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Bound for the moment generating function from the detailed fluctuation theorem
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A famous consequence of the detailed fluctuation theorem (FT), p(�)/p(−�) = exp (�), is the integral FT
〈exp(−�)〉 = 1 for a random variable � and a distribution p(�). When � represents the entropy production in
thermodynamics, the main outcome of the integral FT is the second law, 〈�〉 � 0. However, a full description of
the fluctuations of � might require knowledge of the moment generating function (MGF), G(α) := 〈exp(α�)〉.
In the context of the detailed FT, we show the MGF is lower bounded in the form G(α) � B(α, 〈�〉) for a given
mean 〈�〉. As applications, we verify that the bound is satisfied for the entropy produced in the heat exchange
problem between two reservoirs mediated by a weakly coupled bosonic mode and a qubit swap engine.
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Introduction. The second law of thermodynamics states
that the entropy production is non-negative. Although the
random nature of � is practically negligible in large systems,
it dominates the physics of the entropy production at a small
scale due to thermal and quantum fluctuations [1–13]. In this
context, the second law is stated as an average, 〈�〉 � 0.

The detailed fluctuation theorem (DFT) is a stronger state-
ment, which defines a random variable (typically the entropy
production) in terms of the ratio of probabilities,

�(�) := ln P(�)/P(�†), (1)

where � is some process and �† is a conjugate (involution),
such that �†† = �. As a consequence of (1), for instance,
we have the integral FT, 〈exp(−�(�))〉 = 1, and the second
law, 〈�〉 � 0, from Jensen’s inequality. The definition (1) is
used to define the trajectory level entropy production [14] in
stochastic thermodynamics, and a form of (1) is also called
the strong detailed fluctuation theorem [2], Evan-Searles fluc-
tuation theorem [15], Gallavotti-Cohen relation [9], and it
appears in the heat exchange problem [16]. The structure of
(1) might also be used to define generalizations of entropy
production that contain information terms [17] and in quan-
tum systems beyond the two-point measurement scheme [18].
For that reason, we treat (1) as a definition of a general random
variable.

Beyond the second law, the DFT (1) has known con-
sequences for the statistics of �. For instance, a form of
thermodynamic uncertainty relation (TUR) can also be de-
rived from it [19–22], which can be understood as a lower
bound for the variance in terms of the mean of �. Another
example is a lower bound for apparent violations of the second
law [23], defined as the cases for which � < 0.

The randomness of � is encoded in the moment generating
function (MGF),

G(α) := 〈eα�〉 =
∑

�

eα�(�)P(�), (2)

where the sum above might be replaced by an integral and α

is a real number. Derivatives of (2) at α = 0 have information
of statistical moments. For instance, the first derivative is

related to the second law, G′(0) = 〈�〉 � 0. In general, we
have G(n)(0) = 〈�n〉 for higher-order moments. The MGF (2)
is non-negative, G(α) � 0, but a stronger bound comes from
Jensen’s inequality, where G(α) � exp(α�) � 0.

In this Letter, we propose the following question: What is
the impact of the DFT (1) in the MGF (2)? The first immedi-
ate known consequence of (1) is the known Evan-Searles or
Gallavotti-Cohen symmetry property for (2),

G(α) = G(−1 − α), (3)

as a direct application of the definition (1). Moreover, in terms
of the MGF (2), the integral FT for �(�) is obtained for
α = −1 using (3),

〈e−�〉 = G(−1) = G(0) = 1, (4)

and the second law follows from it. Our main result is to show
that the DFT (1) implies a tight lower bound for the MGF (2)
for a given mean �,

G(α) � cosh[(α + 1/2)g(�)]

cosh[(1/2)g(�)]
, (5)

for α ∈ R, where g(x) is the inverse function of
h(x) := x tanh(x/2), defined for x � 0 and � := 〈�〉 =∑

� �(�)P(�). We show that the distribution that saturates
(5) is the distribution that saturates the TUR [20]. This
bound explores the DFT (1) directly to improve on the bound
exp(α�).

This Letter is organized as follows. First, we present a
general formalism for (1) in terms of involutions to derive (5).
Then, we discuss how the result can be framed using informa-
tion theory in terms of Rényi relative entropy. As applications,
we show that the bound is satisfied in three different cases: a
Gaussian distribution, and the heat exchanged between two
reservoirs mediated by a bosonic mode in weak coupling and
a qubit swap engine.

