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As has long been known to computer scientists, the performance of probabilistic algorithms characterized
by relatively large runtime fluctuations can be improved by applying a restart, i.e., episodic interruption of a
randomized computational procedure followed by initialization of its new statistically independent realization.
A similar effect of restart-induced process acceleration could potentially be possible in the context of enzymatic
reactions, where dissociation of the enzyme-substrate intermediate corresponds to restarting the catalytic step
of the reaction. To date, a significant number of analytical results have been obtained in physics and computer
science regarding the effect of restart on the completion time statistics in various model problems, however,
the fundamental limits of restart efficiency remain unknown. Here we derive a range of universal statistical
inequalities that offer constraints on the effect that restart could impose on the completion time of a generic
stochastic process. The corresponding bounds are expressed via simple statistical metrics of the original process
such as harmonic mean h, median value m, and mode M, and, thus, are remarkably practical. We test our
analytical predictions with multiple numerical examples, discuss implications arising from them and important
avenues of future work.
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Introduction. Restarting was first proposed as a promis-
ing optimization tool of probabilistic algorithms in the early
1990s [1,2]. The restart-induced speed-up may seem counter-
intuitive at first glance, but the basic idea behind this technique
is quite transparent: If the current realization of the random-
ized algorithm takes too long, it may be faster (on average)
to retry attempt with a new random seed to avoid prolonged
wandering in the region of the configuration space far from
the actual solution. Since then, restarting has become a routine
procedure used to hasten computational tasks whose run-time
exhibits significant fluctuations [3–17]. In particular, the op-
tion of restart is built into state-of-art constraint satisfaction
problem solvers [18–21] (see also [22,23] for other computer
science applications).

A current wave of interest in this topic from the statistical
physics community has been sparked by the work of Evans
and Majumdar [24] who showed that stochastic (Poisson)
restart expedites diffusion-mediated search. After that it has
been demonstrated on a number of different examples that a
specially selected restart frequency makes it possible to min-
imize the average time for completing random search tasks
[25–50]. Also, recent development of a model-independent
renewal approach, originally proposed for the purposes of
describing the single enzyme kinetics [51], has provided a
shortcut to the exact completion time statistics of an arbi-
trary stochastic process under an arbitrary restart protocol
[52–54]. This fruitful approach helped to reveal unexpected
universality in statistics of optimally restarted processes [53],
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to establish remarkably simple sufficient conditions for when
restart is beneficial [53,55,56] and to rigorously quantify im-
pact of restart on various statistical characteristics of random
processes [57–60].

The natural course of development of the research field
poses the following question to us: What, if any, are the
fundamental limitations of the optimization via restart? The
knowledge of the exact completion time distribution allows
one to determine the optimal restart strategy (which may
be to not restart at all) and the corresponding best possible
performance for a given stochastic process. In practice, how-
ever, the complete statistics of the completion time is usually
unavailable; see, e.g., [2,7,9,10,15,17,51]. The existing liter-
ature lacks understanding of how to evaluate the potential
performance of restart based on some limited set of statis-
tical characteristics of an observable process. In this paper
we fill this gap by exploring how much restart can lower
the expected completion time of a stochastic process with
partially specified properties. More specifically, we present
the universal lower bound on the mean completion time re-
spected by any stochastic process under an arbitrary restart
protocol. Besides, we construct the universal upper bound
on the mean completion time of generic stochastic process
at optimal restart conditions. Both types of probabilistic in-
equalities are generalized to the high order statistical moments
of random completion time. Being formulated in terms of
easily interpreted statistical characteristics of an unperturbed
stochastic process, the resulting bounds provide valuable in-
sight into what restart can and cannot do. As a useful corollary,
our analysis provides a novel sufficient condition for restart
to be beneficial which requires very little information on
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the statistics of the random process of interest. Finally, we
propose a broad generalization of the well-known inequality
offering constraint on the relative fluctuation of the expected
completion time of optimally restarted processes.

Model formulation. Consider a generic stochastic process
which ends after a random time T if allowed to take place
without interruptions. Statistical properties of the variable T
are described by the probability density P(T ) with a proper
normalization

∫ ∞
0 dT P(T ) = 1. This implies that the process

terminates in finite time with probability 1. As discussed
below, our key results remain unchanged or require a trivial
modification when one introduces the nonzero probability of
never stopping.

