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Beat of a current
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The fluctuation relation, a milestone of modern thermodynamics, is only established when a set of fundamental
currents can be measured. Here we prove that it also holds for systems with hidden transitions if observations are
carried “at their own beat,” that is, by stopping the experiment after a fixed number of visible transitions, rather
than the elapse of an external clock time. This suggests that thermodynamic symmetries are more resistant to the
loss of information when described in the space of transitions.
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Consider the “symbolism of atomic measurements,” as
Schwinger called quantum mechanics [1]: transitions in the
energy spectrum of atoms were then only visible through
spectral lines, i.e., the emission of photons. Or else, consider
a chemical reactor fed by the in- and outtake of some con-
trolled species: while flows can be monitored, the abundance
of the reactants is only accessible by scanning with devices
that involve internal degrees of freedom—e.g., magnetic, vi-
brational, and electronic (NMR, UV/Vis, and infrared [2–5]
spectroscopy). Yet again, as in Fig. 1, consider myosins carry-
ing cargoes on actin filaments: their motion can be monitored
via imaging techniques, but not their ATP-ADP metabolic
cycle [6–8].

The physics of open systems is a discourse about transi-
tions and transformations. However, our modern understand-
ing based on continuous-time Markov chains is tightly bound
to notions of the system’s internal state. Take the fluctuation
relation, the most encompassing result about nonequilibrium
systems, stating that for currents c cumulated up to some
stopping time τ the log-ratio of their positive to negative
probabilities is linear:

ln
pτ (c)

pτ (−c)
= f · c. (1)

The above relation holds at times τ = t beat by an external
clock (upon a proper choice of preferred initial distribution
[9], or asymptotically) only if the observer has access to all
currents and forces in the system’s state space, up to boundary
contributions. Instead, it does not generally hold if some of the
currents are not visible.

Our main result is that a local current c = n↑ − n↓, that
is, the number of times a certain transition denoted ↑ occurs
minus that of the opposite transition ↓, obeys the fluctuation
relation when counted “at its own beat,” namely the number
of times τ ≡ n = n↑ + n↓ that either ↑ or ↓ are performed, re-
gardless of what happens within the system in the meanwhile.
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The second main contribution is the introduction of the
formalism of Markov chains in the space of transitions, rather
than states, which we prove to correctly describe the statistics
of observables at the total number of visible transitions. We
illustrate this in Fig. 1. While the Letter is self-contained, we
refer at various points to the Supplemental Material (SM) [10].

Setup. We work with autonomous continuous-time Markov
chains x(t ) from t = 0 to some stopping time τ ∈ [0,+∞)

FIG. 1. When monitoring a current, trajectories are usually col-
lected at the beat of an external clock (continuous-time Markov chain
stopping t). A new paradigm, allowing for the fluctuation relation
recovery, involves ending the observation at the internal notion of
time given by number of transitions n (continuous-time Markov
chain stopping n). Furthermore, the notion of time can be completely
washed away by a Markov chain in transition space (Markov chain).
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with rates r(x|y) of jumping from y to x. All probabilities
here and in the following can in principle be derived from a
well-known path probability density p({x(t ), t ∈ [0, τ ]}) that
in simulations will be produced by the Doob-Gillespie algo-
rithm [11]. The state space can be depicted as a graph with
states as nodes and transitions as directed links—for example,

1 4

32

(2)

Notice that not all transitions need to be reversible. Re-
moval of links 1 ↔ 2 and 3 ↔ 4 makes the graph into a tree,
which supports no stationary current [12]. We will instead
focus on one link only, belonging to some cycle. Without
loss of generality we take ↑= 1 ← 2 and ↓= 2 ← 1 as our
visible transitions, on the assumption that there are no other
mechanisms connecting 1 and 2 directly. We further assume
hidden irreducibility, i.e., the existence of a nonzero proba-
bility path between any pair of states not containing visible
transitions.

For a physical picture, these transitions could be associ-
ated with measurable emission and absorption of photons of
energy ε with a thermal bath at inverse temperature β. Local
detailed balance then grants that

r(1|2)

r(2|1)
= exp βε. (3)

We assume nondegeneracy, that is, 1 ↔ 2 is the only tran-
sition exchanging photons of that energy, and that the
temperature can be regulated.

