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Ensemble dependence of information-theoretic contributions to the entropy production
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The entropy production of an open system coupled to a reservoir initialized in a canonical state can be
expressed as a sum of two microscopic information-theoretic contributions: the system-bath mutual information
and the relative entropy measuring the displacement of the environment from equilibrium. We investigate
whether this result can be generalized to situations where the reservoir is initialized in a microcanonical or
in a certain pure state (e.g., an eigenstate of a nonintegrable system), such that the reduced dynamics and
thermodynamics of the system are the same as for the thermal bath. We show that while in such a case the
entropy production can still be expressed as a sum of the mutual information between the system and the bath
and a properly redefined displacement term, the relative weight of those contributions depends on the initial state
of the reservoir. In other words, different statistical ensembles for the environment predicting the same reduced
dynamics for the system give rise to the same total entropy production but to different information-theoretic
contributions to the entropy production.
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One of the main goals of statistical physics is to rationalize
how time-reversal symmetric microscopic laws of classical or
quantum mechanics give rise to thermodynamic irreversibil-
ity described by the second law of thermodynamics. Recent
decades brought much progress in this area, presenting several
complementary explanations of the emergence of irreversibil-
ity in both closed [1–5] and open [6–18] quantum systems.
Among others, the information-theoretic framework proposed
in Ref. [19] provided a microscopic basis for the nonnegativity
of the entropy production—a key quantity characterizing the
irreversibility of thermodynamics processes. This approach is
applicable to a generic open quantum system described by the
Hamiltonian

H = HS + HB + HI , (1)

where HS , HB, and HI are Hamiltonians of the system, the
bath, and the interaction between them, respectively. The joint
state of the system and the bath ρSB is assumed to undergo a
unitary evolution iρ̇SB = [H, ρSB] starting from the initially
factorized state ρSB(0) = ρS (0) ⊗ ρ th

B , where ρS (0) is an arbi-
trary initial state of the system, and ρ th

B = exp(−βHB)/ZB is
the canonical Gibbs state of the environment, with β being the
inverse temperature of the reservoir and ZB = Tr exp(−βHB)
being the partition function (here and from hereon we take
h̄ = kB = 1). The entropy production within the time interval
[0, t] is defined as

σ = �SS − βQ, (2)

*krzysztof.ptaszynski@uni.lu

where �SS = SS (t ) − SS (0) is the change of the von
Neumann entropy of the system SS = −Tr(ρS ln ρS ) and Q =
−Tr{HB[ρB(t ) − ρB(0)]} [with ρB(0) = ρ th

B for the initial ther-
mal state] is the heat extracted from the environment, defined
as the change of the bath energy with a minus sign; the
formalism can be easily generalized to the grand canonical
ensemble by properly accounting for the chemical work. It
was shown that the entropy production can be expressed as a
sum of two nonnegative information-theoretic constituents:

σ = ISB + D
[
ρB(t )||ρ th

B

]
� 0, (3)

where ISB = SS (t ) + SB(t ) − SSB(t ) is the quantum mu-
tual information between the system and the bath and
D[ρB(t )||ρ th

B ] = Tr{ρB(t )[ln ρB(t ) − ln ρ th
B ]} is the quantum

relative entropy that measures the displacement of the envi-
ronment from equilibrium. According to information theory,
the terms ISB and D[ρB(t )||ρ th

B ] are nonnegative, which
provides a microscopic basis for the second law of thermody-
namics (see Ref. [20] for an even tighter bound with finite-size
corrections).

As further discussed in Ref. [21], a particularly elegant
interpretation of the entropy production is provided by as-
suming that the environment is composed of K independent
degrees of freedom k (later referred to as modes), such that
HB = ∑K

k=1 Hk . Then, Eq. (3) can be rewritten as

σ = ISB + Ienv + Denv = Itot + Denv � 0, (4)

where Ienv = ∑
k Sk (t ) − SB(t ) is the mutual information be-

tween the modes of the environment, Itot = ISB + Ienv is the
total correlation, i.e., a sum of system-bath and intraenvi-
ronment correlations, and the term Denv = ∑

k D[ρk (t )||ρ th
k ]

measures the displacement of the modes of environment from
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equilibrium. For K → ∞ the contribution Denv usually tends
to be negligible, since each mode is only slightly perturbed
from equilibrium (though deviations from this behavior are
possible when only a small portion of the environment is res-
onantly excited [22]), and thus the entropy production can be
related to the generation of multipartite correlations between
the system and the modes of environment Itot.