The restart protocol R is characterized by a (possibly in-
finite) sequence of inter-restart time intervals τ1, τ2, . . . . If
the process is completed prior to the first restart event, the
story ends there. Otherwise, the process will start from scratch
and begin anew. Next, the process may either complete prior
to the second restart or not, with the same rules. This pro-
cedure repeats until the process finally reaches completion.
Importantly, we assume that protocol R is uncoupled from
the process internal dynamics: The restart decisions do not
use information on the current internal state of the process.

In the simplest case of strictly periodic protocol, which is
of particular methodological importance as explained below,
the process is restarted whenever τ units of time pass. The
expected value of the random completion time Tτ of the pro-
cess subject to such a restart procedure can be obtained by
averaging of an appropriate renewal equation. The result is
given in the following expression:

〈Tτ 〉 =
∫ τ

0 P(T )T dT + τ
∫ ∞
τ

P(T )dT∫ τ

0 P(T )dT
, (1)

which, thus, relates the expectation of the random completion
time in the presence of periodic restart to the statistics of the
“bare” (i.e., restart-free) process.

Restart performance is limited to a quarter of the harmonic
mean completion time. First of all, we seek to derive inequality
of the form 〈TR〉 � CT , where TR denotes the random com-
pletion time of the generic stochastic process under arbitrary
restart protocol R, T is expressed through some simple statis-
tical characteristics of the original process (such as statistical
moments, quantiles, or mode of the probability density P(T )),
and C is the universal positive constant which depends neither
on the specific form of P(T ) nor on the particular restart
schedule R.

Previous works have shown the importance of relative fluc-
tuation σ/μ, where μ = 〈T 〉 and σ =

√
〈T 2〉 − 〈T 〉2, for the

analysis of the potential response of the stochastic process
to restart. Namely, the inequality σ/μ > 1 represents a suf-
ficient condition for the existence of a restart protocol that
reduces the expected completion time [52,53,56]. Given this
result, let us first find out if knowledge of the mean value
μ and the standard deviation σ allows one to write a lower
bound on the average performance of restart. Consider, prob-
ability density P(T ) = pδ(T − t1) + (1 − p)δ(T − t2), where
0 � t1 � t2 and 0 � p � 1. Putting t2 = μ2+σ 2

μ
, p = σ 2

μ2+σ 2 ,
τ = t1 + 0, and t1 → 0, one immediately obtains from Eq. (1)
〈Tτ 〉 = t1/p → 0. We see that for the fixed values of μ and σ ,

the completion time 〈Tτ 〉 can be arbitrarily small. Therefore,
the pair (μ, σ ) does not produce any nontrivial lower bound.

Our derivation of the desired lower bound limit is based on
the special properties of the periodic restart strategy. As shown
by Luby et al. [2] for a discrete time case and generalized to
continuous settings by Lorenz [17] (see also [61] for simpler
and even more general proof), if you found a value τ∗ � 0
(probably τ∗ = +∞) such that 〈Tτ∗ 〉 � 〈Tτ 〉 for any τ � 0,
then 〈Tτ∗ 〉 � 〈TR〉 for all R. In other words, optimally tuned
periodic restart beats any other restart strategy. In addition, the
same authors have proved (see also [61]) that the mean perfor-
mance of an optimal periodic restart obeys the condition,

〈Tτ∗ 〉 �
1

4
min

τ

τ

Pr[T � τ ]
. (2)

Let us show that using Eq. (2) together with the optimal
property of the periodic restart strategy leads to a simple
performance bound of restart. Namely, applying Markov’s
inequality [62] to the variable ω = 1/T we find Pr[T � τ ] =
Pr[ω � 1

τ
] � τ 〈ω〉 = τ 〈 1

T 〉. Next, taking into account Eq. (2)
one obtains 〈Tτ∗ 〉 � 1

4 h, where h = 〈T −1〉−1 is the harmonic
mean completion time of the original process. And finally,
since 〈TR〉 � 〈Tτ∗ 〉 for any R, this yields

〈TR〉 � 1
4 h. (3)

No constraints have been imposed on the form of P(T ), and,
therefore, Eq. (3) is universally valid for any setting. What is
more, this estimate remains valid also when stochastic process
may have nonzero probability of never ending, if h is always
understood as the harmonic mean completion time of the
halting trials [63].

