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Completely integrable replicator dynamics associated to competitive networks
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The replicator equations are a family of ordinary differential equations that arise in evolutionary game theory,
and are closely related to Lotka-Volterra. We produce an infinite family of replicator equations which are
Liouville-Arnold integrable. We show this by explicitly providing conserved quantities and a Poisson structure.
As a corollary, we classify all tournament replicators up to dimension 6 and most of dimension 7. As an
application, we show that Fig. 1 of Allesina and Levine [Proc. Natl. Acad. Sci. USA 108, 5638 (2011)] produces
quasiperiodic dynamics.
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The generalized Lotka-Volterra equations are

ẋi = εixi + xi

⎛
⎝ n∑

j=1

Wi jx j

⎞
⎠,

where εi are the “intrinsic growth rates” and W the interaction
matrix. Closely related are the “linear” replicator equations,

ẋi = xi[(W x)i − xT W x]. (1)

These equations are used to theoretically explore popula-
tion interactions in competitive ecosystems [1]. When εi = 0
and W is skew symmetric, Lotka-Volterra and the replicator
equations are the same, and this is known to be a Hamilto-
nian system of ordinary differential equations (ODEs) for the
Hamiltonian H (x) = x1 + · · · + xn and the quadratic Poisson
bracket Eq. (5) (see Ref. [2]). It is an interesting open question
to characterize for which skew-symmetric W are the induced
dynamics integrable in the Liouville-Arnold sense. As an
application, we know by Kolmogorov-Arnold-Moser (KAM)
theory that any small enough Hamiltonian perturbation of the
model also produces a large set of quasiperiodic solutions [3].
What this means is that the qualitative behavior of the ODEs
discussed in the remainder of this Letter persists after a tiny
change to the equations.

To this end, the Lotka-Volterra equation of the form

ẋi = xi

⎛
⎝ n∑

j=1

xi+ j − xi− j

⎞
⎠, for i ∈ [1, . . . , 2n + 1], (2)

where indices are taken mod 2n + 1 has been shown to be
integrable by Itoh [4] and Bogoyavlensky [5,6] and also by
Veselov-Shabbat [7] [Eq. (12)]. The latter is surprising as
while both Itoh and Bogoyavlensky were studying Lotka-
Volterra, Veselov-Shabbat came up with a similar model as
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a discrete form of the Korteweg–de Vries (KdV) equations.
Itoh did this by explicitly providing conserved quantities
and showing that these conserved quantities Poisson com-
mute. Both Bogoyavlensky and Veselov-Shabbat produced
Lax pairs. This connection was first observed in Ref. [8].

Observe that we may write Eq. (2) as

ẋi = xi

⎡
⎣2n+1∑

j=1

Wi j (G)x j

⎤
⎦, (3)

where W (G) = W is the tournament adjacency matrix of a
circulant tournament graph of rock-paper-scissors type. By a
circulant tournament G of rock-paper-scissors type (hereafter
referred to as a circulant tournament), we mean the tourna-
ment graph (up to isomorphism) such that for every node i,
the incoming edges are of the form {(i − j) → i (mod 2n +
1) : j ∈ [1, . . . , n]} and the outgoing edges are of the form
{i → (i + j) (mod 2n + 1) : j ∈ [1, . . . , n]}. By tournament
adjacency matrix, we mean the skew-symmetric matrix

Wi j (G) =
⎧⎨
⎩

+1 if j → i ∈ G,

−1 if i → j ∈ G,

0 otherwise.

This is nice because we represent the ODE by a graph that
encodes the equations. Hence, the combinatorics of a given
graph encodes the dynamics of the corresponding differential
equations. For example, the Volterra–Kac–van Moerbeke lat-
tice is given by Eq. (3) when G is a directed n-cycle. This was
shown to be integrable by Kac–van Moerbeke [9] as well as
Moser [10].

Our first result is to repackage Itoh’s conserved quantity
result with the philosophy that combinatorics informs dy-
namics. In short, we notice that the polynomials defining the
conserved quantities correspond to subgraphs of the circulant
tournament G. Let Ck (G) be the set of subsets of {1, . . . , 2n +
1} such that σ ∈ Ck (G) induces a circulant tournament of
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FIG. 1. A circulant tournament of order 5 is shown with labeled
nodes. Its dynamics is shown to the right, and one sees a quasiperi-
odic foliation by tori. The conserved quantities of Itoh are shown.

order k. Then, for every odd k,

Fk (G)(x) =
∑

σ∈Ck (G)

∏
j∈σ

x j (4)

is a conserved quantity of Eq. (3) (see Fig. 1). The proof is the
same as Itoh’s, but instead of a careful accounting of indices
as Itoh, one does a careful accounting of paths.