Formalism. Let � ∈ S be an element of a set S and m:S→S
is any involution m(m(�)) = �, where we define the nota-
tion �† := m(�). Let P:� → [0, 1] be a probability function
such that P(�) = 0 → P(�†) = 0 (absolute continuity). For
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instance, one could choose S = R and m(x) = −x. More gen-
erally, in stochastic thermodynamics, � = (x1, . . . , xn) ∈ Rn

is a sequence and �† = (xn, . . . , x1) is the conjugate.
Define the function � : S → R as �(�) :=

ln[P(�)/P(�†)] for P(�), P(�†) > 0 as in (1) and �(�) := 0
for P(�) = P(�†) = 0. Usually, this expression for �(�)
appears in nonequilibrium thermodynamics as the stochastic
entropy production or some generalization. The moment
generating function of �(�) is given by (2)

G(α) =
∑

�

eα�(�)P(�) =
∑

�

∫ ∞

−∞
eασ δ(�(�) − σ )P(�)dσ,

(6)
where we used f (x) = ∫

f (y)δ(y − x)dy and δ(x) is the
Dirac’s delta function. Now define the probability density
function,

p(σ ) :=
∑

�

δ(�(�) − σ )P(�), (7)

such that the MGF (6) is given as

G(α) =
∫ ∞

−∞
eασ p(σ )dσ = 〈eασ 〉, (8)

where 〈 〉 are now understood as averages in p(σ ). Similarly,
we have 〈σ 〉 = 〈�〉. From the definition of �(�), we have the
property for p(σ ),

p(σ ) =
∑

�

δ(�(�) − σ )e�(�)P(�†)

= eσ
∑

�

δ(�(�) − σ )P(�†), (9)

and using �(�) = −�(�†), definition (7), and the sum over
the involution,

∑
� f (�†) = ∑

� f (�), it results in

p(σ ) = eσ p(−σ ). (10)

From (10), we have the useful property [24] for odd functions
u(−σ ) = −u(σ ),

〈u(σ )〉 = 〈u(σ ) tanh(σ/2)〉. (11)

Now we decompose the MGF (8) in a sum of odd and
even functions, G(α) = 〈sinh(ασ )〉 + 〈cosh(ασ )〉, and we
use property (11) for u(σ ) = sinh(ασ ), which results in

G(α) = 〈sinh(ασ ) tanh(σ/2) + cosh(ασ )〉. (12)

Now we use the identity cosh(x + y) = cosh(x) cosh(y) +
sinh(x) sinh(y) to obtain the compact form from (12),

G(α) =
〈

cosh[(α + 1/2)σ ]

cosh(σ/2)

〉
. (13)

Finally, we define the functions h(σ ) = σ tanh(σ/2) and the
inverse g(h(σ )) = |σ |. Inserting |σ | = g(h(σ )) in (13) leads
to

G(α) =
〈

cosh[(α + 1/2)g(h(σ ))]
cosh[(1/2)g(h(σ ))]

〉
. (14)

The final step is to use Jensen’s inequality in (14) in a strategy
analogous to previous results [24] as follows,

〈 f [g(h(σ ))]〉 � 〈 f [g(〈h(σ )〉)] = f [g(〈σ 〉)], (15)

which is true if w′′(h) := d2w(h)/dh2 > 0, where w(h) :=
f [g(h)] and f (x) = cosh[(α + 1/2)x]/ cosh(x/2) (see Ap-
pendix). Note that 〈σ 〉 = 〈σ tanh(σ/2)〉 = 〈h(σ )〉, directly
from (11) with u(σ ) = σ . Combining (14) and (15) and using
〈�〉 = 〈σ 〉, we obtain (5).

Discussion. As in the case of previous results [20,22], it
can be checked directly that the bound is saturated by the
minimal distribution, p(�) = [δ(� + a) exp(−a/2) + δ(� −
a) exp(a/2)]/[2 cosh(a/2)], where a = g(�).