Particular case of smooth unimodal distribution. A some-
what less general, but still informative, result can be obtained
if we assume that the completion time distribution P(T ) is
smooth and exhibits single local maximum at some nonzero
value of T . This class of probability densities covers, in partic-
ular, a vast number of random search models; see, e.g., Refs.
[24,27–29,33,36,38,42–44,48]. The efficiency of any restart
protocol in this case satisfies the inequality,

〈TR〉 � 1
4 M, (4)

where M = argmaxT P(T ) > 0 is the mode of the probability
distribution P(T ), i.e., the value of the random completion
time T that occurs most frequently. To prove this result let
us introduce τ0 ≡ argminτ

τ
Pr[T�τ ] . Clearly, assumption M > 0

implies that τ0 > 0. Since the smooth function f (τ ) = τ
Pr[T�τ ]

attains its minimal value at τ = τ0, one obtains df (τ0)/dτ =
0 or, equivalently, P(τ0)τ0 = ∫ τ0

0 P(T )dT . Next, as the uni-
modal function P(T ) is nondecreasing on the interval form 0
to M, this extrema condition implies the inequality τ0 � M
and, therefore, τ0

Pr[T�τ0] � M
Pr[T�τ0] � M. Together with Eq. (2)

this yields inequality 〈Tτ∗ 〉 � 1
4 M. Recalling that 〈TR〉 � 〈Tτ∗ 〉

for all R, we then obtain Eq. (4). Note also, that if the
probability distribution P(T ) has multiple local maxima, then
〈TR〉 � 1

4 Mmin, where Mmin is the leftmost mode. Moreover,
similarly to Eq. (3), inequality (4) holds even for potentially
nonstopping processes, with the obvious caveat that M should
now be considered as the most frequent completion time of
halting trials.

L062101-2



UNIVERSAL PERFORMANCE BOUNDS OF RESTART PHYSICAL REVIEW E 107, L062101 (2023)

The twice median sets upper bound on the optimized mean
completion time. Having considered the lower bounds, we
now turn to the opposite question. How good is the best restart
strategy? In other words, we wish to construct an inequality of
the form 〈Tτ∗ 〉 � CT , where the time scale T is determined by
the properties of the original stochastic process, and C is the
universal positive constant which depends neither on specific
form of P(T ) nor on the optimal restart period τ∗.

It is easy to understand that the upper bound limit on opti-
mal performance cannot be expressed via the harmonic mean
h or the mode M. Indeed, for the half-normal distribution

P(T ) =
√

2
πσ 2 e− T 2

2σ2 one has τ∗ = +∞, so that 〈Tτ∗ 〉 = 〈T 〉 >

0, whereas h = M = 0. Therefore, inequalities of the form
〈Tτ∗ 〉 � C1h and 〈Tτ∗ 〉 � C2M, where C1 and C2 are positive
constants, cannot be universally valid.

The desired universal upper bound can be expressed in
terms of the median completion time m of the original process
obeying by definition the equation Pr[T � m] = 1/2. Indeed,
taking into account that 〈Tτ∗ 〉 � 〈Tτ 〉 for any τ � 0 together
with the inequality 〈Tτ 〉 � τ

Pr[T�τ ] , which straightforwardly
follows from Eq. (1), we find 〈Tτ∗ 〉 � τ

Pr[T�τ ] . Substituting m
for τ in the last inequality one obtains

〈Tτ∗ 〉 � 2m. (5)

Thus, no matter how heavy the tails of P(T ) are, in the
presence of an optimally tuned periodic restart, the average
completion time does not exceed twice the median of the un-
perturbed process. More generally, if the process has nonzero
probability of never halting, we arrive at the estimate 〈Tτ∗ 〉 �
2ms/q, where ms denotes the median completion times of the
halting trials, whereas q is the probability that process ends
for a finite time [61].

Importantly, the bound dictated by Eq. (5) is sharp: For any
given m there is a probability density P(T ) which is charac-
terized by median value m and for which 〈Tτ∗ 〉 = 2m. Indeed,
for P(T ) = 1

2δ(T − t ) + 1
2δ(T − 3t ) one obtains m = t and

〈Tτ∗ 〉 = 2t , where τ∗ = t . Note also that Eqs. (3) and (5) do not
contradict each other since the relation h � 2m is always valid
as shown in [61]. Also, Eq. (4) is in accord with Eq. (5) since
M � 2m for any continuous unimodal probability distribution
(see [61]).

Given this result, it is natural to ask if the median value can
be used to construct the bottom bound of restart performance
in the spirit of Eqs. (3) and (4). The answer is no. A sim-
ple counterexample demonstrating that the inequality 〈TR〉 �
Cm, where C is the universal nonzero constant, cannot be valid
is given by the Weibull distribution P(T ) = k

λk T k−1e−( T
λ

)k

with 0 < k < 1 for which 〈Tτ∗ 〉 = 0, where τ∗ → 0, and
m > 0.

