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Semidefinite programming algorithm for the quantum mechanical bootstrap
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We present a semidefinite programming algorithm to find eigenvalues of Schrodinger operators within the
bootstrap approach to quantum mechanics. The bootstrap approach involves two ingredients: a nonlinear set of
constraints on the variables (expectation values of operators in an energy eigenstate), plus positivity constraints
(unitarity) that need to be satisfied. By fixing the energy we linearize all the constraints and show that the
feasibility problem can be presented as an optimization problem for the variables that are not fixed by the
constraints and one additional slack variable that measures the failure of positivity. To illustrate the method we
are able to obtain high-precision, sharp bounds on eigenenergies for arbitrary confining polynomial potentials in

one dimension.
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Solving for the spectrum of Hamiltonians is a very im-
portant scientific problem with applications to the study of
molecules (quantum chemistry), atomic physics, solid state
physics, etc. Certain applications also require very high preci-
sion in the spectrum if one is to understand the theoretical
aspects of nonperturbative information, such as those that
appear when studying resurgent series [1]. Novel methods that
compute the spectrum of Hamiltonians to high precision are
very useful in these applications.

Recently, the numerical bootstrap has enjoyed renewed
attention in its application to quantum mechanical systems,
starting with Ref. [2]. In previous work, we demonstrated the
efficiency of the numerical bootstrap in finding rigorous, pre-
cise bounds on the energies of eigenstates in one-dimensional
(1D) Schrodinger problems [3-5]. The same setup for other
1D problems has been studied in Refs. [6—12]. The algorith-
mic approach (following the ideas of Ref. [13]) performs a
search of possible solutions to the truncated bootstrap problem
and gives a “yes/no” answer to their validity. If a solution
survives, one can increase the size of the truncation and keep
searching more finely in the set of possible solutions. This
search is in a space of many variables which can grow as the
size of the truncated problem increases. This type of search
is impractical except on search spaces of low dimension,
dsearch g 3.

In this Letter we describe and implement a semidefi-
nite programming algorithm (SDPA) to numerically find an
arbitrary subset of the spectrum of a Hamiltonian which over-
comes the problem of searching in a high-dimensional search
space. We implement it for problems in 1D with a polynomial
potential. At each fixed value of the energy E = (H), the
algorithm is a linear semidefinite program (SDP) which may
be solved polynomially in the size (depth) K of the constraint
matrices. One then scans only over E.
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The bootstrap as an SDP. The quantum mechanical boot-
strap, as proposed in Ref. [2], works as follows. We start with
a Hamiltonian H with a point spectrum. For simplicity we will
assume that the potential is polynomial and that the system is
one dimensional so that

H = p*+ V(). €))

From this, we assume that we have an eigenstate of the
Hamiltonian with energy E. The question of the bootstrap
is to decide whether or not E is an allowed eigenvalue of
the Hamiltonian. To do so we generate a recursion for the
positional moments (x") from the two constraints

((H,0]) =0, (HO)=(H){O)=E(O), 2)

which assume that the state is an eigenstate of energy E.
Given a collection of such moments, any positive function
| Y~ a;x’|? will have a positive expectation value. This is a uni-
tary constraint: It states that the probability density associated
to the state with energy E is non-negative. The constraint is a
quadratic function of the «; and gives rise to a positive-definite
matrix M > 0 computed from the positional moments. A so-
lution is an allowed state if E and the moments satisfy all the
constraints and the positive condition on M.

More generally, beyond 1D, for any operator O, the ex-
pectation value of the positive operator (OTO) > 0 must be
non-negative. This gives rise to a positive-definite matrix
when we pick O from the span of a subset of basis operators.
In 1D problems the expectation values appearing in M defined
above are generally strong enough to determine uniquely the
solutions.

