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We investigate the current properties in the totally asymmetric simple exclusion process (TASEP) on a
quenched random energy landscape. In low- and high-density regimes, the properties are characterized by
single-particle dynamics. In the intermediate one, the current becomes constant and is maximized. Based on
the renewal theory, we derive accurate results for the maximum current. The maximum current significantly
depends on a disorder realization, i.e., non-self-averaging (SA). We demonstrate that the disorder average of
the maximum current decreases with the system size, and the sample-to-sample fluctuations of the maximum
current exceed those of current in the low- and high-density regimes. We find a significant difference between
single-particle dynamics and the TASEP. In particular, the non-SA behavior of the maximum current is always
observed, whereas the transition from non-SA to SA for current in single-particle dynamics exists.
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A heterogeneous environment is one of the origins that
generate anomalous diffusion [1–7]. Such an environment is
often realized by a random energy landscape. The energy
landscape can be divided into two types. The first type is
an annealed energy landscape, where the energy landscape
changes with time. The continuous-time random walk is a
diffusion model on an annealed energy landscape [8]. The
second type is a quenched energy landscape, where the energy
landscape does not change with time. A typical diffusion
model on a quenched random energy landscape is a quenched
trap model (QTM) [2]. Quenched heterogeneous environ-
ments are characterized by disorder realizations. Therefore,
for diffusion in quenched heterogeneous environments, the
sample-to-sample fluctuations of the diffusion coefficient
[9,10,12], mobility [12], and mean first passage time [11]
are essential. Moreover, these observables become non-self-
averaging (SA) [2].

A pedagogical diffusion model with the many-body effect
is the asymmetric simple exclusion process (ASEP) [13], in
which hard-core particles diffuse on a one-dimensional lat-
tice. The ASEP has been applied to various nonequilibrium
phenomena, e.g., protein synthesis by ribosomes [14–16] and
traffic flow [17]. It belongs to the Kardar-Parisi-Zhang (KPZ)
universality class [18] and is mapped to an interface growth
model [18–21]. In Refs. [22,23], the exact solution to the
one-dimensional KPZ equation was obtained by the weak
asymmetric limit of the ASEP. Moreover, the large deviation
function is investigated in the ASEP [24,25] and symmetric
simple exclusion process [26].

The effects of disorder in the ASEP have been exten-
sively studied. For instance, in the ASEP with heterogeneous
hopping rates, the current-density relation exhibits a flat
regime for periodic boundary conditions [27–33], and the
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first-order phase transition point depends on the disorder for
open boundary conditions [34]. In the ASEP on networks, the
current-density relation also exhibits a flat regime [35–37].
Moreover, in the non-Poissonian ASEP, which is the ASEP
on an annealed random energy landscape, the current be-
comes freezing [38]. While several many-body effects have
been unveiled, the ASEP on a quenched random energy land-
scape and the sample-to-sample fluctuations of observables
have never been investigated. Such a heterogeneous system
is realized experimentally and considered to be important.
A ribosome diffuses on messenger RNA while decoding the
codon and synthesizing protein. The decoding time becomes
heterogeneous as transfer RNA concentration is heteroge-
neous [16]. In other words, the hopping rate depends on the
site, i.e., ribosomes diffuse in the quenched random environ-
ment. Moreover, such a heterogeneous environment is also
relevant to other transport systems, e.g., proteins on DNA
[39,40] and water transportation in aquaporin [41].

In this Letter, we discuss how the many-body effect affects
SA properties in the ASEP on a quenched energy landscape.
In particular, we demonstrate the SA property of current and
that the fluctuations of the maximum current exceed those of
the current in dilute particles or holes. Therefore, the current
fluctuations increase owing to the many-body effect. When
particles and holes are dilute, a transition point from non-SA
to SA exists. However, when the current is maximum, the
transition point disappears, and the current is always non-SA.
In Ref. [42], we also discuss the SA properties of the diffusion
coefficient.

