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Scaling laws for single-file diffusion of adhesive particles
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Single-file diffusion refers to the Brownian motion in narrow channels where particles cannot pass each other.
In such processes, the diffusion of a tagged particle is typically normal at short times and becomes subdiffusive at
long times. For hard-sphere interparticle interaction, the time-dependent mean squared displacement of a tracer
is well understood. Here we develop a scaling theory for adhesive particles. It provides a full description of
the time-dependent diffusive behavior with a scaling function that depends on an effective strength of adhesive
interaction. Particle clustering induced by the adhesive interaction slows down the diffusion at short times, while
it enhances subdiffusion at long times. The enhancement effect can be quantified in measurements irrespective of
how tagged particles are injected into the system. Combined effects of pore structure and particle adhesiveness
should speed up translocation of molecules through narrow pores.
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Diffusive motion in narrow pores is an important process in
many biological, chemical, and engineering systems. When
particles in these confined structures cannot overtake each
other, the process is referred to as single-file diffusion [1–4].
Prominent examples are the tracer diffusion in zeolites [5–7],
in colloidal systems [8–15], nanotubes [16–20], in membrane
channels and pores [21–26], and in a macroscopic system
of electrically interacting metallic beads confined to a ring
[27]. In the long-time limit the mean squared displacement
〈�x2(t )〉 of a tagged particle in single-file diffusion does not
grow linearly but with the square root of time t [28–38],

〈�x2(t )〉 ∼ 2D1/2

√
t , for t → ∞. (1)

The coefficient D1/2 quantifies the speed of the spreading
similarly as the diffusion coefficient in normal diffusion.

Generally, the mean squared displacement shows a
crossover from a normal diffusive behavior 〈�x2(t )〉 ∼ 2Dt
at short times to the subdiffusive law (1) at long times. In
simple systems, one could expect the crossover time t× be-
tween the normal and subdiffusive regime to be determined by
the condition that the root of the mean squared displacement
equals the mean distance 1/ρ between particles, where ρ is
the particle number density. This gives 2Dt× ∼ 1/ρ2, and by
matching 2Dt× with 2D1/2t1/2

× , one obtains D1/2 ∼ √
D/ρ. In

lattice systems at low densities, or continuous space systems
of point particles, this relation between D and D1/2 is indeed
often obtained [30,33,39,40].

Less is known about the behavior of the mean
squared displacement in single-file systems of particles with
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attractive and repulsive interactions. A prominent model to
capture major characteristics of real interactions with a repul-
sive core and adhesive part is the model of sticky hard spheres
[41,42], where the pair interaction V (r) between particles is
given by

exp[−V (r)/kBT ] = �(r − σ ) + γ σδ+(r − σ ). (2)

Here, σ is the particle diameter, kBT is the thermal en-
ergy, �(.) is the Heaviside step function [�(x) = 1 for
x > 0 and zero otherwise], and δ+(r) is the right-sided δ-
function, i.e., for any test function h(r) and ε > 0, it holds∫ ε

0 dr h(r)δ+(r) = h(0). The Heaviside function �(r − σ ) in
Eq. (2) implies that V (r) is infinite for r < σ , i.e., it takes into
account the hardcore repulsion. The function γ σδ+(r − σ )
describes an additional attractive contact interaction, where
γ σ quantifies the adhesive strength. We refer to the dimen-
sionless parameter γ as the stickiness.

In this Letter we show that the mean squared displacement
of sticky hard spheres in single-file systems can be described
by scaling laws, where the scaling function depends on an
effective stickiness parameter between the spheres, which
combines γ with the particle number density ρ. Exact results
are given for the limiting behavior of the scaling function at
short and long scaled times. The coefficient D1/2 in Eq. (1)
is proportional to the square root of the isothermal com-
pressibility of the system, as can be inferred from a general
result for the long-time asymptotics [32], including the case
of underdamped Brownian motion [43]. The dependence on
the compressibility implies that subdiffusion becomes faster
for attractive and slower for repulsive interactions. This is in
contrast to what is typically found in normal diffusion and
different from what has been seen for single-file diffusion in
some one-dimensional lattice models with attractive interac-
tions [44,45].
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FIG. 1. (a) Mean squared displacement of a tagged particle for
scaled density (coverage) ρσ = 0.25 in the absence of adhesive
interactions (γ = 0) and for stickiness γ = 10. The insets show
the diffusion propagator at fixed times in the short-time regime
(Dt1/σ

2 = 10−2) and the long-time regime (Dt2/σ
2 = 103) for γ =

10. (b) Mean squared displacement for various ρσ and γ .