In the algorithm proposed in Ref. [2] one is supposed
to test (search) for each value of E as well as the expecta-
tion values that are not determined from the recursion. The
dimension of the search space is the number of variables
that are not determined by the recursion. For example, for
a potential V (x) = ax®> + gx* one needs to do a search on
a two-dimensional space, which can be defined as the pair
of values (x?), (x*), or equivalently E, (x*). The reason only
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even powers are required is due to the symmetry x — —x of
the potential. If we do not have that symmetry, we would need
instead (x), (x?), (x*), (x*). For an even potential of generic
form V (x) ~ ap,x*" + - - -, one needs to have information on
n variables, (x*) for k = 1, ..., n. The main algorithm tests
if the matrix moments satisfy the condition M > 0 where the
matrix is truncated to the first K x K matrix of moments.
The matrix Mgk is a principal minor of the subsequent
M (k+1)x(k+1) matrix. The matrix M(x41)xx+1) being positive
requires that Mg, x > 0, so collections of values that do not
satisfy the positivity at some value K are rejected for all larger
values K’ > K. This gives a notion of convergence of allowed
solutions. When the dimension of the search space is large, let
us say n > 3, the cost of searching for solutions becomes pro-
hibitive: The numerical results of various experiments show
exponentially fast convergence to solutions. It is easy to miss
them if one needs to do a very fine grained improvement
of the mesh. This is what we will call the high-dimensional
search space problem. The algorithm as described requires
searching finely on the full dimension of the search space with
a fine comb. This Letter addresses this issue by determining
another way to find solutions that do not involve a “pecking”
procedure (searching on a mesh point by point) on a high-
dimensional search space.

Furthermore, if E is a variable determined from the other
ones, these latter constraints in (2) are nonlinear in the mo-
ments x, = (x"). One may choose to omit the nonlinear
constraints and be left with a linear problem; this is the route
in Refs. [14,15], where one minimizes the value of the energy
given some positivity constraints. The tradeoff is that one is
only able to solve for the ground state in the absence of the
nonlinear constraints. An alternative approach to linearization
to the one we take here is to apply a convex relaxation of the
nonlinear constraints in (2). Such a method has been applied
in the study of the large N bootstrap [16,17] to relax nonlinear-
ities in the Yang-Mills (or matrix model) loop equations that
arise from factorization. Our improved algorithm linearizes
the problem by fixing £ and notices that the problem to solve
can be recast as a semidefinite programming optimization
algorithm instead. The search space is reduced to just one
variable, the energy E.

Fixed-energy recursion. A simple way to linearize the con-
straints (2) is to fix the value of energy E and test if E is an
allowed value. At each fixed value of the energy the recursion
is linear in the x,. Consider an arbitrary potential of even
degree d:

d
Vx)= a,x".
n=1
The recursion relates moments x,, with n > d to lower mo-
ments. For m > 0 it may be written

1

Mtm = g d + 2m £ 2)

|:4(m + 1)Ex,

n=I

d—1
+m(m® = Dxyy =2 ) (n+2m + 2>anxn+m}. 3)

Generically, initializing the recursion requires the energy as
well as the first d — 1 moments, with xo = 1.

The basic object of interest in the bootstrap is the K x K
Hankel matrix with elements Mi(f) = Xiyj, where 0 < i, j <
K — 1. The unitarity constraint is that M > 0; M defines a
covariance matrix which must be positive semidefinite.

Before applying the recursion, the matrix elements of M*)
are the first 2K — 2 moments x,,. The recursion (3) relates
the x,, with m > d to those with m < d by introducing a
dependence on the energy E; it thus defines a set of symmetric
K x K matrices F,(E) by

d—1

ME = Z‘ 1. (E), 4)
n=0

where the x, for 1 < n < d — 1 will function as primal vari-
ables for the optimization problem.

As K — o0, the Hankel matrix M%) defined above will
be positive definite only for £ in the spectrum of H: This
has been shown in examples and is expected to be true. No
complete proof exists. For the purposes of this Letter we will
take that statement at face value. Finite K is a truncation of
an infinite set of constraints. We expect the Hankel matrix to
be positive definite in some disjoint set S¢ C R which strictly
contains the spectrum of H. Moreover, the x, are uniquely
determined by E. Numerical experiments [4,15] have shown
that the convergence to the eigenvalues (and the moments) is
exponentially fast in the size of the truncation. Furthermore,
Sk+1 C Sk, etc. This same weak convergence property allows
efficient search strategies in a bootstrapping algorithm.

