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Saddle-node bifurcation of periodic orbit route to hidden attractors
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Hidden attractors are present in many nonlinear dynamical systems and are not associated with equilibria,
making them difficult to locate. Recent studies have demonstrated methods of locating hidden attractors,
but the route to these attractors is still not fully understood. In this Research Letter, we present the
route to hidden attractors in systems with stable equilibrium points and in systems without any equi-
librium points. We show that hidden attractors emerge as a result of the saddle-node bifurcation of
stable and unstable periodic orbits. Real-time hardware experiments were performed to demonstrate the existence
of hidden attractors in these systems. Despite the difficulties in identifying suitable initial conditions from the
appropriate basin of attraction, we performed experiments to detect hidden attractors in nonlinear electronic
circuits. Our results provide insights into the generation of hidden attractors in nonlinear dynamical systems.
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The study of nonlinear and complex systems often involves
the emergence of oscillations and even complex oscillations.
Understanding the emergence of these nonlinear oscillations
has been of utmost importance since the early twentieth cen-
tury. In nonlinear systems, the self-excited attractors can be
easily identified by locating the trajectory as it emerges from
the neighborhood of an unstable equilibrium. When the initial
condition is selected near the equilibrium point, the trajectory
will eventually settle in the self-excited attractor after a period
of transient dynamics.

However, this approach is not directly applicable to
multistable and megastable dynamical systems, which con-
tain multiple coexisting attractors [1,2]. A comprehensive
overview of multistability and hidden attractors is given in
Ref. [3]. These types of systems can be found in climate
models, the human brain, slowly rotating pendula [4], and
ecological systems [5]. The existence of a countably infinite
number of hidden attractors and nested hidden attractors is
reported in Refs. [6,7]. Recent studies have revealed a class
of multistable attractors, called hidden attractors, which are
difficult to identify and locate [8–10]. The concept of hidden
attractors was first introduced in connection with Hilbert’s
16th problem formulated in 1900 [11,12]. Kuznetsov and
co-workers reported the chaotic hidden attractor in Chua’s
circuit [13–15]. This research has since led to further efforts
to locate hidden attractors [16–18].

The basins of attraction of hidden attractors do not touch
the unstable manifold of saddle fixed points and are located
away from these points, making them difficult to detect us-
ing standard computational methods. However, there have
been some successful efforts to locate hidden attractors using
perpetual points [8–10]. Hidden attractors can be generated

through a boundary crisis of an existing chaotic saddle [19]
or through flattening of trajectories coming from infinity that
are unrelated to any equilibrium states [8]. Hidden global
attractors cannot exist in the Euclidean phase space, where the
global attractor always contains at least one equilibrium state,
but can exist in a cylindrical phase space [20,21]. However,
the exact methodology to determine the route to a hidden
attractor in dynamical systems remains unknown.

Let us now consider the schematic diagram in Fig. 1(a).
When a system is unable to reach an equilibrium point due
to a change in stability, it can result in periodic oscillations
through bifurcations, such as Hopf bifurcation. As the pa-
rameter changes, successive bifurcations may lead to chaotic
dynamics in the system. The question of importance is, If the
only equilibrium point remains stable under the bifurcation,
what are the successive bifurcations or routes to the creation of
periodic attractors, also known as hidden attractors? Another
class of dynamic systems is where there are no equilibrium
points [Fig. 1(b)], and in such cases, hidden attractors can
seemingly appear from nowhere. Similarly, a chaotic attractor
can emerge without the presence of any fixed points or peri-
odic attractors [Fig. 1(c)]—which is yet to be explored and
studied. The intriguing question is, How do hidden attractors
arise from nothing, and what are the routes for the creation of
such hidden attractors in systems with no equilibrium points
[as shown in Fig. 1(b)]? Currently, the routes to the hidden
attractors are not well understood.

In certain dynamical systems, hidden attractors appear due
to a saddle-node bifurcation of periodic and unstable pe-
riodic orbits, shedding light on the intriguing question. In
this Research Letter, we will present two cases where hid-
den attractors appear through the saddle-node bifurcation of
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FIG. 1. Schematic diagrams illustrating the various routes
through which attractors can emerge. (a) A periodic attractor can
arise from a stable fixed point, either by a change in its stability,
resulting in a self-excited attractor, or without any change in its
stability, known as a hidden attractor. (b) In the absence of a fixed
point, a periodic attractor can still emerge, commonly referred to as
a hidden attractor. (c) Finally, a chaotic attractor can emerge without
the presence of any fixed points or periodic attractors.

periodic orbits. The first case involves systems with one stable
equilibrium point, while the second case involves a system
with no equilibrium points.