We define R as the rate matrix with entries Rx,y := r(x|y) −
δx,yr(y), with r(y) = ∑

x r(x|y) the exit rate out of state y, and
δ Kronecker’s. Consider the induced chain of states visited by
the process x = {xm ← xm−1 ← . . . ← x0}, and let the taboo
function θ (x) be zero whenever any two consecutive states are
either (1,2) or (2,1); otherwise it is 1. We define the taboo ma-
trix T with entries Tx,y := θ (x, y) = 1 − δx,1δy,2 − δy,1δx,2 and
the survival rate matrix S := R ◦ T , where ◦ is component-
wise Hadamard multiplication. In other words, the survival
rate matrix is identical to R but for S1,2 = 0 = S2,1.

Trans-transition probabilities. Letting pt (n|x) be the prob-
ability that, starting from x, one observes total numbers n =
(n↑, n↓) of transitions ↑,↓ up to time t , the survival probabil-
ity of not performing any visible transition is found to be (see
SM [10]) [13,14]

pt (0|x) =
∑

y

[exp tS]y,x. (4)

Taking minus the time derivative we find

− d

dt
pt (0|x) = r(1|2)[etS]2,x + r(2|1)[etS]1,x, (5)

where we used the fact that columns of R add up to zero.
On the right-hand side the two contributions can be proven
(cf. Appendix A of [14]) to be respectively the rates at which
↑ or ↓ are performed for the first time in the time interval
[t, t + dt ), defining a renewal Markov process in the space of

transitions (or, if the transitions are thought to be prolonged
for the whole duration of the interval, a semi-Markov process
as in Ref. [15]). Integrating the first contribution over time we
find

p(↑ | ↑) := −r(1|2) [S−1]2,1, (6)

where we used the fact that the eigenvalue of S with
largest real part is negative (see SM [10]) [16], implying
limt→∞ etS = 0. Equation (6) is indeed the probability that
the next transition is ↑, given that the previous was ↑, by (i)
the strong Markov property that grants that the process in state
space stays Markov for any notion of stopping time (in this
case, that of the next transition), and (ii) by the fact that no two
microscopic transitions contribute to the same observable. We
dub this and other similar expressions (see SM [10]) p(�|�′),
where � (for “link”) denotes a generic transition ∈ {↑,↓},
the trans-transition probabilities. A useful formula for their
interpretation is (see SM [10])

−[S−1]x,x0 = 1

r(x)

∑
x : x0�x

θ (x) p(x|x0), (7)

where the sum runs over all trajectories, of any length, that go
from x0 to x. p(x|x0) is the probability of the induced Markov
chain that can be obtained from transition rates, and θ (x)
filters the trajectories that include visible transitions. Notice
that, by hidden irreducibility, trans-transition probabilities are
positive.

Markov chain in transition space. We can arrange trans-
transition probabilities in a trans-transition matrix

P :=
(

p(↑ | ↑) p(↑ | ↓)

p(↓ | ↑) p(↓ | ↓)

)
. (8)

By normalization of Eq. (5) with respect to t , columns of
P add up to unity. Therefore P is a discrete-time transition
matrix in the following space of transitions:

(9)

Thus, the sequence of visible transitions is a Markov
chain in transition space, which by hidden irreducibility is
fully connected. Notice that here the Markov property is
preserved by lifting the observable process into a different
space. Other decimation procedures anchored on states typi-
cally break Markovianity, which is only recovered in the limit
of timescale separation [17,18].

Now consider the probability pn(�) that the nth transition
is �. Collect them in a vector �pn and let s(�) and t(�) denote
the source and target states of the transition. Then, given the
initial state probability q0(x) of being in x at clock time t = 0,
once obtained the probability of the first transition as

p1(�) = −r(t(�)|s(�))
∑

x

[S−1]s(�),xq0(x), (10)

which is also normalized (see SM [10]), we can further evolve
the process in transition space by �pn = Pn−1 �p1. Notice that
the Markov chain’s “beat” is that of the occurrences of visible
transitions, rather than the clock time t or the total number of
jumps in state space usually considered.
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Paths and time reversal. We can depict induced chains x as
walks in the above graph in Eq. (2), e.g.,