The main problem in previous explorations of the quan-
tum mechanical bootstrap is that a search is done both in
E and in the moments. If there are many moments that are
undetermined from the recursion, the search for solutions of
the bootstrap equations and constraints is done in a high-
dimensional space and becomes very inefficient. Our goal
then is to find an optimal value of the moments for fixed
energy E rather than doing a blind search. Moreover, if the
problem fails to find solutions of the constraints, we want
a numerical measure of how far we are from satisfying the
constraints. Our proposal addresses these issues, so that in the
end one is left only with a scan over energies E.

Optimization. How do we test if a symmetric matrix M%)
is positive? If the matrix is Hermitian, then the condition of
being positive (definite) is equivalent to the minimal eigen-
value of M®) being positive. We test positive definiteness by
considering the minimal eigenvalue of M%) as a function of
the primal variables x;. Define an optimization problem,

maximize Amin[M® (x;, E)]. 3)

If the optimal value is negative, the energy value E can be
safely excluded from the set Sx. The goal is to solve this
optimization problem for a range of energies and to thereby
determine the set Sx. The algorithm proceeds by searching
this set at depth K + 1, and iteratively converges to the spec-
trum (or a subset thereof).

The problem (5) defines an objective function which is
highly nonlinear in the primal x;. However, the problem of
eigenvalue extremization is well known to have an equiva-
lent formulation as an SDP with linear objective [18]. First,
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introduce a slack variable ¢ and write

maximize t
subjectto  Amin[M(x;, E)] > t,

which is equivalent to (5). It is convenient to introduce the ma-
trix M — tI. If the minimal eigenvalue of M — ¢ is positive,
the matrix in question must be positive definite M — I > 0.
This allows us to write a problem equivalent to (5) in SDP
form, using the decomposition (4):

maximize t

subjectto 300 x,F(E) —tI > 0. ©

This is an SDP in linear matrix inequality (LMI) form with
primal variables x = (¢, xq, ..., Xg_1).!

Notice that even if the energy is not allowed, the opti-
mization problem will find a solution: A sufficiently large
negative ¢t will always make it possible to satisfy the positive
matrix constraint. We thus obtain for the K we are testing a
value ¢ that is negative and an optimal value of the moment
variables. The maximum ¢, which we label #,,,x, is a measure
of how close we are to success. As we scan over E (at fixed
K), tmax Will depend continuously on E and it is possible
to estimate when it will become positive. It thus serves not
only as a diagnostic of failure, but it also gives a way to scan
intelligently in E.

Problems on other domains. For problems on the half line,
the interval, or a circle, light modifications of the approach are
needed. In the case of the circle, one uses periodic functions
in the bootstrap (a trigonometric moment problem). The goal
in that case is to find the band structure of the potential.

There are two main differences from problems adapted to
the real line and the interval: Certain terms in the recursion are
modified and one has two or more matrix positivity constraints
to contend with.

In Ref. [5], we showed how solving Schrédinger problems
on the half line requires adding anomalous terms to the recur-
sion which depend on the boundary conditions ¥ (0), ¥'(0).
One must include these terms, which generally modify the
recursion (3). The same will be true in the interval, where each
boundary will modify the recursion relations depending on the
boundary conditions.

On the half line, the other difference is due to the result
of Stieltjes on the moment problem for measures on R,.
Positive semidefiniteness is required for the matrix M;; = x;
as well as the matrix lej = Xi4i+. To account for this, we just
require positivity of M —¢I = 0 and M’ —¢tI > 0. The rest
of the algorithm is unchanged. Basically, we pick up either
the minimum eigenvalue of M and M’ to be positive.” In the
interval (0,1), the polynomial (1 — x) is also positive definite
and there will be additional blocks required for solving the
dynamics.

'In some SDP solvers, the algorithm must be written as a minimiza-
tion problem. This is done by minimizing —¢ instead.

ZMany SDP solvers, including SDPA, allow one to specify the
block structure and interpret the matrices as sparse arrays. This
avoids considering the many inert matrix elements and slowing down
the computation.