In deriving Eq. (3) one assumes that the initial state of
the environment is the canonical Gibbs state. However, it
has been shown that certain nonthermal initial states of the
bath may lead (under certain conditions) to the same re-
duced dynamics and thermodynamics of the system as the
thermal state; later, such property will be referred to as the
dynamical equivalence to the canonical state. A first example
studied in the literature was the microcanonical state [23–26],
namely, an equally weighted mixture of energy eigenstates
of the bath with energies within the interval [E − δ, E + δ],
where 2δ is the width of the microcanonical shell. The dy-
namical equivalence is there a consequence of a well-known
principle of equilibrium ensemble equivalence [27], which
states that in the thermodynamic limit the microcanonical and
canonical states are equivalent with respect to their thermo-
dynamic properties and expected values of observables (see
Ref. [28] for a contemporary formulation of this concept).
While the dynamical equivalence can be formally proven
[24–26], here we will present only a qualitative justification.
Usually, the system does not interact in a uniform way with the
whole environment, but rather is more strongly coupled to
some of its (possibly small) parts; for example, a system cou-
pled to a bath of harmonic oscillators (the Caldeira-Leggett
model [29]) will most strongly couple to those oscillators
whose resonant frequencies are close to transition frequencies
of the system. At the same time, as implied by the principle of
ensemble equivalence, when the whole environment is initial-
ized in the microcanonical state, a reduced state of its small
part (effectively coupled to the system) is the canonical state.
As a consequence, the system evolves as if it was coupled to
the thermal bath.

Furthermore, there exist also several types of pure states
which reproduce equilibrium properties of the thermal state,
and thus may be expected to be also dynamically equiv-
alent. First, an equivalence of static observables can be
observed even for single eigenstates of nonintegrable sys-
tems obeying the eigenstate thermalization hypothesis (ETH)
[30–32]; in such a case the dynamical equivalence, namely,
the applicability of the second law of thermodynamics and
the nonequilibrium fluctuation theorem, has been recently
demonstrated [26,33,34]. Other examples are typical super-
positions of states from the microcanonical shell [35–38],
thermofield double states [39] (purifications of a thermal state
in a doubled Hilbert space), and so-called thermal pure states
[40–42] (coherent superpositions of energy eigenstates with
populations obeying the Boltzmann distribution). As a matter
of fact, as shown by Popescu et al. [43], almost every pure
state of the environment leads to relaxation of the system to
the canonical state.

This raises the question of whether the information-
theoretic formulation of the entropy production can be
generalized to a generic initial state of the bath dynamically
equivalent to the thermal state. In this Letter we note that for

arbitrary initial state of the bath (initially uncorrelated with
the system) Eq. (3) can be generalized to a form

σ = ISB + �D
(
ρB||ρ th

B

)
, (5)

where �D(ρB||ρ th
B )=D[ρB(t )||ρ th

B ]−D[ρB(0)||ρ th
B ] measures

the change of displacement of the bath state from equilibrium.
This can be easily derived as follows. First, by expanding
D[ρB(t )||ρ th

B ] = Tr[ρB(t ) ln ρB(t )] − Tr[ρB(t ) ln ρ th
B ] =

−SB(t ) + ln ZB + βTr[ρB(t )HB], one gets �D(ρB||ρ th
B ) =

−�SB − βQ, where �SB = SB(t ) − SB(0), and the heat Q
is defined below Eq. (2). Second, one uses the assumption
that the system and the bath are initially uncorrelated,
which implies vanishing of the initial mutual information:
ISB(0) = SS (0) + SB(0) − SSB(0) = 0; as the unitary
dynamics conserves the joint von Neumann entropy of
the system and the bath [SSB(t ) = SSB(0)], this implies
ISB = SS (t ) + SB(t ) − SSB(t ) − [SS (0) + SB(0) − SSB(0)] =
�SS + �SB. Inserting �D(ρB||ρ th

B ) = −�SB − βQ and
ISB = �SS + �SB into the right-hand side of Eq. (5), one gets
�SS − βQ, which is the entropy production [Eq. (2)].