Beyond the mean performance. Inequality constraints given
by Eqs. (3)–(5) can be generalized to higher order statisti-
cal moments of random completion time. First of all, since

k
√

〈T k
R〉 � 〈TR〉 for any natural k due to Jensen’s inequality

[62], we immediately find from Eq. (3) that
k
√

〈T k
R〉 � 1

4 h for a
generic stochastic process under an arbitrary restart protocol.
Likewise, Eq. (4) trivially entails inequality

k
√

〈T k
R〉 � 1

4 M
which is valid in the case of unimodal completion time dis-
tribution.

A similar extension of Eq. (5) is more tricky. It turns out
that the statistical moments of the optimal completion time
Tτ∗ satisfy the inequality,

k

√
〈T k

τ∗ 〉 � 2
k
√

k!m. (6)

To prove Eq. (6) let us assume that the process, which is being
restarted periodically in an optimal way, becomes subject
to an additional restart protocol R� characterized by ran-
dom restart intervals τ1, τ2, . . . independently sampled from
Gamma distribution ρ(τ ) = βk

�(k)τ
k−1e−βτ with shape param-

eter k and infinitesimally small rate parameter β. In [61] we
show that this produces a differential correction 〈Tτ∗+R�

〉 −
〈Tτ∗ 〉 ≈ 1

k! (〈Tτ∗ 〉〈T k
τ∗ 〉 − 1

k+1 〈T k+1
τ∗ 〉)βk to the mean completion

time attained by the optimal periodic restart. Because of the
dominance of a periodic restart over other restart strategies,
one can be sure that this difference is positive, and therefore

〈
T k

τ∗

〉

〈Tτ∗ 〉k
� k!. (7)

Together with Eq. (5) this yields Eq. (6).
Numerical examples. For the sake of illustration we

explored several probability distributions P(T ), whose re-
sponse to restart has been extensively discussed in the
physical and computer science literature: first-passage time
densities for one-dimensional [24,43] and two-dimensional
[27,41,43] diffusion processes, first-passage time density for
one-dimensional drift-diffusion process [36], first-passage
time density for one-dimensional diffusion in logarith-
mic potential [37], log-normal distribution [15,17,22,51,55],
hyper-Erlang distribution [5,23,52,64], hyper-exponential dis-
tribution [5,23,52], and Pareto distribution [6,15,17]. The
numerical parameters associated with the distributions are
given in [61]. Numerical data for the average completion time
at the optimally chosen frequency of periodic restart are sum-
marized in the diagrams presented in Fig. 1. We see that all
points fall into the region determined by Eqs. (3)–(5) together
with the inequalities h � 2m and M � 2m.

Importantly, theoretical analyses presented above does not
answer the question of whether the bounds determined by
Eqs. (3) and (4) are sharp. Thus, one may expect, that the
constant 1/4 entering the right-hand sides of these equa-
tions can potentially be replaced by one larger. Numerical
data presented in Fig. 1 allow us to argue that the unknown
best possible constants C1 and C2 in the inequality constraints
〈TR〉 � C1h and 〈TR〉 � C2M representing the exact lower
bounds on 〈TR〉 lie in the ranges 1/4 � C1 < 5/4 and 1/4 �
C2 < 5/3.

Corollary 1: Novel criterion of restart efficiency. A no-
table implication of the upper bound dictated by Eq. (5) is
a previously unknown sufficient condition of when restart
is helpful in facilitating the process completion. Namely, as
follows from Eq. (5), inequality μ/m > 2, where μ = 〈T 〉,
guarantees that there exists finite restart period decreasing the
expected completion time. What is particularly interesting is
that this simple inequality makes it possible to capture the
benefit of restarting in those cases when analysis of the rela-
tive fluctuation cannot. In Fig. 2 we compare the applicability
of two criteria, μ/m > 2 and σ/μ > 1, using the mix of two
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FIG. 1. (a) Diagram in the x − y plane, where x = h/(4〈Tτ∗ 〉) and
y = 〈Tτ∗ 〉/(2m), depicting the relationship between mean completion
time of an optimally restarted process 〈Tτ∗ 〉, the median m, and
the harmonic mean h of the original process. (b) Diagram in the
x − y plane, where x = M/(4〈Tτ∗ 〉) and y = 〈Tτ∗ 〉/(2m), depicting
the relationship between mean completion time 〈Tτ∗ 〉 of an optimally
restarted process, the median m, and the mode M of the restart-free
process. As indicated in the legend, each point in these diagrams
corresponds to a specified completion time distribution P(T ). In
accordance with Eqs. (3)–(5) and probabilistic inequalities h � 2m
and M � 2m all points belong to the light orange region determined
by the conditions 0 � x � 1, 0 � y � 1, y � 1/(4x).

delta functions as a model distribution. Clearly, there is a
region of parameters, where the relative fluctuation is less than
unity, σ/μ < 1, while μ/m > 2. More generally, exploiting
the well-known probabilistic inequality |μ − m| � σ [65–67],
it is easy to see that the condition μ/m > 2 implies that
σ/μ > 1/2. What is more, the numerical constant 1/2 cannot
be replaced by a larger one: In [61] we construct an example
of probability density P(T ) with σ/μ → 1/2 and μ/m > 2.