This Research Letter is organized as follows: First, we
present the emergence of hidden attractors in a nonlinear
system with one stable fixed point, as introduced by Wang
and Chen [22]. We illustrate the process of generating hid-
den attractors and the basin of attraction for these attractors.
Next, we demonstrate the generation of hidden attractors in a
nonlinear system without fixed points. Finally, we provide a
summary of our work and a conclusion.

To begin our discussion, we examine a system where a
stable equilibrium point coexists along with a hidden attractor,
as introduced by Wang and Chen [22,23]:

ẋ = yz + α, ẏ = x2 − y, ż = 1 − 4x, (1)

where α is a parameter. The system shows the period-doubling
route to chaos as we decrease the parameter α. Stability
analysis shows that the system has one stable fixed point at
(1/4, 1/16,−16α), when the parameter α > 0. For negative
α the fixed point is unstable. At a higher value of α � 0.065
the system has only one stable fixed point attractor and no
other existing attractor (as shown in Fig. 2). The system
shows a period-doubling route to chaos when the parame-
ter α < 0.065. As the parameter α decreases from 0.065
a period-1 limit cycle is created out of the blue sky. The
period-1 limit cycle is a hidden attractor because the basin
contains no fixed point. The basin boundary does not intersect
with any fixed point of the system. Upon the further decrease
of α the period-doubling bifurcation leads to chaotic hidden
oscillations. Figure 2 shows various dynamics observed in the
system for different values of the parameter α.

Role of unstable periodic orbits in the creation of a hidden
attractor. Now, let us explore how hidden attractors are cre-

FIG. 2. Plots showcasing the behavior of the system in Eq. (1)
under varying values of the parameter α. (a) exhibits a fixed point
attractor accompanied by a transient trajectory at α = 0.08. In (b),
at α = 0.06, the system displays a period-1 behavior, while in (c),
at α = 0.03, it exhibits period-2 behavior. In (d), at α = −0.01, the
system demonstrates a chaotic attractor.

ated in systems with only one fixed point. For the parameter
α � 0.065, the system has a globally stable (globally attract-
ing) stationary set, as shown in Fig. 3(a). The green star in
the figure represents the stable fixed point attractor. In this
parameter range, initial conditions starting from anywhere in
the state space converge to this globally attracting fixed point.

As we decrease the parameter to α < 0.065, the global
stability of the stationary set (fixed point) is violated by the
appearance of boundaries due to global bifurcations away
from the vicinity of the stationary set. This global bifurcation
creates hidden boundaries for the global stability of the sys-
tem. If an attractor is born via such a nonlocal bifurcation that
causes the loss of global stability, then the attractor is hidden
because the basin of its attraction is separated from the locally
attractive stationary set.

FIG. 3. Basin of attraction of a fixed point for (a) α = 0.8,
(b) α = 0.0148, and (c) α = 0.0045 and (d) fraction of locally at-
tractive stationary set for the system in Eq. (1).
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FIG. 4. Fixed points and continuation diagram (zext maxima and
minima) for the system in Eq. (1) as a function of parameter α. SNO,
point of saddle-node bifurcation of orbits; SPO and UPO, stable and
unstable periodic orbits; PD, period-doubling bifurcation point; SFP
and UFP, stable and unstable fixed points. The bifurcation diagram
(zmax) is overlapped with the continuation diagram.