It can now be noted that in general �D(ρB||ρ th
B ) is not nec-

essarily nonnegative, and therefore Eq. (5) does not provide a
basis for the second law of thermodynamics for nonthermal
initial states of the bath; nevertheless, it still enables one
to express the entropy production in terms of microscopic,
information-theoretic contributions, while its nonnegativity
can be provided by the dynamical equivalence with the ther-
mal state. However, we will show that while the relation
(5) always holds, the relative weight of the terms ISB and
�D(ρB||ρ th

B ) may depend on the initial state of the bath;
therefore, dynamically equivalent states are only partially
equivalent from the perspective of information-theoretic for-
mulation of the entropy production.

For environments composed of independent modes in an
arbitrary initial state, Eq. (4) can be generalized as

σ = ISB + �Ienv + �Denv = �Itot + �Denv. (6)

This can be derived as follows: first, in analogy to the
derivation below Eq. (5), one gets Denv = ∑

k D[ρk (t )||ρ th
k ] =

−∑
k �Sk − βQ, where �Sk = Sk (t ) − Sk (0); then, using

�Ienv = ∑
k �Sk − �SB and ISB = �SS + �SB, one finds that

the right-hand side of Eq. (6) is equal to σ = �SS − βQ.
It may be now argued that for initial states of the bath dy-
namically equivalent to the thermal state, the initial states
of the modes are thermal (in the thermodynamic limit of
large K), and that their reduced states evolve in the same way.
As a consequence, the contributions �Denv and �Itot—which
depend on the local states of the modes rather than the total
state of the bath ρB—should also be the same. This will be
demonstrated later by numerical simulations.

Example 1: Random matrix Hamiltonian. Let us now
investigate, for two exemplary cases, how the behavior of
information-theoretic constituents of the entropy production
depends on the initial state of the reservoir. To this goal, we
perform simulations of the unitary dynamics of the system-
bath ensemble for a system coupled to a finite environment.
First, we will consider a nonintegrable system obeying the
eigenstate thermalization hypothesis, defined by means of
random matrices; similar setups have been previously in-
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FIG. 1. Entropy production σ (a) and its information-theoretic
constituents ISB (b) and �D(ρB||ρ th

B ) (c) as a function of time for the
random matrix system with different initial states of the bath. Results
for the initial excited state of the system, β = 10, γ = λ = 0.1, and
N = 2000.

vestigated in Refs. [19,23]. The Hamiltonian of the system
is defined as HS = γ σz/2, HB = XB/

√
8N , and HI = λσx ⊗

XI/
√

8N , where Xi (i ∈ {B, I}) is a Gaussian orthogonal
random matrix of size N with variance of the diagonal el-
ements equal to 1, and σi (i ∈ {x, y, z}) are Pauli matrices.
As initial states of the bath we took the canonical state,
two microcanonical states with different widths of the micro-
canonical shell 2δ, and a single eigenstate of HB with energy
closest to the average energy of the thermal state 〈E th

B 〉 =
Tr(HBρ th

B ); the microcanonical state is defined as a mixture
of eigenstates of HB with energies Ei ∈ [〈E th

B 〉 − δ, 〈E th
B 〉 + δ].

In our numerical simulations the random matrices XB and
XI were generated using the function RandomVariate [Gaus-
sianOrthogonalMatrixDistribution[N]] in MATHEMATICA. The
joint system-bath state was propagated iteratively as ρSB(t +
�t ) = e−iH�tρSB(t )eiH�t ; we used the time step �t = 25 and
the evolution operator e−iH�t was calculated using the func-
tion MatrixExp inMATHEMATICA.

The results are presented in Fig. 1. As one can observe,
all initial states of the bath generate approximately the same
evolution of the entropy production σ , which confirms their

dynamical equivalence. However, the information-theoretic
constituents of the entropy production are not the same for
different ensembles. In particular, ISB is smallest for the initial
canonical state, intermediate for microcanonical states, and
largest for the pure state; furthermore, its value depends also
on the width of the microcanonical shell—it is larger for
smaller widths. We note here a similarity to the previous study
of a pure dephasing, showing that different types of the global
system-environment dynamics may lead to the same reduced
dynamics of the system but generate different system-bath
correlations [44]. Accordingly, also the relative entropy term
�D(ρB||ρ th

B ) is different for various initial states. Interest-
ingly, it may also become negative, which implies that the
environment is brought closer to the canonical thermal state
during the thermalization process; as a matter of fact, when
both the system and the bath are initialized in pure states,
then ISB = 2�SS , and thus �D(ρB||ρ th

B ) has to be negative for
−βQ < �SS . A qualitative interpretation of this observation
is well illustrated by the next model.