We consider a totally ASEP (TASEP) on a one-dimensional
random energy landscape, where the energy landscape is
quenched. It comprises N particles on the lattice of L sites
with periodic boundary conditions. Each site can hold at most
one particle. Quenched disorder means that when realizing
the random energy landscape it does not change with time.
At each lattice point, the depth E > 0 of an energy trap is
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randomly assigned. The depths are independent and identi-
cally distributed (IID) random variables with an exponential
distribution, φ(E ) = T −1

g exp(−E/Tg), where Tg is called the
glass temperature. A particle can escape from a trap. The
escape time from a trap is an IID random variable with an
exponential distribution. The mean escape time follows the
Arrhenius law, i.e., τk = τc exp(Ek/T ), where Ek is the depth
of the energy at site k, T the temperature, and τc a typical
time. Using φ(E ) and the Arrhenius law, it can be proved that
the probability density function (PDF) ψα (τ ) of waiting times
follows the power-law distribution:∫ ∞

τ

dτ ′ψα (τ ′) ∼=
(

τ

τc

)−α

(τ � τc) (1)

with α ≡ T/Tg [3, 9].
The dynamics of particles are described by the Marko-

vian one in the sense that the waiting time is memory-less.
In particular, the waiting times at site k are IID ran-
dom variables following an exponential distribution, ψk (ti) =
τ−1

k exp (−ti/τk ). After the waiting time elapses, the particle
attempts to hop to the right site. The hop is accepted only if the
right site is empty. When the attempt is a success or failure,
the particle is assigned a new waiting time from ψk+1(ti ) or
ψk (ti ), respectively. The system eventually reaches a steady
state, where the mean current is constant. Figure 1(a) shows
the steady-state current J against the particle density ρ =
N/L, i.e., the current-density relation, for a disordered TASEP
(DTASEP). For a homogeneous TASEP, the current-density
relation is given by [13]

J = 1

μ
ρ(1 − ρ), (2)

where μ is the mean waiting time. As shown in Fig. 1(a),
for the low and high densities, the current-density relation
coincides with that of the homogeneous TASEP. For the in-
termediate regime, the current for the DTASEP deviates from
that for the homogeneous TASEP and becomes flat. Such a
flat regime in the DTASEP is also observed in other disorder
systems [27–33]. In this regime, the current is independent
of particle density and maximized. Hereafter, we categorize
the overall regime into the low density (LD) (0 < ρ � ρ∗),
maximum current (MC) (ρ∗ < ρ < 1 − ρ∗), and high density
(HD) (1 − ρ∗ � ρ < 1) regimes [Fig. 1(a)]. We explicitly
derive the density ρ∗ later [see Eq. (15)].

Here, we consider the current-density relation of the non-
Poissonian TASEP [38] to clarify the effects of a quenched
disorder. The non-Poissonian TASEP is an annealed model.
The waiting times do not depend on a site but are IID random
variables. Moreover, the waiting time distribution follows the
power-law distribution. Figure 1(a) shows the current-density
relation of the non-Poissonian TASEP when the variance
of the waiting time diverges. The current-density relation is
not symmetric and differs from that for the DTASEP. These
discrepancies originate from the condensation front. For the
non-Poissonian ASEP, any site can be the condensation front
because the waiting-time distributions at all the sites are
identical. For the DTASEP, only the site with the maximum
waiting time can be the condensation front, at which the
segregation of the density profile occurs [Fig. 1(b)].

(a)

(b)

FIG. 1. (a) Current-density relation. The squares and the circles
are the results of the numerical simulations of the dynamics of the
DTASEP (L = 1000 and α = 1.5) and non-Poissonian TASEP (L =
1000 and α = 1.5), respectively. The solid line represents Eq. (19).
The dashed line represents Eq. (2) for the homogeneous TASEP with
μ being equal to the sample average of the waiting times of the
DTASEP. (b) Density profile for ρ = 0.5. The dashed line denotes
the site with the deepest energy trap. The circles are the results of the
numerical simulations of the dynamics of the DTASEP (L = 5000
and α = 1.5).

Here, we derive the mean current by the mean-field approx-
imation. Let Jk be the mean current across the bond between
sites k and k + 1. In the DTASEP, a hop occurs at a rate 1/τk .
Thus, the mean current is defined by

Jk =
〈

1

τk
nk (1 − nk+1)

〉
, (3)

where 〈·〉 is the ensemble average for a fixed disorder and
nk denotes the number of particles at site k. The probability
of finding a particle at site k is given by ρk = 〈nk〉. In the
mean-field approximation, the correlations between nk and
nk+1 can be ignored, implying 〈nknk+1〉 ∼ 〈nk〉〈nk+1〉. In the
steady state, the site density is time independent. Hence, based
on the continuity equation, the current is independent of k, i.e.,
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Jk = J for all k. Therefore, we obtain

J = 1

τk
ρk (1 − ρk+1). (4)

We note that the right-hand side of Eq. (4) is independent
of k.

