P|P’) > 0 and the relative entropy S, (P|P’) > 0.

Gaussian case. Now we compare the bound (5) to some
systems that satisfy the DFT. The Gaussian case [25,26] is
given by the MGF

G(a) = expla(l + a)f], (18)

as the DFT fixes the variance (X% — fz) =2% for the
Gaussian distribution and it easily checks property (3). In-
terestingly, expression (18) appears as a lower bound for the
MGEF for steady states in stochastic thermodynamics [27], for
the particular case where the current is the entropy production
itself. The comparison between (18) and (5) is depicted in
Fig. 1, where In G() is quadratic in « for the Gaussian case
(18), but it shows higher-order corrections in our bound (5).

Bosonic mode case. For another comparison, we take a
free bosonic mode with the Hamiltonian H = hw(a'a + 1/2)
weakly coupled to a thermal reservoir with a density matrix
satisfying a Lindblad’s equation as developed in previous
results [28-30],

dp = %’[H, o1+ Di(p), (19)
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FIG. 1. Moment generating function (MGF) G(«) as a function
of a for ¥ = 1 for the lower bound (solid black), swap engine (solid
red), Gaussian (dashed green), and bosonic mode (dotted blue). We
also show the exponential exp(aX) (dotted light gray). Because of
the DFT, note that all MGFs are symmetric around « = —0.5 (3) and
the integral FT is also verified G(—1) = G(0) = 1. The MGF of the
bosonic mode is not defined for the entire domain (see applications).
The Gaussian case, which is a quadratic form for In G(«), and the
swap engine departs from the bound for large |c|.

for the dissipator given by

Di(p) =y (@; + D[apa" — Ha'a, p}]
+ yuila'pa — Haa', p}], (20)

where y is a constant and 7n; = [exp(fiw/kgT;) — 1171 is the
bosonic thermal occupation number and 8; = 1/(kgT;). We
denote the solution of (19) as p; := ®,(pp). A two-point
measurement scheme is performed: First, the system is pre-
pared in thermal equilibrium (temperature 7;) at time ¢ = 0,
when the first energy measurement takes place yielding E;.
Then, the system is placed in thermal contact with a second
reservoir (temperature 7;), when another energy measure-
ment is performed (time ¢ > 0) yielding E,. The dynamics of
the system between the two measurements is given by (19)
with temperature 7;. As explored in previous papers, repeat-
ing the experiment multiple times results in a distribution
for AE = E, — Ey, where X := —(8, — B1)AE [20,31,32]
is the entropy production. In this case, the distribution
is given by p(AE = liom) =Y o2 (n~+ m|®,(|n)(n|)|n +
m)p,, where p, = e P1E/Z(B;) and Z(B)) = tr(e 1), re-
sulting in the closed form [29,30] for the entropy production

(%) ! e = A 22l 21
= X —_— —_— .

P a0.0) P (2 7

with support s = {+ABhwm} = {£tem}, m=0,1,2,...,
and normalization constant A(0,A), where A(x,A):=
1+ Zf;ozl {exp[(a+m/2)e]—exp[(—a—m/2)e]} exp(—rem/
2), for A > |2« 4 1|. Upon inspection, note that (21) checks
(1). The MGF (2) for (21) is given by

A, A)
A0, 2)’

Ga) = (22)

for A > |2« + 1. In Fig. 1, we plot the MGF (22) or sev-
eral values of o, with ¢ = 1 and A = A* such that (X) =1,

compared to the lower bound (5) for the same ¥ = 1. This
example shows a case where the domain of « is limited,
A® > |2 + 1], but the bound is still satisfied.

Swap engine. Consider a pair of qubits with energy
gaps € € {e4, €p}. They are prepared in thermal equilib-
rium, p() = exp(£pe)/[exp(—PBe) + exp(+pe)l, for f €
{B1, B>}, with reservoirs at temperatures 7, 7. A two-point
energy measurement (TPM) is performed before and after
a swap operation [31], |xy) — |yx), for x,y € {—, +}. The
entropy production is given [20,31] by ¥ = B, AE4 + B, AEp,
where AE, = E] — Ei, AEy = E} — Ej, are the variations of
energy measurements before and after the swap. In this TPM,
the outcomes are ¥ € s = {0, £2a} for 2a = 2(Brep — Pi€a).
The distribution of ¥ is given by

p(X) = (1/Zp)[6(2) + 8(Z + 2a)e™ + §(X — 2a)e”],
(23)

for Zy = 1 + exp(a) + exp(—a), which satisfies the DFT (1).
The MGF of (23) is given by
1+ 2cosh[aRa + 1)]

G = = osh@ @4

where a defines = uniquely from X =2a[exp(a)— exp(—a)]/
[1 + exp(a) + exp(—a)]. Comparison between (24) and (5) is
also depicted in Fig. 1 for ¥ = 1.