Figure 3(b) shows the basins of attraction for initial
conditions x0 ∈ (−2, 2) and z0 ∈ (−10, 5) of Eq. (1) for
α = 0.0148 when projected on the xz plane. The original
fixed point of the system remains attractive and has a basin
of attraction around it, represented by the black-shaded region
in the plot. The light gray region outside represents the basin
of attraction corresponding to the hidden attractor. To under-
stand the global bifurcation that leads to the birth of hidden
attractors, we plotted the fixed points and their stability, also
known as the continuation diagram (Fig. 4). As the parame-
ter α decreases to 0.065, the system exhibits a saddle-node
bifurcation of periodic orbits (SNO). The green dotted line
in the plot represents the extrema of the stable periodic orbit,
and the blue dotted line represents the extrema of the unstable
periodic orbit. The red dotted line in Fig. 4 shows the stable
fixed points, and the black dotted lines show the unstable
fixed points. The stable and unstable periodic orbits are cre-
ated with the help of X-Windows Phase Plane Plus AUTO
(XPPAUT) [24]. This global saddle-node bifurcation on the
orbit annihilates the global stability of the attracting set and
creates the basin boundary. The basin boundary is separated
by the unstable periodic orbits, which act as a separatrix. As
we decrease the parameter α towards zero, the area of the
basin containing the attracting fixed point shrinks [Fig. 3(c)
for α = 0.0045], which can be understood from the maxima
of the unstable periodic orbits. The plot in Fig. 3(d) shows the
fraction of the set of initial conditions that lead to the locally
stable attraction. The fraction decreases as we approach the
parameter α → 0. We can see from Fig. 4 that the maxima
and minima of the branch of the period-1 unstable limit cycle
approach each other. When α = 0, there is no width between
these two branches. Essentially, these two branches collide
with each other, and the stability of the fixed point changes
from an attracting fixed point to a repelling (unstable) fixed
point. In other words, we have a subcritical Hopf bifurcation at
α = 0. While decreasing the parameter to α < 0, the stability
of the equilibrium point of the system becomes unstable.

The above results clearly show that the system has local
bifurcation (subcritical Hopf bifurcation) at α = 0 and global

FIG. 5. Bifurcation diagram as a function of parameter α for the
system in Eq. (2). SNO, point of saddle-node bifurcation of orbits;
SPO and UPO, stable and unstable periodic orbits; PD, period-
doubling bifurcation point.

bifurcation (saddle-node bifurcation of periodic orbits) at
α = 0.065. After the saddle-node bifurcation, further de-
creasing the parameter leads to successive period-doubling
bifurcation of hidden attractors, ultimately leading to hidden
chaotic attractors in the system. The bifurcation diagram over-
lapped with the continuation diagram (XPPAUT [24]) in Fig. 4
provides an explanation for this phenomenon. The bifurcation
diagram is generated by selecting an appropriate initial con-
dition [25] from the hidden basin, which is a set of initial
conditions that converge to the same attractor. Note that the
hidden attractors (basin of hidden attractors) created through
the saddle-node bifurcation of orbits continue to exist in the
system irrespective of other local bifurcations in the system.
For example, the system has a subcritical Hopf bifurcation at
α = 0, and this local bifurcation does not affect the existence
of hidden attractors created through saddle-node bifurcation.
The birth of hidden attractors through this saddle-node bifur-
cation of orbits is found in other systems with one stable fixed
point.

Hidden motion without any fixed point. Consider another
dynamical system with hidden attractors [27], which has no
equilibrium point:

ẋ = y, ẏ = z, ż = −y + γ x2 + βxz + α, (2)

where α, β, and γ are parameters. In general, the system
has two fixed points (±√−α/γ , 0, 0) for any one of the
parameters γ < 0 or α < 0. The system has no equilibria if
both of these parameters are positive. We fix the parameters
β = 1.1 and γ = 0.1 and vary α from 1 to 1.06, i.e., there is
no fixed point for this range. Figure 5 shows the orbit diagram
overlapped with the continuation diagram of the system in
Eq. (2) as a function of parameter α. It shows that a periodic
orbit of large amplitude is created near α ∼ 1.058. A period-
doubling bifurcation leads to chaotic motion as the parameter
α is decreased. Figure 6 shows the trajectory in the phase
space of the system in Eq. (2) for various values of the pa-
rameter α. Figure 6(a) shows the period-1 orbit for α = 1.05,
Fig. 6(b) shows the period-2 limit cycle for α = 1.02, Fig. 6(c)
shows the period-4 limit cycle for α = 1.016, and Fig. 6(d)
shows the chaotic attractor for the value of α = 1.0. Note that
all these attractors are hidden attractors. Unlike the previous
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FIG. 6. (a) Period-1 orbit (α = 1.05), (b) period-2 limit cycle
(α = 1.02), (c) period-4 limit cycle (α = 1.016), and (d) chaotic
(α = 1) attractors for the system in Eq. (2).

