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A system can be driven out of equilibrium by both time-dependent and nonconservative forces, which gives
rise to a decomposition of the dissipation into two nonnegative components, called the excess and housekeeping
entropy productions. We derive thermodynamic uncertainty relations for the excess and housekeeping entropy.
These can be used as tools to estimate the individual components, which are in general difficult to measure
directly. We introduce a decomposition of an arbitrary current into housekeeping and excess parts, which provide
lower bounds on the respective entropy production. Furthermore, we also provide a geometric interpretation of
the decomposition and show that the uncertainties of the two components are not independent, but rather have
to obey a joint uncertainty relation, which also yields a tighter bound on the total entropy production. We apply
our results to a paradigmatic example that illustrates the physical interpretation of the components of the current
and how to estimate the entropy production.
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Introduction. There have been vast developments in ex-
perimental techniques for microscopic systems [1–3], which
makes it possible to measure the thermodynamic quantities of
microscopic systems such as heat and work. This has enabled
direct applications of an emerging field of thermodynam-
ics, called stochastic thermodynamics [1,4,5], where thermal
fluctuation plays an important role in the nonequilibrium pro-
cesses. A recently discovered nonequilibrium relation, the
thermodynamic uncertainty relation (TUR) [6–26], states that,
in the short-time limit [21,27],

σ tot � ( jd )2

Dd
, (1)

where σ tot is the entropy production rate (EPR) of the total
system and jd ,Dd are the average and variance of a general-
ized current, respectively (the precise definition will be given
later). Since ( jd )2/Dd reflects how reliably the fluctuating cur-
rent takes its average value, inequality Eq. (1) can be viewed
as a tradeoff relation between the dissipation and the current
precision. Full statistics are needed to measure the EPR, and
they are typically not readily available in experiments. With-
out requiring a specific model for the dynamics, the TUR
allows one to estimate the EPR from a current’s measurable
average and variance.

The second law of thermodynamics dictates that the total
EPR is always nonnegative at the level of ensemble average:
σ tot � 0. In the presence of nonconservative driving, on the
other hand, the ordinary second law does not provide a tight
bound, as dissipation does not disappear in the steady state,
which is out of equilibrium due to the driving. For such
genuinely nonequilibrium situations, called steady-state ther-
modynamics, the second law can be refined by decomposing
the total EPR into two nonnegative components: housekeep-

ing (adiabatic) EPR σ hk and excess (nonadiabatic) EPR σ ex,
that is, σ tot = σ hk + σ ex [28–32]. Here, σ hk quantifies the
intrinsic dissipation due to the nonconservative force, whereas
σ ex quantifies the dissipation due to the timedependence of the
system state. While these components offer detailed informa-
tion about the nonequilibrium process, it is often challenging
to measure them directly in experiments.

In this Letter, we derive a generalized TUR for the house-
keeping and excess EPRs of overdamped Langevin dynamics
and Markov jump processes by introducing two generalized
currents: the housekeeping and excess currents. Just as in-
formation about the dissipation is contained in the usual
current that vanishes in equilibrium, the introduced currents
are nonequilibrium quantities possessing information about
the corresponding EPRs.

For the Langevin dynamics, the generalized TUR has a
geometrical representation connecting the EPRs and the cur-
rents, which we refer to as the projective TUR. As a corollary
of the projective TUR, two separate TURs are derived, one
for the housekeeping part and the other for the excess part
(as also discussed in Ref. [33]), while our TUR indicates that
the two TURs are not independent of each other. In addition,
we derive TURs of this form for Markov jump processes and
discuss its connection to the Langevin case.

The projective TUR further gives a tighter bound on the
total EPR than the conventional TUR Eq. (1). It turns out that
for a particular choice of the current coefficient, the gener-
alized currents reduce to the usual current, implying that the
housekeeping and excess EPRs can be estimated only from
directly measurable quantities.

Specifically, we demonstrate the application of our TUR
to a paradigmatic example of a rocking ratchet in which a
time-periodic, nonconservative force drives persistent particle
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transport on a space-periodic potential. The excess EPR is
estimated with high accuracy by using the interrelation with
the housekeeping counterparts.