The overdamped Brownian motion of the particles with po-
sitions xi, i = 1, . . . , N is described by the Langevin equations

dxi

dt
=

√
2D ξi(t ), (3)

where D is the bare diffusion coefficient and ξi(t ) are Gaus-
sian white noise processes with zero mean and correlation
functions 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). The treatment of the
hardcore and adhesive interactions needs special care due to
their singular nature. We have applied our recently developed
Brownian cluster dynamics algorithm to tackle this problem
[46]. For determining equilibrium properties, we have also
performed Monte Carlo simulations based on the method de-
veloped in Refs. [47,48].

Figure 1(a) shows simulation results for 〈�x2(t )〉 at one
number density ρ = 1/4σ for strong adhesive interaction γ =
10 and for γ = 0 [49]. The initial distribution of the tagged
particle is the equilibrium one. In an equilibrium configura-
tion, the tagged particle can be part of different clusters of
particles in contact. A sequence of particles with positions
xi = x1 + (i − 1)σ , i = 1, . . . , n and no particles at positions

x1 − σ and xn + σ forms a cluster of size n (n-cluster); single
particles are 1-clusters.

At short times, the motion of clusters is not affected by the
presence of neighboring clusters and 〈�x2(t )〉 grows linearly
in time, corresponding to normal diffusion. At long times, the
mean square displacement shows the subdiffusion character-
istic for single-file Brownian motion, 〈�x2(t )〉 ∼ t1/2. In the
insets of Fig. 1(a), we display the diffusion propagator p(x, t )
at two fixed times in the short- and long-time regime. For
all times, this propagator is a Gaussian function, p(x, t ) ∝
exp[−x2/2〈�x2(t )〉]. Note that 〈�x2(t )〉 at long times is
enhanced by the adhesive interaction. This speedup of sub-
diffusion may be unexpected at first sight because attractive
particle interactions usually slow down Brownian motion.

Figure 1(b) shows simulation results for various ρσ and
γ . The speed-up effect is always present, which can be seen
by comparing the curves for different γ (same color) at fixed
ρσ values (solid, dashed, or dotted lines). The change of
functional behavior of 〈�x2(t )〉 with ρσ and γ seems to be
complicated.

We now develop a scaling theory that fully describes the
behavior of 〈�x2(t )〉 in this many-body system. We start by
determining the behavior in the short-time limit t → 0, which
can be inferred from the distribution of cluster sizes in the
equilibrium state. To derive the cluster size distribution, we
can build on exact results for thermodynamic and structural
properties of the sticky-core fluid in equilibrium [50–52]. For
the pair correlation function, it was found that [52]

g(r) = 1

ρ

∞∑
n=1

{qnδ+(r − nσ ) + fn(r − nσ )�(r − nσ )}, (4)

where fn(r) are smooth functions of r, and

q =
√

1 + 4γ̃ − 1√
1 + 4γ̃ + 1

(5)

with

γ̃ = γ ρσ

1 − ρσ
. (6)

This dimensionless parameter is the stickiness multiplied by
the ratio of particle diameter σ to the mean size 1/ρ − σ of
free space between particles. It describes the effective sticki-
ness.

As shown in the Supplemental Material (SM) [53], the δ

functions in Eq. (4) with the amplitudes qn/ρ follow if the
cluster size distribution is the geometric distribution

wn = (1 − q)qn−1 . (7)

The mean cluster size then is given by

n̄(γ̃ ) = 1

1 − q
= 1

2
(
√

1 + 4γ̃ + 1). (8)

Both Eqs. (7) and (8) agree with the simulated data, see the
SM.

