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The Carnot cycle is a prototype of an ideal heat engine cycle to draw mechanical energy from the heat flux
between two thermal baths with the maximum efficiency, dubbed as the Carnot efficiency ηC. Such efficiency is
reached by thermodynamical equilibrium processes with infinite time, accompanied unavoidably with vanishing
power-energy output per unit time. The quest to acquire high power leads to an open question of whether
a fundamental maximum efficiency exists for finite-time heat engines with given power. We experimentally
implement a finite-time Carnot cycle with sealed dry air as a working substance and verify the existence of a
trade-off relation between power and efficiency. Efficiency up to (0.524 ± 0.034)ηC is reached for the engine
to generate the maximum power, consistent with the theoretical prediction ηC/2. Our experimental setup shall
provide a platform for studying finite-time thermodynamics consisting of nonequilibrium processes.
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A heat engine converts heat into useful energy, such as
mechanical work or electricity. Sadi Carnot derived in 1824
an upper bound ηC = 1 − Tc/Th [1,2] of the conversion ef-
ficiency in the Carnot cycle with two isothermal processes
for the working substance in two thermal baths with temper-
atures Tc and Th and two adiabatic processes. In isothermal
processes, a controlled parameter is tuned in a quasi-static
fashion—physically much slower than the equilibrium time
scale—to reach the Carnot efficiency [2]. Faster processes typ-
ically result in more energy dissipation with a consequently
lower efficiency, yet can potentially increase the output power
[2,3]. Such a trade-off between power and efficiency suggests
the possibility of thermodynamically optimizing the two,
namely, increasing efficiency while retaining the power or
vice versa [4–19]. One might wonder what is the best achiev-
able efficiency, if one exists, for any output power posted by
the fundamental laws of thermodynamics [20–26].

Answering such a question requires quantitative eval-
uations on irreversibility in fundamental nonequilibrium
thermodynamics [27,28]. Theoretical models within the near-
equilibrium region were explored to reveal a trade-off relation
between power and efficiency [20,23,25,29,30] and show the
existence of maximum efficiency for any given power. More
importantly, a fundamental limit of efficiency with a universal
leading order ηC/2 is predicted for the engine generating the
maximum power [15,18,19,21] in various types of finite-time
cycles. Aside from the theoretical achievements, it remains
with urgency to devise finite-time heat engine cycles to exper-
imentally test these fundamental finite-time thermodynamical
constraints [31–35]. The current difficulty to implement the
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finite-time Carnot cycle is to promptly change the temperature
of the thermal bath before and after the adiabatic processes,
whose operation time should be far shorter than the equi-
librium time to avoid heat exchange [32]. We develop an
adiabatic-without-run scheme to implement the finite-time
Carnot cycles by separately running only the two finite-time
isothermal processes in the high- and low-temperature baths.
Such a design is based on the observation that the evaluation
of a finite-time Carnot cycle is through two quantities—the
heat exchange with a high-temperature bath to evaluate the cy-
cle efficiency and the total work extracted to evaluate the cycle
power. The heat exchange can be measured with pressure and
volume, and the total work extracted is obtained with the heat
exchange difference through the energy conservation law of
thermodynamics, without the need to run the two adiabatic
processes. With this observation, we can change the bath
temperature with the desired accuracy to evaluate the perfor-
mance of the finite-time Carnot engine. Our scheme allows the
essential quantities for evaluating the engine’s performance
to be obtained from the directly measurable work in the two
finite-time isothermal processes with the first law of thermo-
dynamics of energy conservation.

Our experimental verification of the power-efficiency
trade-off relation is performed with dry air [36] as a working
substance in the finite-time Carnot cycle, which is imple-
mented by changing the volume of the gas V (t ) = V0 + AL(t )
inside a cylindric chamber by moving a piston along a de-
signed path L(t ). A = πd2/4 is the area of the chamber’s
cross section with diameter d = 5.00 cm. The chamber is
immersed in a water tank as the thermal bath. And the main-
tenance of the bath temperature (±0.1 K) is achieved by a
feedback temperature control unit. We trace the pressure p(t )
with pressure sensors on the chamber, and the piston position
L(t ) with the stepper motor feedback signal.