1 4

32

1 4

32
(11)

Searching for the visible transitions in x we can map paths
in state space into paths in transition space x → � = {�n ←
�n−1 ← . . . ← �1}. Notice that the two example paths above
correspond to the same path ↑↑↓ in transition space, on the
left-hand side:

↑ ↓ ↑ ↓ (12)

On the right-hand side is the time-reversed path in transition
space, which upon the hidden irreducibility hypothesis always
exists, despite the fact that not all state-space paths afford
a time-reversed process, e.g., the second in Eq. (11). Notice
that we do not only invert the order of the transitions, but also
flip their direction. Time reversal is involutive, and therefore
bijective.

The probability of transition path � is

p(�) = p1(�1)
n−1∏
k=1

p(�k+1|�k ). (13)

We now compare it to that of its time-reversed, both sampled
from the same initial distribution, by taking their ratio. The
time-reversed of p(�|�) is itself; therefore all such terms can-
cel out and we are left with

p(�)

p(�)
= p1(�1)

p1(�n)

[
p(↑ | ↑)

p(↓ | ↓)

]n↑↑(�)−n↓↓(�)

, (14)

where n��′ (�) is the number of times trans-transition � → �′
occurs along the path.

Currents and the fluctuation relation. Letting j(�) :=
δ�,↑ − δ�,↓ be the instantaneous current, signaling when a tran-
sition occurs, we focus on the cumulated current (or charge)

c(�) :=
n∑

k=1

j(�k ) = n↑(�) − n↓(�), (15)

where n� is the number of times transition � has been per-
formed along the process. Notice that it can only take values
{−n,−n + 2, . . . , n − 2, n}, and that it is antisymmetric by
time reversal, c(�) = −c(�). Importantly, we can also express
it in terms of the trans-transition numbers n��′ as

c(�) = n↑↑(�) − n↓↓(�) + j(�1) + j(�n)

2
. (16)

The first term is due to the fact that occurrences of ↑↓ and ↓↑
always reset the current to its initial value, and therefore only
self-loops contribute to it. The second boundary term is less
intuitive, and is explained in Fig. 2.

The central result of this Letter is found (see SM [10])
by plugging this latter expression into Eq. (14) and summing
over all intermediate transitions �2, . . . , �n−1. After standard
manipulations we find the fluctuation relation for the joint

FIG. 2. The diagram shows how boundary terms contribute to the
current by displaying trajectories of length n = 2, uniquely formed
by boundary terms. Longer trajectories will only change the values
of n↑↑ and n↓↓ and Eq. (16) will hold.

probability of the charge and of the first and last transitions

pn(c, �1, �n) = pn(−c, �n, �1) exp[ f ∅c + u(�n) − u(�1)], (17)

where, given an arbitrary constant v, the effective force f ∅

[19] and the effective potential u are given by

f ∅ := ln
p(↑ | ↑)

p(↓ | ↓)
, u(�) := j(�) f ∅

2
− ln p1(�) + v. (18)

Parametrizing the visible rates by the principle of local
detailed balance r(2|1)/r(1|2) = exp βε with β a tunable
inverse temperature (in units of Boltzmann’s constant) and
of a fixed energy increment ε, the effective affinity can be
shown to be given by f ∅ = (β − β∅)ε where β∅ is the
stalling value that makes the visible current vanish on aver-
age [20,21]. Thus, operationally, provided ε is known from
microphysical considerations, all one has to do to obtain f ∅

is to tune the temperature to the stalling state and measure the
difference.

The potential u can be made to vanish by selecting as
preferred initial distribution (marked ∗)

p∗
1(�) ∝ p(�|�) (19)

with v chosen to fix the normalization. In view of Eq. (10), a
state-space precursor of this distribution is q∗

0 (1) ∝ p(↓ | ↓),
q∗

0 (2) ∝ p(↑ | ↑), else zero. When the potential vanishes one
can further marginalize for the current in Eq. (17) by summing
over �1 and �n to obtain our central result, the fluctuation
relation at finite number of total visible transitions

pn(c)

pn(−c)
= exp f ∅c. (20)

Figure 3 illustrates the validity of the fluctuation relation
for the state-space continuous-time Markov chain at stopping
n, prepared from �q ∗

0 , and the transition-space Markov chain,
prepared from �p∗

1 . It also displays the failure of the fluctuation
relation for the continuous-time Markov chain at clock time,
prepared from the so-called stalling distribution, which is
the best candidate for the preferred initial distribution given
that it satisfies the integral fluctuation relation 〈exp f ∅c〉 = 1
[19]. The fluctuation relation also holds asymptotically, be-
yond the finite values of charge explored in these numerical
simulations, as revealed by a symmetry in the stationary
scaled cumulant generating function (see SM [10]) [9,22].