Initially, the tagged particle is part of an n-cluster with
probability ∝ nwn, and the center of mass of this n-cluster
has a diffusion constant D/n. Accordingly, the short-time
diffusion coefficient Dst of the tagged particle is obtained by
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averaging D/n over the distribution ∝ nwn, yielding

Dst (γ̃ , ρσ ) = D

n̄(γ̃ )
= 2D√

1 + 4γ ρσ

1−ρσ
+ 1

. (9)

When time increases, the Brownian motion of the tagged par-
ticle becomes mitigated due to the hindrance of free diffusion
by neighboring particles, leading to subdiffusion as described
by Eq. (1).

For determining the dependence of D1/2(γ̃ , ρσ ) on γ̃ and
ρσ , let us first consider a situation, where fragmentations and
mergers of the initial clusters during the course of time are
neglected. This situation corresponds to a diffusion of a tagged
particle in a random mixture of clusters with different fixed
sizes given by the geometric distribution (7).

To derive the diffusion coefficient of a tagged particle in
this cluster mixture, we use scaling arguments. If all clusters
are represented by ones having the same mean size n̄, the
crossover from the normal diffusive behavior at short times
to the subdiffusive one at long times will occur when the
root mean square displacement becomes proportional to the
average spacing between the clusters. Accordingly, the root
of the mean squared displacement at the crossover time t×
should be proportional to n̄(1/ρ − σ ). This implies 2Dst t× ∼
[n̄(γ̃ ) (1/ρ − σ )]2, yielding

t×(γ̃ , ρσ ) ∼ [n̄(γ̃ )(1/ρ − σ )]2

2Dst (γ̃ , ρσ )
= n̄(γ̃ )3(1 − ρσ )2

2Dρ2
. (10)

Knowing t×, we expect the mean squared displacement to
obey the following scaling behavior,

〈�x2(t )〉 = n̄(γ̃ )2 (1 − ρσ )2

ρ2
F

(
t

t×(γ̃ , ρσ )

)
. (11)

Here, F (u) is a scaling function with F (u) ∼ u for u → 0
and F (u) ∼ F∞u1/2 for u → ∞, where F∞ is a constant.
In the limit of hardcore interacting point particles (σ =
0, γ = 0), we obtain γ̃ = 0 and n̄(γ̃ = 0) = 1, and it is
known that D1/2 = √

D/π/ρ for equilibrated configurations
[28,29,33,39,40]. Accordingly, it must hold F∞ = √

2/π .
Simulations for the system with fixed cluster sizes confirm
the scaling behavior predicted by Eq. (11), see the SM.

Turning back to the system of adhesive particles, the short-
time diffusion coefficient in Eq. (9) must describe the behavior
in the limit t → 0, but we cannot expect Dst (γ̃ , ρσ ) to be un-
affected by the possible fragmentation and mergers of clusters
in the whole short-time regime t � t×.

However, our analysis above suggests that mean squared
displacements can be scaled along a curve in the ργ plane,
where the effective stickiness γ̃ is constant. The scaling
(11) should hold for 〈�x2(t )〉 along such curves, with a γ̃ -
dependent scaling function Fγ̃ (t/t×(γ̃ , ρσ )). The functional
behavior of Fγ̃ (u) for u → 0 and u → ∞ must be unchanged,
but we now have to consider a γ̃ -dependent amplitude factor
F∞

γ̃ .
Figures 2(a) and 2(b) show correspondingly scaled simu-

lation data of the mean square displacements for various ρ

and γ at fixed γ̃ = 0.2 [Fig. 2(a)] and γ̃ = 2 [Fig. 2(b)]. They
are in excellent agreement with the scaling prediction. The
inset in Fig. 2(b) shows that the scaling functions Fγ̃=2(u) and
Fγ̃=0.2(u) are equal for small u, but differ for larger u. Within

FIG. 2. Scaled mean squared displacement as a function of
scaled time according to Eq. (11). For (a) fixed γ̃ = 0.2 and (b) fixed
γ̃ = 2, the data for various densities ρ and adhesive strengths γ =
(1/ρσ − 1)γ̃ collapse onto common master curves [γ varies accord-
ing to Eq. (6)]. The inset in (b) shows the ratio Fγ̃=2(u)/Fγ̃=0.2(u) of
the two scaling functions, which increases from one for u → 0 to the
constant value 1.144 predicted by Eq. (13) for u → ∞. The constant
is indicated by the dashed horizontal line.

the numerical uncertainties, the ratio Fγ̃=2(u)/Fγ̃=0.2(u) in-
creases monotonically from one for small u to a value of about
1.14 for large u.