2470-0045/2023/107(4)/L042101(5) L042101-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.L042101&domain=pdf&date_stamp=2023-04-18
https://doi.org/10.1103/PhysRevE.107.L042101


ZHAI, CUI, MA, SUN, AND DONG PHYSICAL REVIEW E 107, L042101 (2023)

FIG. 1. The finite-time Carnot cycle under the temperature com-
bination (Th, Tc) = (319.2, 308.2) K. (a) The Clapeyron pressure-
volume (p-V ) graph of the finite-time Carnot cycle. The red (upper)
and blue (lower) solid lines with arrows show the finite-time isother-
mal expansion (A → B′ → B) with duration τh and compression
(C → D′ → D) with duration τc, and the green solid lines (left
and right) show the adiabatic processes (B → C and D → A) with-
out actual run. Two relaxation processes (B′ → B and D′ → D)
with the waiting time 2τrelax are added to allow the system to
reach equilibrium with the thermal bath. The ideal Carnot cycle
(A → B → C → D) is presented as gray dashed lines for reference.
(b and c) The gaseous volume Vh(c)(t ) (reflected by the dashed line)
and the effective temperature trace �Th(c)(t ) (reflected by the solid
line) during the finite-time isothermal expansion and compression.
The ideal gas is expanded or compressed with the constant speed
L(t ) = L0 + νt , with νexp = 20.00 mm/s and νcom = 20.00 mm/s.
The total operation time for the example cycle is ttot = 25.92 s.

Our design of the finite-time Carnot cycle is illustrated in
Fig. 1(a) with the Clapeyron pressure-volume (p-V ) graph
composed of two finite-time isothermal processes (upper
red and lower blue solid curves) and two no-run adiabatic
processes (left and right green solid curves). The graph
shows an example run with the temperature combination
(Th, Tc) = (319.2, 308.2) K. In each run of the finite-time
isothermal process, the gas chamber is immersed in the water
bath for 10 s to allow the initial equilibration of the gas
with the water bath. The gas is expanded [upper red line
A → B′ in Fig. 1(a)] or compressed [lower blue line C → D′
in Fig. 1(a)] in the two finite-time isothermal processes with
constant speeds controlled by the stepper motor with the preci-
sion ±0.02 mm. The pressure traces p(t ) measured in the two
processes deviate significantly from the equilibrium pressure
(dashed black curves) due to the average finite relaxation
time τrelax = 2.77 s. After the expansion and compression,

TABLE I. Piston positions of finite-time Carnot cycle. Piston
positions B and D are calculated with Eq. (1).

Expansion Compression
Th(K) Tc(K) ηC(10−3) LB(mm) LD(mm)

313.2 311.2 6.39 248.76 17.22
313.2 310.2 9.58 238.22 25.98
314.2 310.2 12.73 227.86 34.72
315.2 310.2 15.87 217.62 43.50
316.2 310.2 18.98 207.49 52.33
317.2 310.2 22.07 197.47 61.20
317.2 309.2 25.22 187.31 70.34
318.2 309.2 28.29 177.48 79.32
319.2 309.2 31.33 167.76 88.34
319.2 308.2 34.47 157.80 97.74

additional waiting time (2τrelax) is added to allow the gas to
relax to the equilibrium state (B′ → B and D′ → D).

In Figs. 1(b) and 1(c), we show the volume change Vh(c)

(dashed lines) and the effective temperature deviations (solid
lines) �Th(c)(t ) = Ts(t ) − Th(c) from the thermal bath tem-
perature Th(c). Here, Ts(t ) is the effective gas temperature,
which is experimentally estimated by the ideal gas state equa-
tion pV = nRTs with the amount of substance of gas in moles
n and the ideal gas constant R. The gas relaxes to equilibrium
with the corresponding thermal bath within the error range
determined by the pressure sensors at the end of the relaxation
processes (B′ → B and C′ → C).