Discussion and conclusions. Three different stochastic
processes are at play in this work. We started with a
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FIG. 3. Log-ratio ln pτ (+c)/pτ (−c), c � 0, for different stop-
ping times and processes in a four-state system: state-space
continuous-time Markov chain at stopping t sampled from the
stalling distribution (CTMC stop t stalling) and at stopping n sam-
pled from the preferred distribution (CTMC stop n pref.), and the
transition-space Markov chain also sampled from the preferred dis-
tribution (MC preferred). Only the latter two satisfy the fluctuation
relation. More details of the simulation can be found in the Supple-
mental Material [10].

continuous-time Markov chain sampled from some distribu-
tion �q0 and evolving by generator R up until final clock time
t . The second is in all identical, but, as already suggested
in Refs. [23,24], and explored for run-and-tumble particles
with fixed number of jumps [25–27], it runs until n tran-
sitions are observed. Finally, we introduced a discrete-time
Markov chain in transition space with (trans-)transition matrix
P sampled from �p1. Other internal notions of time have been
considered in Refs. [28,29]

The latter two produce the same current statistics, as evi-
denced by red crosses and black dots in Fig. 3, thus confirming
our second main point, viz., the appropriateness of the concept
of Markov chains in the space of transitions for the study
of transitions at their own beat. An additional statistical ad-
vantage of working at fixed number of transitions is that no
events of charge c > n can possibly occur, thus making the
distribution of compact support—while at clock time events
of rare activity produce noise in the tails that are hard to
characterize in simulations.

The results presented here hold only if every visible
transition, ↑ or ↓, arises from a unique and well-defined
transition in state space. Otherwise, if two transitions produce
the same signal, the so-called renewal property is lost, and
correspondingly the time series of transitions is not Marko-

vian [i.e., there will be a difference in probability between
p(↑ | ↓,↓) and p(↑ | ↓,↑), etc.]. A different question is
whether the fluctuation relation holds for several independent
transitions. Work in progress by the authors suggests that
monitoring the number of occurrences of the visible transi-
tions is not enough, and that one needs to additionally consider
cross-information.

Many facts that are true for processes in state space may
not be true in transition space, and vice versa. One example is
the notion of time reversal, where the requirement of also flip-
ping the transition’s direction resembles the time reversal of
the momentum variable in underdamped Langevin dynamics.
Thus, as anticipated in Ref. [30], this formalism may serve as
a candidate for “second-order” Markov processes as the basis
for transition-based coarse-graining [14,15,30–33].

Our central result, Eq. (20), is obtained from the
combination of the formalism in Refs. [14,30] and the
introduced notion of stopping n, further assessing the
fluctuating nature of single currents. The present fluctuation
relation holds even when the fundamental set is not
fully accessible, composing a relevant observation for
understanding the thermodynamic consistency of currents
flowing in the vast class of partially observed systems.
Another connection between these works is the entropic
interpretation: Usually, exponents of fluctuation relations are
measures of dissipation. Indeed, the effective affinity times
the visible current f ∅c bounds the entropy production of a
stochastic process from below, as shown in [14,30].

From the present fluctuation relation and the definition
of Markov processes in transition space, thermodynamic
considerations beyond dissipation inference might arise: for
example, an associate thermodynamic uncertainty relation
[34–36], the usage of Martingale theory [37] to explore the
beat of a current as a random stopping time, connections to
fluctuating heat and work that are now accessible at small
scales [38,39], the measurement of effective affinities from
current statistics [40], and the usage of discrete-time processes
to efficiently assess some details of continuous-time Markov
chains (see SM [10]).
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