Surprisingly, we can determine the limit F∞
γ̃ of the scaling

function Fγ̃ (u) from equilibrium properties. This is due to
the fact that the coefficient D1/2 in Eq. (1) can be expressed
by D, ρ and the isothermal compressibility χ [32,39]. For
the adhesive particle system, χ is known and we obtain (for
details, see the SM)

D1/2(γ̃ , ρσ ) =
√

kBT χD

πρ
= 1 − ρσ√

πρ

√
[2n̄(γ̃ ) − 1]D . (12)

For long times, 2D1/2t1/2 must equal the asymptotic behavior
of Eq. (11). Taking t×(γ̃ , ρσ ) from Eq. (10), this yields

F∞
γ̃ =

√
2

π

[
2 − 1

n̄(γ̃ )

]
. (13)

This function is weakly increasing from the point-particle
limit F∞

γ̃=0 = √
2/π to F∞

γ̃=∞ = √
2F∞

γ̃=0 for strong adhe-
sive interaction or, more precisely, strong effective stick-
iness γ̃ . In agreement with Eq. (13), the simulated
data of Fγ̃=2(u)/Fγ̃=0.2(u) for large u approach the limit
F∞

γ̃=2/F∞
γ̃=0.2

∼= 1.144, see the inset of Fig. 2(b).
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In summary we have developed a scaling theory for the
time-dependent mean squared displacement of a tagged par-
ticle in single-file diffusion of adhesive hard spheres. The
scaling applies to curves in the plane of stickiness and par-
ticle densities, where the effective stickiness is constant. The
effective stickiness is the product of stickiness and the ratio of
particle diameter to mean size of free space between particles.
Due to the adhesion, particles gather in clusters with sizes
distributed according to a geometric distribution, where the
mean cluster size increases with the effective stickiness. The
clustering slows down the normal diffusive behavior at short
times, i.e., the short-time diffusion coefficient decreases with
increasing adhesive strength. By contrast, the subdiffusion at
long-times is sped up with raising adhesive strength because
collective density fluctuations are decisive for the tracer to
propagate over long distances. These density fluctuations be-
come stronger if the particles form clusters and the mean free
space between clusters becomes larger. The crossover from
the normal to the subdiffusive regime occurs at a time, which
increases with the third power of the mean cluster size and is
thus growing with the adhesiveness.

The effect of the density fluctuations on the coefficient D1/2

characterizing the speed of the subdiffusive spreading can be
fully taken into account by considering their long-wavelength
behavior, which is given by the zero-wave number limit of
the static structure factor S(0) [32]. The latter is related to the
isothermal compressibility χ , S(0) = kBT ρ χ . For hardcore
interacting particles, the important role of the compressibility
has been pointed out already in early studies of single-file
diffusion [39].

An interesting aspect of the dependence of D1/2 on S(0)
concerns the impact of initial conditions: what matters for
D1/2 is the initial arrangement of the particles in the system,
while the initial placement of the tagged particle is irrelevant.
In our simulations of sticky hard spheres, we show this inde-
pendence of D1/2 on the initial starting position of the tagged
particle in the SM. For measurements this implies that parti-
cles injected as, e.g., radioactive or fluorescent-labeled tracers,
need not to be equilibrated with the surrounding structure.

Furthermore, the sensitivity of D1/2 to S(0) can be im-
portant to understand different speeds of subdiffusion, as
reflected, for example, in traversal times of particles through
pores. One may also think of utilizing this effect: a patterning
of a channel leading to a larger particle separation or a cluster-
ing of particles should facilitate the diffusive motion through
the channel. Systematic investigations of such pattern-induced
enhancement of single-file diffusion and the effects of sticki-
ness should be possible, e.g., in microfluidic devices [54,55].
For adhesive particles, it is in particular interesting to also
study the short-time regime, where the adhesiveness and parti-
cle clustering can be determined from the short-time diffusion
coefficient.
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