In the low-density limit, ρkρk+1 can be ignored. Based on
the conservation of particles,

∑
i ρi = N , we obtain

ρk
∼= τk

τ̄
ρ, (5)

where τ̄ is the sample mean trapping time, τ̄ ≡ ∑
i τi/L. This

density profile is the same as the steady-state solution of the
master equation of the QTM [12]. For the HD regime, the
particle density is high. Using the hole density, σk = 1 − ρk;
instead of ρk , we can derive the site density in the same way
as in the LD regime. As a result, we obtain

ρk = 1 − σk
∼= 1 − τk−1

τ̄
(1 − ρ). (6)

Multiplying Eq. (4) by τk/L and summing over k, we have

τ̄J = 1

L

L∑
k=1

ρk (1 − ρk+1). (7)

In the LD regime, we can ignore ρkρk+1, i.e., the right-hand
side becomes

∑
k ρk/L = ρ. In the HD regime, the right-hand

side becomes 1 − ρ. Therefore, Eq. (7) is represented by

τ̄J ∼
{

ρ (LD regime)

1 − ρ (HD regime).
(8)

To estimate the boundary between the LD and MC regimes
in the current-density relation, we use the current-density rela-
tion in the LD regime and the maximum current. In particular,
we define the boundary density ρ∗ as the point at which the
maximum current Jmax and the current-density relation in the
LD regime, i.e., τ̄−1ρ(1 − ρ), coincide:

Jmax = 1

τ̄
ρ∗(1 − ρ∗). (9)

The current in the MC regime does not strongly depend on
the density ρ and is almost equal to Jmax. Solving Eq. (9), we
obtain the boundary density ρ∗,

ρ∗ = 1 − √
1 − 4τ̄Jmax

2
. (10)

For the large-L limit, Jmax is much smaller than the current for
the homogeneous TASEP, i.e., Jmax 
 1/(4τ̄ ). Therefore, the
boundary density ρ∗ can be approximated as

ρ∗ ∼ τ̄Jmax. (11)

We derive the site density in the MC regime. Since the
current does not depend on the site, we have

Jmax = 1

τk
ρk (1 − ρk+1). (12)

We assume that both site k and k + 1 are in the LD phase.
Using Eq. (5), the site density in the LD phase is given by ρk

∼=
τkρLD/τ̄ , where ρLD is the particle density in the LD phase.
In the LD phase, ρkρk+1 can be ignored. It follows that the

current is given by Jmax ∼ ρLD/τ̄ , i.e., ρLD ∼ ρ∗. Therefore,
the site density in the LD phase is replaced by ρk ∼ τkρ

∗/τ̄ .
We can derive the site density in the HD phase in the same way
as in the LD phase. As a result, we obtain ρk ∼ 1 − τk−1ρ

∗/τ̄ .
We derive the maximum current based on the segregation

of the density profile for the MC regime [Fig. 1(b)]. When the
mean waiting time is maximized at site m, site m is the bound-
ary between the LD and HD phases. Therefore, the site density
in site m and m + 1 is represented by ρm ∼ 1 − τm−1ρ

∗/τ̄
and ρm+1 ∼ τm+1ρ

∗/τ̄ , respectively. Using these values and
Eq. (11), Eq. (12) is represented by

Jmax ∼ 1

τm
(1 − τm−1Jmax)(1 − τm+1Jmax). (13)

Ignoring the quadratic term of Jmax and solving this equation,
the maximum current is given by

Jmax ∼ 1

τm−1 + τm + τm+1
. (14)

Hereafter, we assume that the mean waiting time is maximized
at site m. For L → ∞, the contribution of τm is stronger
than τm−1 and τm+1 in Eq. (14), i.e., Jmax ∼ τ−1

m . This result
coincides with the previous studies [27,28,30–33]. Therefore,
the boundary density ρ∗ can be represented by

ρ∗ ∼ τ̄

τm
. (15)