The quadratic bracket

{F, H}W =
∑
i< j

Wi jxix j

(
∂F

∂xi

∂H

∂x j
− ∂F

∂x j

∂H

∂xi

)
(5)

is a Poisson bracket such that the conserved quantities
of Eq. (4) Poisson commute. This was shown by Itoh as
well [11]. Under this bracket, F2n+1 = x1x2 · · · x2n+1 is the
Casimir. By the Liouville-Arnold theorem, the dynamics of
Eq. (3) for circulant tournament G are quasiperiodic and
foliate the phase space by tori. It is interesting to note this
bracket is identical to the one used by Ovsienko, Schwarz,
and Tabachnikov (albeit for a different W ) in their proof of
the integrability of the pentagram map [12].

The upshot of this graphical interpretation of Itoh’s result,
is that we can produced conserved quantities for Eq. (3) for
a larger class of graphs. We call this the embedding proce-
dure. This procedure is heavily inspired by the “cyclic union”
technique developed by Curto and collaborators [13–16], in
the context of neural network dynamics, but adapted to the
context of circulant tournaments.

To be more specific about embedding, let G be a circulant
tournament on 2n + 1 nodes. Let H = (H1, . . . , H2n+1) be an
ordered list of graphs such that the number of vertices Hi is
2ni + 1 for some ni ∈ {0, 1, 2, . . . }. Then we embed H into
G, denoted G ←↩ H , by replacing node i ∈ G with Hi, and
forming an edge hi

q → hi
v if q → v was an edge in G. (See

Fig. 2.) We can repeat this to produce a chain of embeddings,
like Russian matryoshka dolls. When G is a 3-cycle and H is a
3-cycle and two singleton graphs (single vertices), then G ←↩

H is produced in Fig. 2. Interestingly, this graph is precisely
Fig. 1 of Ref. [1]. The conserved quantities are given in the
figure, and as a corollary, Fig. 1 of Ref. [1] is Liouville-Arnold
integrable and quasiperiodic.

FIG. 2. We depict how to embed a 3-cycle into a single vertex
of another 3-cycle. In the bottom figure, we depict solutions and
conserved quantities for the corresponding replicator dynamics. In-
terestingly, this figure without the conserved quantities was already
in the literature (see Fig. 1 of Ref. [1]). By our conserved quantities
result and Liouville-Arnold theorem, we know that the dynamics are
quasiperiodic.

The power to produce conserved quantity results for
embedded circulant tournaments comes from a simple obser-
vation. Suppose we embed a single graph H into a node y of G,
which we denote J = G ←↩ H . The degree k conserved quan-
tity hk (x)(t ) for the replicator dynamics induced by H , is not
a conserved quantity for the replicator dynamics of J , when
we appropriately substitute variables of J into hk . However,
hk (x)(t ) in fact equals y(t )k where y is seen as a solution of the
dynamics for the corresponding graph G. This can be shown
by a direct computation. Therefore, if f (y, x2, . . . , x2n+1) was
a conserved quantity for G alone, then f (hk, xk

2, . . . , xk
2n+1) is

a conserved quantity for the embedded graph. Also, note that
if fk is a conserved quantity, then α f n

k is a conserved quantity
for any constant α and integer n.

We now proceed to produce conserved quantities for em-
bedded graphs. In the simplest case, we produce conserved
quantities of J = G ←↩ H where G is a circulant tourna-
ment of order 2n + 1 and H is a list containing precisely
one circulant tournament of order 2m + 1, m > 0, and the
rest, singletons. Without loss of generality, suppose the cir-
culant tournament to be embedded is H1 with vertices {h1

i }i.
Then J is a tournament of order 2(n + m) + 1. We need
precisely n + m + 1 conserved quantities in order to invoke
the Liouville-Arnold theorem. If gk (x1, . . . , x2n+1) is a con-
served quantity of G, then gk (

∑
h1

i ∈H1 h1
i , x2, . . . , x2n+1) is a

conserved quantity of J for every odd k ∈ [1, . . . , n]. This
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FIG. 3. Depicted are all tournaments up to dimension 7 which are produced by starting with 3, 5, and 7 circulant (rock-paper-scissor-
like) tournaments, and creating appropriate embeddings. The conserved quantities are conveniently listed in the Appendix. All of these have
completely integrable dynamics. As a corollary of this result, we can classify all zero-sum classical tournament replicators up to dimension 5
and all but 7 in dimension 7. The 7 graphs which are not classified appear, numerically, to have chaotic (positive Lyapunov exponent) dynamics.

gives 2n + 1 conserved quantities, which we call the outer
symmetries. Let g2m+1 = x1

∏n
i=2 xx∗

i
i . Now, let hk be the de-

gree k conserved quantity of H . Then the second conjugacy
result implies hk · (

∏n
i=2 xx∗

i
i )k is a conserved quantity. This

gives m + 1 conserved quantities. We call these the inner sym-
metries. But notice, one is repeated, so this process produces
n + m + 1 conserved quantities of J .