We also point out that our main result (5) could also be
stated in terms of information theory as a bound for the Rényi
relative entropy as follows. The definition of Rényi relative
entropy for probabilities P and Q is

Sα (P|Q) := −1

1 − α
ln

(∑
�

P(�)αQ(�)1−α

)
. (16)

Now let (S, P, m) be defined as in the formalism, then � =
D(P|P′) is the Kullback-Leibler (KL) divergence, D(P|Q) :=∑

i Pi ln(Pi/Qi ), where P′(�) := P(m(�)). From (2) and (16),
we have G(α) = exp[αSα+1(P|P′)]. In terms of (16), the main
result (5) reads

Sα (P|P′) � 1

α − 1
ln

(
cosh[(α − 1/2)g(D(P|P′))]

cosh[(1/2)g(D(P|P′))]

)
, (17)

for any set S, probability P, and involution m. Actually, for
α → 1, the bound saturates as both sides of (17) converge
to D(P|P′). One might wonder how a result (5) that seemed
dependent on the DFT is actually as general as (17). As it
turns out, the involution property m(m(�)) = � constrains the
pair of probabilities (P, P′) in (17), creating the same effect of
the DFT. For instance, if m is the identity, then P = P′, and
in thermodynamics that would be equivalent to equilibrium
(or a detailed balance condition in the case of a Markov pro-
cess). For a general involution m, probabilities P and P′ will
differ (nonequilibrium), as represented by the KL divergence
D(P|P′) > 0 and the relative entropy Sα (P|P′) > 0.

Gaussian case. Now we compare the bound (5) to some
systems that satisfy the DFT. The Gaussian case [25,26] is
given by the MGF

G(α) = exp[α(1 + α)�], (18)

as the DFT fixes the variance 〈�2 − �
2〉 = 2� for the

Gaussian distribution and it easily checks property (3). In-
terestingly, expression (18) appears as a lower bound for the
MGF for steady states in stochastic thermodynamics [27], for
the particular case where the current is the entropy production
itself. The comparison between (18) and (5) is depicted in
Fig. 1, where ln G(α) is quadratic in α for the Gaussian case
(18), but it shows higher-order corrections in our bound (5).

Bosonic mode case. For another comparison, we take a
free bosonic mode with the Hamiltonian H = h̄ω(a†a + 1/2)
weakly coupled to a thermal reservoir with a density matrix
satisfying a Lindblad’s equation as developed in previous
results [28–30],

∂tρ = −i

h̄
[H, ρ] + Di(ρ), (19)

L062103-2



BOUND FOR THE MOMENT GENERATING FUNCTION FROM … PHYSICAL REVIEW E 107, L062103 (2023)

FIG. 1. Moment generating function (MGF) G(α) as a function
of α for � = 1 for the lower bound (solid black), swap engine (solid
red), Gaussian (dashed green), and bosonic mode (dotted blue). We
also show the exponential exp(α�) (dotted light gray). Because of
the DFT, note that all MGFs are symmetric around α = −0.5 (3) and
the integral FT is also verified G(−1) = G(0) = 1. The MGF of the
bosonic mode is not defined for the entire domain (see applications).
The Gaussian case, which is a quadratic form for ln G(α), and the
swap engine departs from the bound for large |α|.

for the dissipator given by

Di(ρ) = γ (ni + 1)
[
aρa† − 1

2 {a†a, ρ}]
+ γ ni

[
a†ρa − 1

2 {aa†, ρ}], (20)

where γ is a constant and ni = [exp(h̄ω/kBTi ) − 1]−1 is the
bosonic thermal occupation number and βi = 1/(kBTi ). We
denote the solution of (19) as ρt := �t (ρ0). A two-point
measurement scheme is performed: First, the system is pre-
pared in thermal equilibrium (temperature T1) at time t = 0,
when the first energy measurement takes place yielding E1.
Then, the system is placed in thermal contact with a second
reservoir (temperature T2), when another energy measure-
ment is performed (time t > 0) yielding E2. The dynamics of
the system between the two measurements is given by (19)
with temperature T2. As explored in previous papers, repeat-
ing the experiment multiple times results in a distribution
for E = E2 − E1, where � := −(β2 − β1)E [20,31,32]
is the entropy production. In this case, the distribution
is given by p(E = h̄ωm) = ∑∞