Example 2: Noninteracting resonant level. As a sec-
ond case, we considered a system with the Hamiltonian
of the environment which can be decomposed into a sum
of independent modes (HB = ∑

k Hk), such that Eq. (6) is
applicable. Specifically, we focused on the noninteracting
resonant level model with HS = εd c†

d cd , HB = ∑K
k=1 εkc†

kck ,
and HI = 


∑K
k=1(c†

d ck + c†
kcd ), where c†

i (ci) are creation
(annihilation) operators, εi are level energies, and 
 is
the tunnel coupling. The levels of the environment have
been taken to be evenly distributed throughout the in-
terval [−�/2,�/2], while the tunnel coupling has been
parametrized as � = 2π
2(K − 1)/�, where � is the cou-
pling strength. Parameters have been set as � = 3�, εd =
−0.5�, and K = 7. The matrix form of the Hamiltonian
was obtained using the Jordan-Wigner transformation of the
creation and annihilation operators into spin operators: c†

k =
[
⊗k−1

i=0 (−σz )] ⊗ σ+ ⊗ [
⊗K

i=k+1 12] and ck = [
⊗k−1

i=0 (−σz )] ⊗
σ− ⊗ [

⊗K
i=k+1 12], where σ± = (σx ± iσy)/2, and 12 is 2 × 2

identity matrix. The state ρSB(t ) was propagated using the
same method as before, with the time step �t = 0.05�−1.

We considered three types of initial states. The first is
the microcanonical state, here defined as an equally weighted
mixture of 12 eigenstates of the bath with energy E = −1.5�

(more precisely, since we fix the energy while enabling the
particle number to vary, this may be rather referred to as
the grand microcanonical [45] or Maxwell’s demon ensemble
[46]). Since the system is integrable, and thus ETH is not
applicable, the initial pure state is here defined as a super-
position of all states from the microcanonical shell: |�〉 =
W −1/2 ∑

i |ψi〉; such states provide the dynamical equiva-
lence due to canonical typicality [35–37]. Here we took the
same amplitude W −1/2 for all eigenstates; as shown in the
Supplemental Material [47], a good convergence is also ob-
served for randomly chosen amplitudes. Finally, as a third
initial state we took the canonical state (or rather, the grand
canonical state with the chemical potential μ = 0) with the
temperature β ≈ 0.969� given by the condition Tr(HBρ th

B ) =
E = −1.5�.

The results are presented in Figs. 2 and 3. As shown in
Fig. 2, as argued before, not only the entropy production σ
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FIG. 2. Entropy production (a), change of the total correlation
�Itot (b), and the change of mode perturbation from equilibrium
�Denv (c) as a function of time for the noninteracting resonant level
with different initial states of the environment: the canonical state
(black solid line), the microcanonical state (red dashed line), and the
pure state (blue dotted line).

but also its information-theoretic constituents �Itot and �Denv

are approximately similar for all initial states (to be more
precise, the analyzed quantities are exactly the same for mi-
crocanonical and pure states; this is because they are fully de-
termined by two-point correlations 〈c†

i c j〉, which for quadratic
Hamiltonians evolve independently from higher-order corre-
lations [48], and thus are the same in both cases). Furthermore,
�Itot is the dominant contribution to the production of entropy,
as the perturbation of the modes is relatively small (though
there is still a nonvanishing contribution �Denv due to the
finite size of the bath). Therefore, there exists a partial en-
semble equivalence regarding the microscopic nature of the
entropy production: for all initial states it is mainly related
to the change of total correlations between the system and
the modes of environment. However, as shown in Fig. 3,
the decomposition of �Itot into the system-bath and intrabath
correlations is not equivalent for different initial states. For
the microcanonical and pure states �Ienv is negative, which
implies that intrabath correlations are destroyed rather than
created. This provides a qualitative interpretation for the neg-

FIG. 3. System-bath (a) and intrabath (b) mutual information as
a function of time for the noninteracting resonant level with different
initial states of the environment; designations as in Fig. 2.

ativity of �D(ρB||ρ th
B ), which has been observed also for the

random matrix model: it is related to the destruction of initial
nonthermal correlations in the bath.