As an example, we compute the conserved quantities for
the graph in Fig. 2. The outer symmetries of J = G ←↩ H are

C1 = (x1 + x2 + x3) + x4 + x5,

C3 = (x1 + x2 + x3)x4x5,

which are produced by substituting x1 + x2 + x3 for y.
The inner symmetries of J are

C3 = (x1 + x2 + x3)x4x5,

C9 = (x1x2x3)x3
4x3

5 .

Therefore, we have three conserved quantities—C1, C3, and
C9. It follows from a small variation on Itoh’s result that
these conserved quantities Poisson commute. Therefore, we
produced the conserved quantities numerically depicted in
Fig. 2.

When we embed more than one nontrivial circulant tour-
nament into G, we follow the same procedure, except we
sum over all possible conserved quantities produced from
the same degree. (There is a technicality—we should sum
over at most |G| polynomials of the same order.) This is a
result of the (almost trivial) observation that constant multi-
ples of a conserved quantity are still conserved. For example,
in Fig. 3(h), label the vertices of one of the 3-cycles (i.e.,
rock-paper-scissors tournaments) as 1,2,3 embedded in y1 and

the vertices of the second one as 4,5,6 embedded in y2. Then
the degree 9 conserved quantity is

(x1 + x2 + x3)3(x4x5x6)x3
7 + (x1x2x3)(x4 + x5 + x6)3x3

7 .

However, notice that both terms are equivalent to y3
1y3

2x3
7, when

the yi are from the original graph, so their sum can be mapped
to 2y3

1y3
2x3

7.
This embedding procedure and two folk theorems are

enough to classify the dynamics of all zero-sum tournament
based replicators up to dimension 6 and all but 7 in dimen-
sion 7. The remaining 7 graphs in dimension 7 with a full
support fixed point appear to have chaotic (positive Lyapunov
exponent) dynamics, and elude classification. The two folk
theorems are as follows. First, the size of the support of a
fixed point must be odd [17]. Second, the time average of
an orbit, limT →∞ 1

T

∫ T
0 x(t )dt , equals one of the fixed points.

As the dynamics are positive, these two results combined
mean we must only analyze tournaments which admit a full
support fixed point—which only happens in odd dimensions.
If a graph does not admit a full support fixed point, then it
necessarily reduces to a smaller, odd dimensional system.

We now start the classification. We use McKay’s database
of tournaments [18]. In dimension 3, there is precisely one
tournament with a full support fixed point. This is the three
cycle. In dimension 5, there are 12 tournaments. Of those,
precisely two have full support fixed points, and they are
shown in Figs. 3(b) and 3(c). The graph in Fig. 3(b) is the
5 vertex circulant tournament, and the graph in Fig. 3(c) is
the graph shown in Fig. 2—both are completely integrable.
The remaining 10 tournament graphs in dimension 5 either
reduce to a 3-cycle or a singleton fixed point. In dimension
7, there are 456 tournaments. Of those, 12 have a full support
fixed point. Of those with a full support fixed point, we can
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FIG. 4. The graph on the left produces replicator dynamics with
phase portrait on the right. One observes quasiperiodic islands near
the elliptic fixed point, and chaotic orbits the further out one goes.
Numerical experiments show the positivity of Lyapunov exponents.

prove that 5 are completely integrable—they are shown in
Figs. 3(d)–3(h).

Of the 7 graphs remaining in dimension 7 that were not
classified, only the graph in Fig. 4 has a nontrivial graph
automorphism group. The dynamics are volume preserving. It
is interesting because, near the elliptic full support fixed point,
we see quasiperiodic dynamics, however, as we move further
from the fixed point, the dynamics become more and more
chaotic. This is shown in the phase portraits, with elliptical
orbits colored, and chaotic orbits in black. This agrees with
numerical experiments on the Lyapunov spectra, which are
symmetric around 0. This is a typical picture in symplectic,
Hamiltonian, volume-preserving dynamics, elliptical islands
floating in ergodic seas.

It seems worthwhile to comment on what happens when
W has the same arrangement of positive and negative entries
as a tournament, but we weaken the condition that entries are
±1. Here is an example which suggests some tractability. If
instead of the typical adjacency of the graph in Fig. 2, we had

W =

⎡
⎢⎢⎢⎢⎣

0 −5 +1 −1 +1
+5 0 −1 −1 +1
−1 +1 0 −1 +1
+1 +1 +1 0 −1
−1 −1 −1 +1 0

⎤
⎥⎥⎥⎥⎦,

then the conserved quantities for the corresponding replicator
dynamics are

f1 = x1 + x2 + x3 + x4 + x5,

f3 = (x1 + x2 + x3)x4x5,

f21 = x1x2x5
3x7

4x7
5 .