n=0〈n + m|�t (|n〉〈n|)|n +
m〉pn, where pn = e−β1En/Z (β1) and Z (β1) = tr(e−β1H ), re-
sulting in the closed form [29,30] for the entropy production

p(�) = 1

A(0, λ)
exp

(
�

2
− λ

|�|
2

)
, (21)

with support s = {±β h̄ωm} = {±εm}, m = 0, 1, 2, . . .,
and normalization constant A(0, λ), where A(α, λ) :=
1+ ∑∞

m=1{exp[(α+m/2)ε]− exp[(−α−m/2)ε]} exp(−λεm/

2), for λ > |2α + 1|. Upon inspection, note that (21) checks
(1). The MGF (2) for (21) is given by

G(α) = A(α, λ)

A(0, λ)
, (22)

for λ > |2α + 1|. In Fig. 1, we plot the MGF (22) or sev-
eral values of α, with ε = 1 and λ = λ∗ such that 〈�〉 = 1,

compared to the lower bound (5) for the same � = 1. This
example shows a case where the domain of α is limited,
λ∗ > |2α + 1|, but the bound is still satisfied.

Swap engine. Consider a pair of qubits with energy
gaps ε ∈ {εA, εB}. They are prepared in thermal equilib-
rium, p(±) = exp(±βε)/[exp(−βε) + exp(+βε)], for β ∈
{β1, β2}, with reservoirs at temperatures T1, T2. A two-point
energy measurement (TPM) is performed before and after
a swap operation [31], |xy〉 → |yx〉, for x, y ∈ {−,+}. The
entropy production is given [20,31] by � = β1EA + β2EB,
where EA = E f

A − Ei
A, EB = E f

B − Ei
B are the variations of

energy measurements before and after the swap. In this TPM,
the outcomes are � ∈ s = {0,±2a} for 2a = 2(β2εB − β1εA).
The distribution of � is given by

p(�) = (1/Z0)[δ(�) + δ(� + 2a)e−a + δ(� − 2a)ea],

(23)

for Z0 = 1 + exp(a) + exp(−a), which satisfies the DFT (1).
The MGF of (23) is given by

G(α) = 1 + 2 cosh[a(2α + 1)]

1 + 2 cosh(a)
, (24)

where a defines � uniquely from �=2a[exp(a)− exp(−a)]/
[1 + exp(a) + exp(−a)]. Comparison between (24) and (5) is
also depicted in Fig. 1 for � = 1.

Quantum correlations. The main result (5) also has appli-
cations in systems with quantum correlations, as long as they
satisfy a form of detailed FT. For instance, quantum correlated
bipartite thermal systems satisfy a form of detailed FT derived
from a dynamic Bayesian network approach [18]. In general
terms, the quantum FT takes the following form,

pF (Q, K )

pB(−Q,−K )
= exp(Qβ − K ), (25)

where F (B) is the forward (backward) experiment, Q is the
heat, and K is some information related odd random variable
[18] (the term in γ from the original notation is included in K
for simplicity). In general, Q and K are dependent, therefore
(25) differs from the usual heat exchange FT [16].

With a suitable redefinition of the variable �(�) as in
(1), the result (5) is applicable as follows. First, define � :=
(d, Q, K ), where d ∈ {F, B} and Q, K ∈ R. Let the involu-
tion be m(�) = m(d, Q, K ) = (d†,−Q,−K ), where F † = B
and B† = F . Now define the probability P(�) := pd (Q, K )/2
and check it is normalized over all (d, Q, K ). Finally, one
has �(�) := ln P(�)/P(�†) = ln pd (Q, K )/pd† (−Q,−K ) =
Qβ − K , for d = F, B, using (25).

Now that we have the setup (S, P, m) as in the formalism
section, the application of the main result (5) is straightfor-
ward, G(α) � B(α, 〈�〉), where the MGF is given by

G(α) :=
∑

�

eα�(�)P(�) =
∑
Q,K

eα(Qβ−K ) p̃(Q, K ), (26)

and the average

〈�〉 :=
∑

�

�(�)P(�) =
∑
Q,K

(Qβ − K ) p̃(Q, K ), (27)

for p̃(Q, K ) := [pF (Q, K ) + pB(Q, K )]/2. In this case, note
that expression (5) was adapted for a situation that contains
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quantum correlations (25). For that adaptation, the averages
are taken in terms of a mixed probability p̃ = (pF + pB)/2.
Also note that the symmetric case (pF = pB) reduces the
expressions to the usual detailed FT.