For problems in higher dimensions, we expect that the
constraints are not enough to determine recursively all the
moments from a finite search space. We are currently investi-
gating this issue. Conceptually, there is no obstacle to proceed
in these higher-dimensional setups. The main issue will be on
understanding the optimal way to eliminate variables and how
different truncation schemes might perform.

The algorithm. With the SDP formulation, the bootstrap
algorithm proceeds as follows. Given a potential V, take an
initial set of energy values Sy = {E;} C R. For each fixed
value of the energy, solve the SDP (6) at some initial depth
Ky. Energies E; for which the t,,x is positive form the set
Sk,» which serves as the search set at depth K’ > K. Iterating
this procedure will result in a set of intervals within Sy. These
intervals define sharp bounds on the exact spectrum of H, in
the sense that the bounds are rigorous and can only shrink as
K increases.

A persistent issue with the bootstrap is the rapid growth
of the matrix elements. The magnitude of the largest matrix
entries scales superexponentially with K. For example, in the
harmonic oscillator, (x") ~ I'(rn/2) in eigenstates. As a result,
using single- or double-precision floats results in serious nu-
merical errors after K ~ 10. Similar issues were encountered
in the conformal bootstrap program, which necessitated the
use of an arbitrary-precision SDP solver [19]. We found the
same to be necessary in order to obtain comparably high
precision to finite-element methods.

To numerically solve the problem, we used SDPA-GMP
[20], a primal dual interior point SDP solver built on the GMP
(GNU multiple precision) arithmetic library. The main reason
this is needed is that the minimal eigenvalue of M, when pos-
itive, tends to be exponentially small for large matrices. This
is the reason the algorithm is computationally expensive in
practice. The SDP was set up in PYTHON, where the recursion
was computed and used to generate the F;,(E) for an array of
energy values. This program wrote input and output files for
SDPA-GMP, which solved the optimization problem (6) for
each considered value of E. These results were read back into
PYTHON, generically resulting in intervals of energy where
positivity was satisfied. These intervals were used to generate
finer resolution arrays which were fed back into the algorithm
just described. We worked with ~60 digit (200 significant
bits) precision.

The main benefit of the SDP approach is that we can search
a very high-dimensional space very efficiently. In our previous
work, we were constrained to potentials of degree <4 due
to the brute-force nature of the algorithm. Now, potentials of
essentially arbitrary degree can be solved in comparable time.

Results for an example. To show that this method is able
to obtain high-precision results for excited states in a search
space of large dimension, we considered as a simple example
the degree 8 potential

V)= 1x —xt 4+ 18 (7)

This has eight primal variables (including ¢), although since
the potential is even, the number effectively reduces to four
primal variables. We search over the energy range [0,15]
which we know to contain the first five excited states. We
started the search at matrices of size Ky = 10 and terminated
the search once all detected levels reached six significant
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FIG. 1. The (log, of the) objective function evaluated over a
range of energies for the potential (7). Exact energies (computed
in Mathematica by FEM) shown as dashed lines. Results shown for
K =12,14,18.

figures; this required up to K = 31. At each depth, the al-
gorithm requires us to look for the negative values of the
objective function of (6). We can visualize the convergence
by plotting log,(|t*|), where ¢* is the optimal value, versus the
fixed energy E. Inverted “spikes” in this plot show the zero
crossings. As the intervals of positive ¢ shrink with increasing
K, two spikes seem to join around the exact value of the
eigenstate energy, as shown in Fig. 1. The structure is always a
double-spike structure around each allowed value: Two spikes
can become so close to each other that the plot can no longer
distinguish them. The numerical estimates for the eigenener-
gies are shown in Table 1. This level of precision is beyond
machine precision in Mathematica, though its implementation
of a FEM eigensolver works much faster for this class of
1D problems. Specifically, an evaluation of Mathematica’s
“NDEigensystem” to generate the lowest five eigenenergies
of the potential (7) took ~1.54 s. Our implementation of the
SDP bootstrap algorithm in PYTHON took ~876 s to run from
K = 10to K = 30, generating the results above. The time for
evaluation increases roughly exponentially in K, from ~12 s
for K = 10 to ~94 s at K = 30.