In the adiabatic-without-run scheme, four piston positions
(A, B,C, D) are designed for each temperature combination
(Th, Tc) to ensure the connection between the end (B or D)
of one finite-time isothermal process to the beginning (C or
A) of the other one with adiabatic processes via the following
equations:

V γ−1
B Th = V γ−1

C Tc,

V γ−1
D Tc = V γ−1

A Th, (1)

where γ is the adiabatic index (γ = 1.40 for the dry air [37]).
The minimum volume Vmin is reached at LA = 0 mm, and the
maximum volume VC is reached at LC = 270.00 mm. The sets
of the designed connection points Li (i = B, D) are presented
in Table I.

We run the engine cycles with ten temperature combi-
nations to span the Carnot efficiency from ηC = 6.39×10−3

with the temperature combination (313.2, 311.2) K to ηC =
34.47×10−3 with (319.2, 308.2) K. For each combination, 27
different values of speeds (vh and vc, listed in the Supple-
mental Material [38]) are chosen to achieve a series of sets of
operation time τh and τc for finite-time isothermal expansion
A → B′ → B and compression processes C → D′ → D.

The heat exchange is obtained with the conservation of
energy as �Q = −W + �U , where �U is the internal en-
ergy change of the gas and W is the work performed in
each process as W = − ∫

p(t )AdL(t ). An important prop-
erty of the ideal gas is that its internal energy depends only
on its temperature Ts. The relaxation processes at the end
of each finite-time isothermal process ensure the unchanged
internal energy �UA→B = �UC→D = 0, since the gas is
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approximately in equilibrium with the water bath �Th(c)(t ) ≈
0. The heat absorbed from the high(low)-temperature bath is
thus measured directly via

Qh(c) = −Wh(c) =
∫ τh(c)

0
p(t )AL̇(t )dt . (2)

To evaluate the power and efficiency of the current finite-
time cycle, we need to determine the total work extracted in
the whole cycle. With the law of energy conservation, the total
work Wtot is measured by the difference of heat exchanges,
Wtot = Qh + Qc. And the power is calculated as the total work
extracted during a cycle divided by the total operation time
ttot = τh + τc,

P(τh, τc) = Wtot/(τh + τc). (3)

We remark here that the time for the two adiabatic processes
is ignored due to the requirement that the operation time of the
adiabatic process should be far shorter than the relaxation time
τrelax to avoid heat exchange [15,18]. The efficiency is given
by the ratio between the total work Wtot and the absorbed heat
Qh from the high-temperature thermal bath,

η(τh, τc) = Wtot/Qh. (4)

In Fig. 2(a), we show the plot of the power P(τh, τc) =
Wtot/ttot as the function of the two operation times τh and
τc for cycles under the temperature combination (Th, Tc) =
(319.2, 308.2) K. The competition between the increase of
total work Wtot (equal to the gray area enclosed by the p-V
curve) and the increase of total operation time τtot results in
a point of maximum power Pmax = 0.030 J/s on the power
surface with the optimal operation time τ ∗

h = 13.32 s and
τ ∗

c = 12.60 s [red arrow in Fig. 2(a)].
Recently, much theoretical attention has been drawn to

finding the trade-off between power and efficiency for finite-
time thermodynamic cycles [15,32]. Within the framework
of the low-dissipation model [15,18], a power and efficiency
trade-off relation [20,23,25] is predicted for the finite-time
Carnot cycle.

In Fig. 2(b), we show the scatter plot of the normalized
efficiency η/ηC and the normalized output power P/Pmax for
cycles with different operation times τh and τc. The error
bars of each set P and η are obtained from eight repeats
of each experimental run. The dashed red line shows the
theoretical constraint [25] between the normalized efficiency
η̃ ≡ η/ηC and power P̃ ≡ P/Pmax with the upper bound η̃ �
1 − (1 − ηC)P̃/[2(1 +

√
1 − P̃) − ηCP̃] and the lower bound

η̃ � (1 −
√

1 − P̃)/2. The red shadow region represents the
uncertainty of the constraint caused by the temperature fluc-
tuations of the water bath. The experimental data (colored
circles) fall into the region enclosed by the two margins of
the upper and lower bound in Fig. 2(b). The data illustrates not
only an upper bound for the achievable efficiency for the given
power, but also a lower bound for the worst efficiency for the
current finite-time Carnot cycle. The Carnot efficiency ηC =
34.47×10−3 is achieved with the increasing operation time τc

and τh at the top left corner with the vanishing power. Similar
plots for other temperature combinations are illustrated in the
Supplemental Material [38].