case, Eq. (2) has no fixed point, and hence the system has
no global attractors [21]. Euclidean phase space cannot have
a global attractor without any equilibrium states because a
global attractor must attract all orbits, which is not possible
without any fixed points or equilibrium states. This is due
to the fact that a fixed point is necessary for convergence of
nearby orbits, which is required for the existence of a global
attractor [20]. For α > 1.058, the system does not have basin
boundaries and attractors as there are no local bifurcations.
However, when the parameter is decreased to α < 1.058, the
system exhibits a saddle-node bifurcation of orbits (SNO)
which leads to the birth of hidden attractors. The stable and
unstable periodic orbits are represented by SPO and UPO,
respectively, in Fig. 5. This global bifurcation (SNO) creates
basin boundaries that have attractors in the system. In the
interval of α ∈ (1, 1.058), the system has a basin of attraction
for the hidden attractor created at the saddle-node bifurcation.
As α decreases further, the hidden attractor disappears as it
collides with the unstable periodic attractor. Note that the
hidden attractor exists only within a small basin created by
the saddle-node bifurcation, and initial conditions outside the
basin diverge to infinity.

Experimental evidence. The existence of hidden attractors
in nonlinear electronic circuits is demonstrated in this section.
The design of such circuits can be realized through the uti-
lization of coupled first-order differential equations. However,
identifying hidden attractors within these circuits poses a chal-
lenging task that requires a careful experimental approach. To
detect these attractors, the appropriate initial conditions must
be selected from the appropriate basin of the attraction.

The present study demonstrates the detection of hidden
attractors in a nonlinear electronic circuit using µA741 in-
tegrated circuits (ICs) for the integrator part of the circuit
and AD633AN ICs for the multiplier function. The resistors
used in the circuit were selected as R1 = R3 = R6 = 100 k�,
R2, R4 = 10 k�, and R5 = 25 k�. The capacitors in the inte-
grator were valued at C1 = C2 = C3 = 10 nF.

(b) (c)

(a)

(d) (e)

FIG. 7. Experimental results: (a) the circuit diagram for Eq. (1);
(b) a period-1 limit cycle observed at vα = 0.075V ; (c) a period-2
cycle observed at vα = 0.07V ; and (d) and (e) chaotic attractors
observed at vα = 0.068V and vα = 0.002V , respectively. The x and
y axes represent the voltages measured (after inverting the signal)
at points A© and B©, respectively, shown in (a). The (V/Div) voltage
per division refers to the voltage represented by each division on
oscilloscope picture. Div, XXXXX.

The results of the circuit design are presented in Fig. 7(a).
As the parameter corresponding to α (vα), is decreased from
0.1 V, the circuit shows a period-doubling route to chaos.
Here, vα and vc are measured across the dc voltages V1

and V2, respectively. The phase space corresponding to the
period-doubling route to chaos is presented in Figs. 7(b)–7(e).
Figures 7(b) and 7(c) show the period-1 and period-2 os-
cillations for the parameters vα = 0.075V and vα = 0.07V ,

L052201-4



SADDLE-NODE BIFURCATION OF PERIODIC ORBIT … PHYSICAL REVIEW E 107, L052201 (2023)

respectively. Figures 7(d) and 7(e) show the chaotic attractors
for two different values of vα , vα = 0.068V and vα = 0.002V ,
respectively.

In summary, in this Research Letter, we demonstrate the
existence of hidden attractors in nonlinear dynamical systems.
We demonstrate that hidden attractors are a consequence of
a saddle-node bifurcation of orbits, which is the result of
a collision between stable and unstable periodic orbits. We
explore two different scenarios: (i) systems with one sta-
ble equilibrium point that contain hidden attractors and (ii)
systems with no equilibrium points. In the first scenario,
hidden attractors arise due to the loss of global stability
and the occurrence of global bifurcations, specifically saddle-
node bifurcations of periodic orbits, leading to the creation
of basins with no associated equilibrium points. In the sec-
ond scenario, the absence of equilibrium points results in
a lack of global stability or global attractors, leading to
unstable solutions. By selecting suitable parameters, we ob-
serve the emergence of hidden attractors as a result of the
collision between stable periodic and unstable periodic or-

bits, which is a saddle-node bifurcation of orbits. We have
constructed real-time electronic circuits to demonstrate the
system with one equilibrium point, and the experimental re-
sults support our findings and verify the presence of hidden
attractors in these systems. We found similar results in var-
ious systems with hidden attractors, regardless of whether
they contain one stable equilibrium point or no equilibrium
points. Although we have not presented results for general
dynamical systems with hidden attractors, the results we have
presented answer one of the intriguing questions related to
the emergence of hidden attractors in nonlinear dynamical
systems.
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