However, one can easily find skew-symmetric W that appear
numerically to have elliptic islands in a sea of ergodicity, even
in dimension 5. How to deal with this is unclear and repre-
sents an area of future research. Likewise, merging the work
presented in Refs. [8,19–21] with the embedding approach
presented in this Letter may also lead to novel results about
integrability. However, care must be taken in these situations
because chaos seems to easily arise from small perturbations
of these systems.

Related work on integrable systems arising from Lotka-
Volterra (LV) dynamics is discussed by Charalambides
et al. [20]. While considering a broad class of dynamics,
Ref. [20] does not consider dynamics arising from embedded
tournament structures. In particular, the examples provided
lack tournament or embedding structure. Moreover, their ap-
proach uses Lax pair arguments, while the results in this Letter
focus on LV dynamics arising from the replicator equation ap-
plied to tournaments constructed by graph embeddings. Our
approach is fundamentally combinatorial. Work by Evripi-
dou, Kassotakis, and Vanhaecke [8] provides an alternative
proof of the results in Refs. [4,7] using a deformed Casimir,
but again uses a complete tournament structure, rather than
a tournament arising from a graph embedding. Additional
work by these authors in Ref. [19] is fascinating and appears
to extend the integrability results of the Volterra lattice to
graphs with additional cyclic symmetries. Unlike the results
presented, they do not consider graphs (tournaments) that
result from graph embeddings. However, a combination of
the work in Ref. [19] and the work presented in this Letter
is a potential area of future research. Finally, Ref. [21] studies
the problem presented in Refs. [4,7] but removes the criteria
on the constant terms that are added to the dynamics. These
dynamics do not arise from graph embeddings, as considered
here.

This work was supported by NSF CMMI-1932991. We
thank Sergei Tabachnikov and Sasha Veselov for pointing out
the connection to the dressing chain. We thank the review-
ers for helpful comments which significantly improved this
Letter.

APPENDIX

The conserved quantities for graphs in Fig. 3 are as follows.
Figure 3(a):

f1 = x1 + x2 + x3,

f2 = x1x2x3.

Figure 3(b):

f1 = x1 + x2 + x3 + x4 + x5,

f3 = x1x2x3 + x2x3x4

+ x3x4x5 + x4x5x1 + x5x1x2,

f5 = x1x2x3x4x5.

Figure 3(c):

f1 = x1 + x2 + x3 + x4 + x5,

f3 = (x1 + x2 + x3)x4x5,

f9 = x1x2x3x3
4x3

5 .

Figure 3(d):

f1 = x1 + x2 + x3 + x4 + x5 + x6 + x7,

f3 = x1x2x3 + x2x3x4 + x3x4x5 + x4x5x6 + x5x6x7

+ x6x7x1 + x7x1x2 + x1x2x5 + x2x3x6 + x3x4x7

+ x4x5x1 + x5x6x2 + x6x7x3 + x7x1x4,
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f5 = x1x2x3x4x5 + x2x3x4x5x6 + x3x4x5x6x7

+ x4x5x6x7x1 + x5x6x7x1x2 + x6x7x1x2x3

+ x7x1x2x3x4,

f7 = x1x2x3x4x5x6x7.

Figure 3(e):

f1 = (x1 + x2 + x3 + x4 + x5) + x6 + x7,

f3 = (x1 + x2 + x3 + x4 + x5)x6x7,

f5 = (x1x2x3 + x2x3x4

+ x3x4x5 + x4x5x1 + x5x1x2)x3
6x3

7,

f15 = x1x2x3x4x5x5
6x5

7 .

Figure 3(f):

f1 = (x1 + x2 + x3 + x4 + x5) + x6 + x7,

f3 = (x1 + x2 + x3 + x4 + x5)x6x7,

f9 = [(x1 + x2 + x3)x4x5]x3
6x3

7,

f27 = [
(x1x2x3)x3

4x3
5

]
x9

6x9
7 .

Figure 3(g):

f1 = (x1 + x2 + x3 + x4 + x5) + x6 + x7,

f3 = (x1 + x2 + x3)x4x5 + x4x5x6

+ x5x6x7 + x6x7(x1 + x2 + x3)

+ x7(x1 + x2 + x3)x4,

f5 = (x1 + x2 + x3)x4x5x6x7,

f15 = x1x2x3x3
4x3

5x3
6x3

7 .

Figure 3(h):

f1 = (x1 + x2 + x3) + (x4 + x5 + x6) + x7,

f3 = (x1 + x2 + x3)(x4 + x5 + x6)x7,

f9 = (x1 + x2 + x3)3(x4x5x6)x3
7

+ (x1x2x3)(x4 + x5 + x6)3x3
7,

f15 = x1x2x3x4x5x6x3
7 .
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