Main result. We consider the general overdamped
Langevin equation

ẋ = f (x(t ), t ) +
√

2G(t )ξ(t ), (2)

where f is the force exerting on the Brownian particle and
the mobility is taken to be unity. ξ is mutually independent
white Gaussian noise, and its components satisfy 〈ξi〉 = 0 (i =
1, . . . , N ) and 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). G(t ) represents the
strength of the noise. The corresponding Fokker-Planck equa-
tion is written as

∂t p(x, t ) = −∇T j(x, t ), (3)

j(x, t ) = ( f (x, t ) − D∇)p(x, t ), (4)

where D(t ) := G(t )G(t )T is the diffusion matrix (T denotes
the transpose of a vector or matrix). We assume that G has
full rank and does not depend on x. In addition, when the
system is coupled to multiple reservoirs, it is assumed that
D is diagonal, i.e., there is no direct interaction between the
reservoirs.

The dissipation is locally well characterized by the
mean local velocity [1], ν(x, t ) := j(x, t )/p(x, t ) = f (x, t ) −
D∇ ln p(x, t ). The mean local velocity has the meaning of the
average velocity of the Brownian particle under the condition
located at that point x, which amounts to the dynamical con-
tribution f and the dissipative contribution −D∇ ln p. If f
contains only the conservative force and the system is coupled
to a single reservoir, the system will eventually relax to the
equilibrium state, which satisfies the detailed balance condi-
tion ν = 0. On the other hand, if this condition is violated
and the parameters of the dynamics are fixed at time t , the
system will instead relax to the steady state determined by the
parameters, called the instantaneous steady state. Let pst (x, t )
denote the probability distribution of the instantaneous steady
state whose time dependence represents the parameters at
time t .

We introduce the housekeeping and excess currents
as jhk

d := ∫
dxdT νst p, jex

d := ∫
dxdT (ν − νst )p, respectively.

νst denotes the steady-state value of the mean local velocity
and captures the flow of the particle driven by the noncon-
servative force. The current coefficient d(x, t ) quantifies how
much weight is given to the particle displacement dx. The
housekeeping current incorporates the deviation of the (in-
stantaneous) steady state from the equilibrium state, while the
excess current incorporates the deviation of the nonequilib-
rium state from the steady state. jhk

d = jd , jex
d = 0 holds for

the steady state, and jex
d = jd , jhk

d = 0 holds for the detailed
balanced system. By definition, the usual current is decom-
posed into these currents as jhk

d + jex
d = jd = ∫

dxdT νp. The
measurability of these currents is discussed later.

Our main result, the projective TUR, is now stated as
(

jhk
d

)2

σ hk
+

(
jex
d

)2

σ ex
� Dd , (5)

where Dd := ∫
dxdT Dd is the (time-rescaled) variance of the

current. As a corollary, we can deduce the housekeeping and

FIG. 1. Sketch of the projections of the current coefficient d.
Each axis represents the element of the basis of the vector field.
The housekeeping (excess) current is represented by the blue (red)
line segment, that is, the projected component to the housekeeping
(excess) vector field. The length of the coefficient coincides with the
square root of the current variance.

excess TURs:

σ hk �
(

jhk
d

)2

Dd
, σ ex �

(
jex
d

)2

Dd
, (6)

which have the same form as the conventional TUR Eq. (1)
and have been discussed in Ref. [33]. Since a nonnegative
term is removed from the left-hand side of Eq. (5), these
TURs are looser than Eq. (5). Importantly, the projective
TUR (5) indicates that the TUR bounds for the housekeeping
and excess EPRs are not independent of each other, which
is not evident in the looser version (6). In fact, if the un-
certainty of the housekeeping part εhk := σ hkDd/( jhk

d )2 takes
the value s(� 1), the excess counterpart is bounded as εex :=
σ exDd/( jex

d )2 � s/(s − 1) � 1, which is tighter than the in-
equality (6). This tradeoff between the two uncertainties is a
direct consequence of the projective TUR (5).

Furthermore, the projective TUR yields a TUR for the total
dissipation as

σ tot � 1

Dd
max

{(
jhk
d + jex

d

)2
,
(

jhk
d − jex

d

)2}
. (7)

When the product of the current components jhk
d jex

d is positive,
this inequality reduces to the original TUR, Eq. (1). By con-
trast, when the product is negative, the TUR (7) offers a tighter
lower bound than Eq. (1). Note that Eq. (7) is always tighter
than the bound obtained by simply summing up Eq. (6).

For underdamped systems, the total EPR is not represented
by the mean local velocity itself but by its irreversible part
which is odd under the time reversal [34,35]. If the steady-
state distribution pst (x, v, t ) meets the symmetry pst (x, v, t ) =
pst (x,−v, t ), the projective TUR (5) and its corollaries can be
derived using the irreversible part in the same manner [36].