As an additional point of performance comparison, one
can also numerically diagonalize the Hamiltonian by writing
it in the number basis of p? 4+ x> and truncating. This is

TABLE I. Energies for the potential (7) at K = 30 and rigor-
ous bounds on absolute uncertainty, compared to the finite-element
method (FEM) results.

n Bootstrap Uncertainty Mathematica FEM
1 0.446987(5) +2.86 x 1077 0.44698(8)
2 1.975515(7) +£2.06 x 1077 1.9755(2)
3 4.897587(3) +2.55 x 1077 4.8975(9)
4 9.05144(00) +6.13 x 1077 9.0514(4)
5 14.10082(3) +1.76 x 1076 14.100(8)
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FIG. 2. Width of allowed energy intervals vs K, on a logarithmic
scale.

a fundamentally variational method, so convergence will be
monotonically downward toward the exact eigenvalues. To
reproduce the precision of the bootstrap for this potential, this
method required diagonalizing a matrix of size ~330, taking
~35 s to produce answers at the same level of precision as
the bootstrap. The residuals of this method for different size
matrices are shown in Fig. 3 in the Appendix.

Convergence. The data from each depth K are a set of
valid energy intervals. It has been repeatedly observed that
the widths of these intervals decrease exponentially in K. We
find that result borne out again in Fig. 2. The convergence is
exponential and uniform in slope across energy levels, at least
asymptotically in K.

In the regime of constant exponential growth of Fig. 2,
the approximate slope is ~ — 0.83; the average width of
the allowed intervals decreases as w(K) o e~%83% Hence at
K' > K, the ratio of widths goes as ¢ &' =K Obtaining
one more decimal digit of precision requires changing the
size of the truncation to K’ = K + log,(10)/0.83 ~ K + 3.
This shows the power of the bootstrap approach: The number
of significant digits scales approximately linearly with the
depth K.

Conclusion. In this Letter we proposed an algorithm to
solve for the energies of one-dimensional Hamiltonian sys-
tems within the bootstrap approach. The method utilizes a
semidefinite programming algorithm to find solutions of the
(truncated) bootstrap equations. The method solves the prob-
lem of “searches in a large dimension space” by considering
the system at fixed energy (the guess) and extremizing over
an additional slack variable as well as the other parameters
of the original bootstrap equations. What we noticed was
that once the energy was factored out, the recursive relations
for moments become linear. The search space is effectively
reduced to one dimension as the algorithm optimized the other
variables that were necessary to search in the proposal of
Ref. [2]. If the slack variable is positive at the optimal value,
the positive-definite constraint is satisfied and the energy E
is allowed. If the slack variable is negative, in principle one
can use a Newton-Raphson method to find the next crossing
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of zero and thus search effectively in the energy parameter as
well. The method is able to obtain high-precision data on the
eigenvalues, and in the example we studied, it is numerically
seen that the method converges exponentially fast.

It is clear that our method can be expanded to solving
problems in higher dimensions, where the size of the search
space might grow with the truncation. Applying these tech-
niques might be useful in the study of many-body problems in
quantum chemistry and other areas, with the possibility of not
only finding the ground state functions of electrons (such as in
other optimization algorithms [21]), but also finding excited
states.
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APPENDIX: HAMILTONIAN TRUNCATION

For completeness, here we present the results of
the Hamiltonian truncation method for the lowest five
eigenenergies of the Hamiltonian with the potential in

Residual

1074

1078

Matrix Size
100 150 200 250

FIG. 3. The residuals comparing the six smallest eigenvalues of
different Hamiltonian truncations by matrix size, relative to the size
330. The residuals increase with the size of the eigenvalue.

Eq.(7), evaluated in Mathematica. We obtain numerical
values of 0.446987553, 1.9755156336, 4.8975870391,
9.0514388973, 14.100817 6421 for the lowest five eigen-
values, on a matrix of size 330. The results match the ones
in Table 1.

The residuals for different size matrix truncations are found
in Fig. 3.

As can be seen from the data, the fifth eigenvalue has a
precision of roughly 10~ at a matrix size of 270.
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