In summary, we have shown that different initial states
of the bath leading to the same reduced dynamics and ther-
modynamics on the system may be only partially equivalent
with respect to the information-theoretic formulation of the
entropy production: while in all cases the entropy production
can be expressed as a sum of two information-theoretic con-
tributions ISB and �D(ρB||ρ th

B ), the relative weight of those
terms may depend on the initial state. A particular instance of
equivalence of the information-theoretic contributions can be
observed for environments composed of independent modes:
for all ensembles of the bath the entropy production is mostly
related to the change of total correlation between the sys-
tem and the modes of environment �Itot. This supports a
general idea relating the entropy production to the genera-
tion of multipartite correlations [19,21]. However, again, the
decomposition of �Itot into the change of system-bath and
intrabath correlations may vary for different initial states of
the environment.

It is important to note that the difference between various
initial states can be significant only when the contributions
ISB and �D(ρB||ρ th

B ) are of a similar order of magnitude.
As discussed by us previously [21], this can only be
true when the entropy production is sufficiently small, since
the system-bath mutual information is bounded from above
by the Araki-Lieb inequality ISB � 2 ln dimHS [49], where
dimHS is the dimension of the Hilbert space of the system. As
a result, for σ significantly exceeding 2 ln dimHS the entropy
production becomes dominated by the displacement term
[σ ≈ �D(ρB||ρ th

B )], independent of the initial state of the
bath. Thus, dynamically equivalent states of the bath also be-
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come informationally equivalent in the limit of large entropy
production. This resembles the standard concept of ensemble
equivalence which states that different ensembles become
equivalent in the thermodynamic limit of a large system.

In addition to thermodynamics, the present study may be
relevant for the field of condensed matter physics, where cor-
relations between quantum impurities and their environment
have gained a certain amount of attention [50,51]. Our results
suggest that such correlations may depend on the choice of
the ensemble. In particular, beyond the cases analyzed in our
paper, it is worth investigating whether there is a difference

between the grand-canonical ensemble and the canonical en-
semble with a fixed particle number, which may be more
physically justified, e.g., in the description of impurities cou-
pled to trapped ultracold atoms [52].
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Fourth Statistical Ensemble for the Bose-Einstein Condensate,
Phys. Rev. Lett. 79, 1789 (1997).

[47] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.107.L052102 for numerical simulations of
the noninteracting resonant level model with random pure initial
states of the bath.

[48] I. Peschel, Calculation of reduced density matrices from corre-
lation functions, J. Phys. A: Math. Gen. 36, L205 (2003).

[49] H. Araki and E. H. Lieb, Entropy inequalities, Commun. Math.
Phys. 18, 160 (1970).

[50] G. Yoo, S.-S. B. Lee, and H.-S. Sim, Detecting Kondo Entan-
glement by Electron Conductance, Phys. Rev. Lett. 120, 146801
(2018).

[51] D. Kim, J. Shim, and H.-S. Sim, Universal Thermal Entan-
glement of Multichannel Kondo Effects, Phys. Rev. Lett. 127,
226801 (2021).

[52] J. Bauer, C. Salomon, and E. Demler, Realizing a Kondo-
Correlated State with Ultracold Atoms, Phys. Rev. Lett. 111,
215304 (2013).

L052102-6

https://doi.org/10.1103/PhysRevE.105.044106
https://doi.org/10.1103/PhysRevLett.80.1373
https://doi.org/10.1103/PhysRevLett.96.050403
https://doi.org/10.1140/epjb/e2008-00065-5
https://doi.org/10.1103/PhysRevB.105.024310
https://doi.org/10.1016/0375-9601(76)90178-X
https://doi.org/10.1103/PhysRevLett.111.010401
https://doi.org/10.1103/PhysRevLett.121.220601
https://doi.org/10.1515/zna-2020-0010
https://doi.org/10.1038/nphys444
https://doi.org/10.22331/q-2021-04-26-439
https://doi.org/10.1086/158662
https://doi.org/10.1103/PhysRevLett.79.1789
http://link.aps.org/supplemental/10.1103/PhysRevE.107.L052102
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1007/BF01646092
https://doi.org/10.1103/PhysRevLett.120.146801
https://doi.org/10.1103/PhysRevLett.127.226801
https://doi.org/10.1103/PhysRevLett.111.215304