On the other hand, in Markov jump processes, the coun-
terpart of Eq. (6) can be established by introducing the
housekeeping and excess currents (see [36] for the derivation
and illustration). However, inequalities (5) and (7) are not
valid, because the mean local velocity does not satisfy an
orthogonality condition mentioned below [Eq. (8)].

Derivation. We derive inequality (5) by projecting the cur-
rent coefficient d into the housekeeping and excess vector
fields. For vector fields u(x), u′(x), we define an inner product
as 〈u, u′〉 := ∫

dxuT Du′ p and the norm as ||u|| := √〈u, u〉.
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At each time, the orthogonality condition

〈D−1νst, D−1(ν − νst )〉 = 0 (8)

holds [32], where D−1 denotes the inverse matrix of D.
That is, the housekeeping and excess thermodynamic forces,
D−1νst and D−1(ν − νst ), are orthogonal to each other in terms
of the inner product 〈·, ·〉. Using this relation, each EPR can
be written as σ tot = ||D−1ν||2, σ hk = ||D−1νst||2, and σ ex =
||D−1(ν − νst )||2. For a time-integrated generalized current
Jd (t ) := ∫ t dsd(x(s), s) ◦ ẋ with the Stratonovich product
◦, the average and variance of the (instantaneous)
current are given by jd (t ) := d〈Jd (t )〉/dt = 〈d, D−1ν〉
and Dd (t ) := limτ→0 Var[Jd (t + τ ) − Jd (τ )]/2τ = 〈d, d〉,
respectively [21].

Then, we define the housekeeping and excess vector fields,
ehk and eex, as the normalized corresponding thermodynamic
forces, that is, ehk(x, t ) := D−1νst/||D−1νst||, eex(x, t ) :=
D−1(ν − νst )/||D−1(ν − νst )||. These vector fields satisfy
〈ehk, ehk〉 = 〈eex, eex〉 = 1 and 〈ehk, eex〉 = 0 due to the nor-
malization and the orthogonality condition [Eq. (8)].

If we choose {eα} = {ehk, eex, · · · } as an orthonormal basis
of the space of the vector field, the current coefficient d can be
expanded as d = ∑

α〈d, eα〉eα . Then, the projective inequal-
ity

〈d, d〉 =
∑

α

〈d, eα〉2 � 〈d, ehk〉2 + 〈d, eex〉2 (9)

leads to our main inequality Eq. (5) (see Fig. 1). As is evi-
dent from this derivation, additional basis components tighten
the projective TUR (see Sec. I of the Supplemental Material
[36]), but the physical meaning of the accompanying current
component is not entirely obvious. The equality of Eq. (5)
is achieved if and only if the current coefficient d contains
no other orthonormal components eα (α �= hk, ex). In addi-
tion, if d has only housekeeping (excess) component, i.e.,
d ∝ ehk (d ∝ eex), the equality of the housekeeping (excess)
TUR Eq. (5) is achieved, εhk = 1 (εex = 1).

Meanwhile, Eq. (7) can be derived as

〈d, D−1(νst ± (ν − νst ))〉2

� 〈d, d〉〈D−1(νst ± (ν − νst )), D−1(νst ± (ν − νst ))〉
= 〈d, d〉〈D−1ν, D−1ν〉, (10)

where the Cauchy-Schwaltz inequality is applied in the sec-
ond line. The equality of Eq. (7) holds if and only if the current
coefficient d is proportional to the thermodynamic force D−1ν

[6] or its dual D−1(ν − 2νst ), according to the sign of jhk
d jex

d .
Application to rocking ratchet. As an illustration of Eq. (5),

we consider a rocking ratchet [47,48], where the system is
spatially periodic and a time-periodic force is driving a par-
ticle current [see Fig. 2(a)]. We estimate the excess EPR
using the known expression of the instantaneous steady-state
probability distribution.

The force term of the rocking ratchet consists of a con-
servative force −∂xU (x) with a periodic potential U (x) =
U (x + L) and a time-periodic rocking (nonconservative) force
R(t ) = R(t + T ). After time, the system will relax to a pe-
riodic steady state eventually, which has the same spacial
periodicity. Note that, even if the rocking force has no bias

FIG. 2. (a) A sketch of the rocking ratchet. (b) The individ-
ual currents (α = tot, hk, ex) for d(x) = 1. The points represent
the calculation based on the Langevin equation, taking the sample
averages. The lines represent the calculation based on solving the
initial-value problem of the Fokker-Planck equation. They agree with
each other quite well. (c) The calculation of the EPRs. Since we
know the instantaneous steady state but not the periodic steady state,
we can access the housekeeping EPR only through the Langevin
sampling. (d) The estimation of the excess EPR based on Eq. (5)
(green line) and Eq. (6) (red line) using the quantities obtained
only by the Langevin sampling. The parameters used in calcula-
tion are L = 1,T = 1, D = 0.1, a = 0.8,U0 = 0.2, R0 = 0.1. In the
Langevin equation, we take the averages over 106 trajectories. In
the Fokker-Planck equation, we use the resolution of 28 elements for
the Fourier decomposition [49].

on average, a finite particle current can be obtained if the
potential breaks the left-right symmetry [48]. Due to spacial
periodicity, the infinite domain of the dynamics can be re-
duced to the unit domain [0, L] [36,48].