The scaling of τm follows τm = O(L1/α ) for L → ∞. For α >

1, we have τ̄ → 〈τ 〉 ≡ ∫ ∞
0 τψα (τ )dτ (L → ∞) by the law of

large numbers. Hence, the scaling of ρ∗ becomes

ρ∗ ∝ L−1/α (16)

for α > 1. The scaling of the sum of τi follows
∑

i τi =
O(L1/α ) for L → ∞ and α � 1. It follows that the scaling of
ρ∗ becomes

ρ∗ ∼ L−1

∑
i τi

τm
∝ L−1 (17)

for α � 1. Therefore, the ρ∗ decreases with the system size.
Here, we derive the maximum current by the renewal the-

ory. We consider the passing of a particle between sites m
and m + 1 as a renewal event. We call the interevent time the
passage time. We note that the passage time differs from the
first passage time. The mean of the passage time is given by

〈Tm〉 = τm + τm−1

ρm−1
+

ρm−1

τm−1

ρm−1

τm−1
+ 1−ρm+2

τm+1

τm+1

1 − ρm+2
, (18)

where ρm−1 ∼ 1 − τm−2ρ
∗/τ̄ and ρm+2 ∼ τm+2ρ

∗/τ̄ . The
derivation is given in the Supplemental Material [43]. We
define n(t ) as the number of particles passing between sites
m and m + 1 until time t . For the LD and HD regimes,
the density profile is homogeneous on a macroscopic scale.
However, the configuration of particles coexists with dilute
and dense areas on a microscopic scale at some instant. When
particles are dense on the left of a target site and dilute on the
right, the passage time becomes short. In the opposite case,
the passage time becomes long. Therefore, the passage time
depends on the configuration of particles. For the MC regime,
macroscopic density segregation exists [Fig. 1(b)]. Particles
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are constantly dense on the left of site m and dilute on the
right, but not vice versa. Therefore, the passage time does
not depend on the configuration of particles, i.e., it is almost
independent. Thus, the process of n(t ) can be described by
the renewal theory [44]. Based on the renewal theory [44], the
mean number of passing particles is given by 〈n(t )〉 ∼ t/〈Tm〉
for t → ∞. The current is represented by J = 〈n(t )〉/t . There-
fore, the maximum current is given by

Jmax ∼ 1

〈Tm〉 (t → ∞). (19)

The maximum current depends on a disorder realization. The
theory coincides with the numerical simulation [Fig. 1(a)].

We consider the effect of disorder on current. The currents
in the LD and HD regimes are given by Eq. (8), i.e., J ∼ τ̄−1ρ

and J ∼ τ̄−1(1 − ρ), respectively. When the mean trapping
time 〈τ 〉 ≡ ∫ ∞

0 τψα (τ )dτ is finite (α > 1), we have τ̄ → 〈τ 〉
(L → ∞) by the law of large numbers. In the large-L limit, the
current does not depend on the disorder realization. Therefore,
the current is SA [2]. When the mean trapping time diverges
(α � 1), the law of large numbers breaks down, but the gen-
eralized central limit theorem can be applied to the sum of the
mean waiting time. It states that the PDF of the normalized
sum of τi converges to the one-side Lévy distribution [45]:∑L

i=1 τi

L1/α
⇒ Xα (L → ∞), (20)

where Xα is a random variable following the Lévy distribution
of index α. The currents are given by J ∼ ρX −1

α L1−1/α in
the LD regime and J ∼ (1 − ρ)X −1

α L1−1/α in the HD regime.
Thus, the PDF of J is described by the inverse Lévy distribu-
tion. Using the first moment of the inverse Lévy distribution
[9], we obtain the exact asymptotic behavior of the disorder
average of the current:

〈J (L)〉dis ∼

⎧⎪⎪⎨
⎪⎪⎩

ρL1−1/α�(α−1 )
ατc�(1−α)1/α (LD regime)

(1−ρ)L1−1/α�(α−1 )
ατc�(1−α)1/α (HD regime),

(21)

where 〈·〉dis is the disorder averaging, i.e., the average obtained
under different disorder realizations. As a result, the current
decreases with the system size L.