At the same time it should be noted that the opposite
scenario, i.e., σ/μ > 1 and μ/m < 2 is also possible (see
Fig. 2). These observations suggest that, since both condi-
tions, σ/μ > 1 and μ/m > 2, are sufficient, but by no means
necessary, in practice they should be used together to compen-
sate (at least partially) each other’s shortcomings.

Corollary 2: Generalized fluctuation relation for optimal
restart. Let us also note that Eq. (7), which we have derived
for auxiliary purposes, is interesting in itself as it represents
a higher-order generalization of the well-known inequality

FIG. 2. A diagram of restart efficiency for the random process
with completion time probability density P(T ) = p δ(T − t1) + (1 −
p) δ(T − t2) in the plane of dimensionless parameters p and a =
t2/t1. The black area corresponds to the case when restart is not
efficient. For the purple area of the diagram restart is efficient and
both criteria, σ > μ and μ > 2m, are fulfilled. The region in blue
corresponds to the scenario when restart efficiency is captured only
by the inequality σ > μ, while the region in red corresponds to the
scenario when only the condition μ > 2m is satisfied. Finally, neither
of the two sufficient conditions is met for the orange area of the
diagram, but restart is useful nevertheless.

constraint 〈T 2
τ∗ 〉/〈Tτ∗ 〉2 � 2 first derived by Pal and Reuveni

[54]. Interestingly, for k = 3, we find from Eq. (7) an estimate
〈T 3

τ∗ 〉/〈Tτ∗ 〉3 � 6. These observations indicate that the optimal
periodic protocol is generally characterized by smaller ran-
domness of the process durations in comparison with optimal
Poisson restart for which one has 〈T 2

τ∗ 〉/〈Tτ∗ 〉2 = 2 [53] and
〈T 3

r∗ 〉/〈Tr∗ 〉3 � 6 [61] provided 0 < r∗ < +∞, where r∗ is the
optimal restart rate. It would be also interesting to compare the
effects of periodic and stochastic restart strategies on random-
ness of completion times in terms of information-theoretic
metrics [59,60].

Conclusion and outlook. Revealing explicit performance
bounds is crucial in many areas of science and engineering.
For example, establishment of the Carnot cycle efficiency [68]
played a fundamental role for the development of combustion
engines and thermal power plants as it sets a bound on the
efficiency of any thermodynamic heat engine. Similarly, Shan-
non’s limit of information capacity [69] has become a guiding
principle in the design of communication systems. Although
optimization via restart is widely used in the practice of com-
puter programming and represents an active field of academic
research in physics, the question of performance limits of this
control tool has not been addressed thus far. In this study, we
expressed these limits in terms of simple statistical metrics
that can be easily estimated based on finite samples of the
process completion time.

Importantly, the presented analysis was grounded on the
assumption of instantaneous restart events. Although this sce-
nario covers an overwhelming majority of the model problems
considered in the literature, it should be kept in mind that
in real-life settings restart may be accompanied by some
time penalty [51,53,56,70–76]. Say, in the context of single
molecule enzyme kinetics, where restart occurs naturally by
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virtue of intermediate dissociation, some time is required
for the enzyme which unbinds from its substrate to find
a new one in the surrounding solution [51,53,71]. Simi-
larly, restart of the computer program typically involves a
time overhead. Also, models with noninstantaneous restarts
provide more realistic pictures of colloidal particle diffu-
sion with resetting [76]. How does accounting for delays
modify the bounds constructed here? The straightforward
generalization of arguments leading to Eq. (5) brings us to

the following simple result (see [61]): 〈Tτ∗ 〉 � 2m + 2〈Ton〉,
where 〈Ton〉 is the expectation of the generally distributed
time penalty which collectively accounts for any delays that
may arise prior to the completion attempt. A similar gener-
alization of the lower bounds given by Eqs. (3) and (4) is
an important (and apparently sophisticated) task for future
research.
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