We consider a saw-tooth potential such that U (x) =
U0x/aL for 0 < x < aL (0 < a < 1) and U (x) = U0(x −
L)/(1 − a)L for aL < x < L Ref. [49], whereas the rocking
force is simply chosen to be a square wave such that R(t ) = R0

(t/T < 0.5) and R(t ) = −R0 (t/T > 0.5). We numerically
calculate the currents and the EPRs by sampling trajectories
of the Langevin dynamics. We wait for a sufficiently long time
that the system relaxes to its time-periodic state.

A crucial feature of this model is that we can easily
calculate the instantaneous steady state [36,48]. Hence, we
can obtain jd = 〈d ◦ ẋ〉, jhk

d = 〈d νst〉, jex
d = jd − jhk

d , and
σ hk = 〈νst ◦ ẋ〉 by taking the sample average, analogous to
experimental measurements. Calculation convergence is sped
up by converting the Stratonovich product ◦ẋ to Itô product.
It should be noted that νst is expected to be experimentally
estimable in the other systems by optimizing the current coef-
ficient [21,22].
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On the other hand, σ tot and σ ex are inaccessible in this
method because we do not have an explicit expression for
the time-periodic state. Therefore, we evaluate them by ap-
plying our TUR, Eqs. (5) and (6), to this model. For this
evaluation, we exactly calculate σ tot and σ ex by solving the
Fokker-Planck equation, which is numerically much harder
especially at low temperatures [49].

Plots of the currents and EPRs are shown in Figs. 2(b)
and 2(c), respectively. Here, the coefficient d (x) = 1 is cho-
sen so that the normal current has the meaning of a particle
current. The currents change their signs around t = 0, T /2 in
accordance with the flip of the rocking force R(t ). Following
this force switch, the housekeeping current and EPR become
virtually stationary, and the excess parts display a relaxing
behavior, clearly illustrating the physical meaning of the de-
composition.

Figure 2(d) illustrates the estimation of the excess EPR.
The green and red lines correspond to σ̂ ex = ( jex

d )2/(Dd −
( jhk

d )2/σ hk ) and σ̂ ex = ( jex
d )2/Dd , respectively. The pro-

jective TUR (5) allows for around 80% estimate us-
ing measurable quantities, as shown by the green line,
making it far more accurate than the excess TUR (6).
Moreover, the excess EPR is estimated almost exactly
immediately after each force flip, which indicates that
the current coefficient d (x) = 1 is expanded only by ehk

and eex.
Discussion. We have extended the thermodynamic uncer-

tainty relation to the framework of steady-state thermody-
namics, which is the projective TUR (5). We show that the
housekeeping/excess decomposition can also be applied to
currents as well as the entropy production, and that the respec-
tive components satisfy a TUR both separately and together.
The newly introduced currents, jhk

d , jex
d , contain information

on the housekeeping and excess EPRs. Our TUR yields

various corollaries that can be used according to the experi-
mental restriction.

In the Supplemental Material [36], we clarify the mea-
surable condition of the housekeeping and excess currents.
This situation is depicted with a model of two-dimensional
Brownian motion, where the total work current is divided into
the housekeeping and excess parts and they coincide with the
usual work currents of the nonconservative and conservative
force. On top of them, using the corollary (7), the total EPR
is estimated with higher accuracy than the conventional TUR
Eq. (1).

We illustrated our TUR in a paradigmatic example of a
rocking ratchet, where the excess EPR is estimated by using
measurable quantities with a remarkably high degree of ac-
curacy. This rocking ratchet can be experimentally realized
by nanofluidic circuitry [50]. The relative magnitude of the
housekeeping and excess currents can tell us whether the
particle transport is primarily attributed to the nonconservative
force or the timedependence of the system state. Likewise,
detailed information about the currents and EPRs can help
us to understand the dynamics of nonequilibrium processes
and to optimize thermodynamic machines such as ratchets and
heat engines.
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