Conclusions. We explored the DFT (1) as a definition of a
random variable � and proved the impact it has on the MGF
(2). The result is that the MGF of � is lower bounded as a
function of the mean � and the parameter α. This lower bound
improves on the simple exponential bound exp(α�) because
of the special definition of � in terms of the DFT. Although
the structure (1) appears as a definition of entropy production
in stochastic thermodynamics, it is also the case of general
entropy-related quantities (that might include boundary and
information terms) in quantum thermodynamics even beyond
two-point measurement schemes [18]. We also wrote the main
result in terms of information theory, as a lower bound for the
Rényi relative entropy between distributions P and P′, where
the pair is constrained by an involution, P′(�) = P(m(�)).

Appendix. For the proof of (15), consider the notation
w′ := dw/dh and ẇ := dw/dσ . We have w′ = ẇσ ′ and

w′′ = d

dh
(ẇσ ′) = ẅσ ′2 + ẇσ ′′, (28)

where σ ′ = dσ/dh = 1/ḣ and σ ′′ = σ ′(d/dσ )(1/ḣ) =
−ḧσ ′/ḣ2 = −ḧ/ḣ3. Replacing σ ′ and σ ′′ in (28) yields

w′′ = 1

ḣ2

(
ẅ − ẇ

ḧ

ḣ

)
. (29)

Finally, using h(σ ) = σ tanh(σ/2) and w(h(σ )) = cosh[(α +
1/2)σ )]/ cosh(σ/2) explicitly to calculate ẅ, ẇ, ḣ, and ḧ, one
obtains F (σ ) := ḣ2w′′ from (29),

F (σ ) = [α2 + α2 j(σ ) + α] f (σ ) − (2α2 + α) j(ασ )

1 + j(σ )
, (30)

where f (x) := cosh[(α + 1/2)x]/ cosh(x/2) and j(x) =
sinh(x)/x. Now we use j(σ ) = sinh(σ )/σ � 1, which in

combination with α2 � 0, f (x) � 0, and j(x) � 0 results in

F (σ ) � (2α + 1)

1 + j(σ )
[α f (σ ) − α j(ασ )]. (31)

We are interested in 2α + 1 � 0, as the region α < −1/2 is
obtained with the reflection G(α) = G(−α − 1). In the case
α > −1/2, we first consider α � 0, for which (31) is rewritten
as

F (σ ) � (2α + 1)

1 + j(σ )

(
α cosh(ασ ) − sinh(ασ )

σ

+ α sinh(ασ ) tanh(σ/2)

)
. (32)

Now we use cosh(αx) � sinh(αx)/αx and α � 0 to get from
(32)

F (σ ) � (2α + 1)

1 + j(σ )
[α sinh(ασ ) tanh(σ/2)] � 0. (33)

Now for the case α ∈ (−1/2, 0), we rewrite (31) as

F (σ ) � (−α)(2α+1)

1+ j(σ )

[cosh(σ/2) − cosh(|α + 1/2|σ )]

cosh(σ/2)
�0,

(34)

since −α � 0 and cosh(σ/2) − cosh(|α + 1/2|σ ) � 0 for
0 < |α + 1/2| < 1/2. Combining (33) and (34), we have
F (σ ) = ḣ2w′′ � 0 for α � −1/2, which results in w′′ � 0
for α � −1/2. It allows the lower bound to be written for
α � −1/2 as

G(α) � cosh[(α + 1/2)g(〈σ 〉)]

cosh[g(〈σ 〉)/2]
:= B(α, 〈σ 〉). (35)

Now for α < −1/2 we could use the symmetry (3),

G(α) = G(−1 − α) � B(−1 − α, 〈σ 〉) = B(α, 〈σ 〉), (36)

where we used the property B(α, x) = B(−1 − α, x) and (35)
in the inequality above as α < −1/2 → −1 − α > −1/2.
That completes the proof for α ∈ R.
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