Quantum correlations. The main result (5) also has appli-
cations in systems with quantum correlations, as long as they
satisfy a form of detailed FT. For instance, quantum correlated
bipartite thermal systems satisfy a form of detailed FT derived
from a dynamic Bayesian network approach [18]. In general
terms, the quantum FT takes the following form,

_prQ.K)

pe(—=0, —K)
where F'(B) is the forward (backward) experiment, Q is the
heat, and K is some information related odd random variable
[18] (the term in y from the original notation is included in K
for simplicity). In general, Q and K are dependent, therefore
(25) differs from the usual heat exchange FT [16].

With a suitable redefinition of the variable X(I") as in
(1), the result (5) is applicable as follows. First, define I" :=
(d, Q,K), where d € {F,B} and Q, K € R. Let the involu-
tion be m(I") = m(d, Q, K) = (d', =0, —K), where F' = B
and B" = F. Now define the probability P(I") := p,(Q, K)/2
and check it is normalized over all (d, Q, K). Finally, one
has B(T") := In P(T)/P(I") = In pa(Q, K)/pat (—Q, —K) =
OAB — K, ford = F, B, using (25).

Now that we have the setup (S, P, m) as in the formalism
section, the application of the main result (5) is straightfor-
ward, G(«) 2 B(«, (X)), where the MGF is given by

Gla) =) &FDPI) =) @050, K),  (26)
r 0.K

= exp(QAf — K), (25)

and the average
(Z):= ) B(OPIT) =Y (QAB—K)PWQ,K), (27)
r 0.K

for p(Q, K) := [pr(Q, K) + pp(Q, K)]/2. In this case, note
that expression (5) was adapted for a situation that contains
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quantum correlations (25). For that adaptation, the averages
are taken in terms of a mixed probability p = (pr + pg)/2.
Also note that the symmetric case (pr = pp) reduces the
expressions to the usual detailed FT.

Conclusions. We explored the DFT (1) as a definition of a
random variable ¥ and proved the impact it has on the MGF
(2). The result is that the MGF of X is lower bounded as a
function of the mean ¥ and the parameter «. This lower bound
improves on the simple exponential bound exp(a %) because
of the special definition of X in terms of the DFT. Although
the structure (1) appears as a definition of entropy production
in stochastic thermodynamics, it is also the case of general
entropy-related quantities (that might include boundary and
information terms) in quantum thermodynamics even beyond
two-point measurement schemes [18]. We also wrote the main
result in terms of information theory, as a lower bound for the
Rényi relative entropy between distributions P and P’, where
the pair is constrained by an involution, P'(I") = P(m(I")).

Appendix. For the proof of (15), consider the notation
w' :=dw/dh and w := dw/do. We have w = wo’ and

d
w’ = E(wo’) = o + wo”, (28)
where o' =do/dh=1/h and o" =o'(d/do)(1/h) =
—ho'/h* = —h/h3. Replacing ¢’ and ¢ in (28) yields

P 5
w—ﬁ w—wz. 29)

Finally, using h(0') = o tanh(o /2) and w(h(0')) = cosh[(a +

1/2)0)]/ cosh(o /2) explicitly to calculate W, w, h, and h, one
obtains F (o) := h*w” from (29),

Flo) = 2+ ei0) +alf(o) —~ Qe ta)jao)
14 j(o)

where f(x) := cosh[(« + 1/2)x]/cosh(x/2) and j(x)=

sinh(x)/x. Now we use j(o)=sinh(o)/o > 1, which in

combination with o2 > 0, f(x) =0, and j(x) > 0results in

Qo +1) .
F(o) 2 ———laf(o) —ajao)] (31)
1+ j(o)
We are interested in 2« + 1 > 0, as the region o < —1/2 is
obtained with the reflection G(a) = G(—a — 1). In the case
o > —1/2, we first consider « > 0, for which (31) is rewritten
as

Qa+1)

sinh(ao)
14+ j(o)

F(o) > (oz cosh(ao) —

+ «a sinh(ao) tanh(0/2)> . (32)

Now we use cosh(ax) > sinh(ax)/ax and o > 0 to get from
(32)

Qa+1)
1+ j(o)
Now for the case o € (—1/2, 0), we rewrite (31) as

F(o) > (—oc)(.ZoH—l) [cosh(o /2) — cosh(|a + 1/2|0)] S0,
1+j(o) cosh(o/2)

F(o) > [« sinh(xo ) tanh(o /2)] > 0. (33)

(34)
since —a > 0 and cosh(o/2) — cosh(la + 1/2|0) > 0 for
0 < la+1/2| < 1/2. Combining (33) and (34), we have
F(o)=h*w" >0 for a > —1/2, which results in w” >0
for « > —1/2. It allows the lower bound to be written for
o> —1/2as
cosh[(er +1/2)g({0))] — B(a. (o). (35)

cosh[g({0))/2]

Now for @ < —1/2 we could use the symmetry (3),

G(a) =G(=1—a) 2 B(-1 —a, (o)) = Bla, (o)), (36)

Gla) 2

where we used the property B(«, x) = B(—1 — «, x) and (35)
in the inequality above as o < —1/2 - —1 —a > —1/2.
That completes the proof for a € R.
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