Next, we consider the effect of disorder on the maximum
current. When the system size is increased, we can find longer
and longer τm. Hence, in the large-L limit, we can approximate
the passage time as 〈Tm〉 ∼ τm. In other words, the maximum
current is approximated as Jmax ∼ τ−1

m . Based on the extreme
value theory [46], we obtain the asymptotic distribution of the
maximum current. As the PDF of the waiting time follows the
power-law distribution [Eq. (1)], the PDF of the normalized
τm follows the Fréchet distribution [46]:

τm

τcL1/α
⇒ Yα (L → ∞), (22)

where Yα is a random variable following the Fréchet distribu-
tion of index α. The PDF of Yα , denoted by fα (y) with y > 0
is given by [46]

fα (y) = αy−α−1 exp (−y−α ). (23)

FIG. 2. Disorder average of the maximum current as a function
of L for several α. The solid lines are the theoretical curves [Eq. (24)].
The circles are the results of numerical simulations, based on which
we calculated the maximum currents [Eq. (19)] for different disorder
realizations using Monte Carlo simulations. We used 104 disorder
realizations. The squares are the results of the numerical simulation
of the dynamics of the DTASEP. We used 103 for L = 104 and 104

disorder realizations for other cases.

As the maximum current is given by Jmax ∼ Y −1
α /(τcL1/α ), the

PDF of Jmax is described by the inverse Fréchet distribution,
i.e., the Weibull distribution. Using the first moment of the
Weibull distribution, we obtain the exact asymptotic behavior
of the disorder average of the maximum current:

〈Jmax(L)〉dis ∼ 1

τcL1/α
�

(
1 + 1

α

)
. (24)

The maximum current decreases with the system size L for
any α (Fig. 2), which is different from the result of the QTM.
Therefore, this is a manifestation of many-body effects.

To quantify the SA property, we consider the SA parameter
defined as [9]

SA(L; J ) ≡ 〈J (L)2〉dis − 〈J (L)〉2
dis

〈J (L)〉2
dis

. (25)

If the SA parameter is 0, the current is SA. For the LD and
HD regimes, using Eq. (2) and μ = τ̄ , we obtain

SA(L; J ) = 〈1/τ̄ 2〉dis − 〈1/τ̄ 〉2
dis

〈1/τ̄ 〉2
dis

, (26)

which is the same as the SA parameter for the diffusion coef-
ficient in the QTM [9]. Using the first and the second moment
of 1/τ̄ [9], we obtain the SA parameter for current:

lim
L→∞

SA(L; J ) =
{

0 (α > 1)
α�(2/α)
�(1/α)2 − 1 (α � 1).

(27)

The SA parameter is a nonzero constant for α < 1, i.e., J be-
comes non-SA. Therefore, the transition from SA to non-SA
behavior for the LD and HD regimes exists.
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FIG. 3. SA parameter of the current as a function of α. The
squares are the results of numerical simulations, where the maximum
currents are calculated by Eq. (28) for different disorder realizations
using Monte Carlo simulations (L = 105). The circles are obtained
using the numerical simulation of the dynamics of the DTASEP
(L = 1000 and N = 500). We used 104 disorder realizations. The
solid and the dotted lines represent Eqs. (29) and (27), respectively.

For the MC regimes, using Eq. (19), the SA parameter for
the maximum current is given by

SA(L; Jmax) = 〈1/〈Tm〉2〉dis − 〈1/〈Tm〉〉2
dis

〈1/〈Tm〉〉2
dis

. (28)

For L → ∞, we can use the following approximation: 〈Tm〉 ∼
τm. Using the first and the second moment of 1/τm, we obtain

the SA parameter for the maximum current:

lim
L→∞

SA(L; Jmax) = �(1 + 2/α)

�(1 + 1/α)2
− 1. (29)

The SA parameter is a nonzero constant for all α, i.e., Jmax is
always non-SA (Fig. 3). Unlike the SA parameter for the LD
and HD regimes, no transition from SA to non-SA behavior
exists. When the disorder is not strong, i.e., α is large, the SA
parameter deviates from Eq. (29) because of the contribution
of the second and third terms of Eq. (18) for small L.

In summary, we demonstrated the non-SA property of
the current in the TASEP on a quenched random energy
landscape. For the LD and HD regimes, the mean current
is described by the single-particle dynamics and becomes
non-SA for α < 1. For the MC regime, based on the renewal
theory, we derived the exact expression for the maximum
current. In particular, for L → ∞, the longest waiting time de-
termines the maximum current. We demonstrated that the PDF
of the maximum current follows the Weibull distribution in
the large-L limit. Moreover, we introduced the SA parameter
to quantify the non-SA property. For the LD and HD regimes,
the transition point between non-SA and SA is α = 1. For the
MC regime, the transition point disappears, and the maximum
current becomes non-SA for all α. This non-SA behavior for
α > 1 is a manifestation of the many-body effect in transport
on a quenched random energy landscape.
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