FIG. 2. Power and efficiency of the finite-time Carnot engine
under the temperature combination (Th, Tc) = (319.2, 308.2) K.
(a) Output power P(τh, τc ) as a function of operation time (τh, τc).
Each circle shows the output power averaged over eight repeats of the
measurement. The arrow shows the position of the maximum power
with the control time τ ∗

h = 13.32 s and τ ∗
c = 12.60 s. (b) Efficiency-

power trade-off (circles with error bar). The dashed blue line (upper)
shows the Carnot efficiency ηC = 34.47×10−3, and the blue shadow
presents the efficiency fluctuation due to temperature variation of
the water bath during the experiments. The total time of the cycle
is shown with colors.

The key quantity to evaluate the finite-time Carnot cycle
is the efficiency at the maximum power ηEMP, which was
suggested to have an upper limit independent of the properties
of the working substance [7,18]. We extract the efficiency
at the maximum power ηEMP for all the temperature com-
binations in our experiment, and show its dependence on
the Carnot efficiency in Fig. 3(a). The obtained maximum
efficiencies (markers with error bars) follow a simple relation
ηEMP = (0.524 ± 0.034)ηC. It agrees well with the efficiency
at maximum power of various models of finite-time cycles
to the first order of the Carnot efficiency ηC as ηth

EMP =
ηC/2 + O(η2

C), for example, in the Curzon-Ahlborn model [7]
ηCA = 1 − √

1 − ηC, in the recent proposed bound of stochas-
tic engines [16,18] ηC/(2 − ηC), and in the Feynman ratchets
η2

C/[ηC − (1 − ηC) ln(1 − ηC)] [19]. The coefficient 1/2 was
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FIG. 3. Optimized finite-time Carnot cycle with maximum
power. (a) Efficiency at maximum power (markers with error bars)
as a function of Carnot efficiency. The red solid line shows the
linear fit ηEMP = a + bηC yielding the parameters a = ±7.0×10−4

and b = 0.524 ± 0.034. The dashed black line shows the Curzon-
Ahlborn efficiency ηCA = 1 − √

1 − ηC. (b) Optimal operation time
(τ ∗

h , τ ∗
c ) for the maximum power in the cycles with different Carnot

efficiencies. The same symbols in (a) and (b) correspond to the same
experimental data set.

proved as a universal value independent of the system-specific
features in the linear response regime due to the symmetry of
the Onsager relations [15,28]. Our experimental data provide
a demonstration of the leading order with the coefficient 1/2.

Optimization of the cycle for maximum power is achieved
by choosing the operation time τh and τc. We determine

the corresponding optimal operation time (τ ∗
h , τ ∗

c ), illustrated
as markers in Fig. 3(b). The same symbols in (a) and (b)
correspond to the same experimental data set. The optimal
operation time (τ ∗

h , τ ∗
c ) is verified to be in the regime where

the 1/τ scaling is valid [32,36] (discussion in the Supplemen-
tal Material [38]). For higher Carnot efficiency, less optimal
operation time is needed to achieve the maximum power, and
in turn more irreversibility is generated.

In summary, we have experimentally implemented the
finite-time Carnot cycle with dry air as the working substance.
For any given output power, we have shown the existence of
the highest efficiency achieved with the designed operation
time, which is in agreement with the theoretical prediction of
power-efficiency constraint relations. Our results also verify
the theoretically predicted universal relation of the efficiency
at maximum power ηEMP = ηC/2 + O(η2

C) to the first order
of the Carnot efficiency as ηEMP = (0.524 ± 0.034)ηC. We
believe that the current setup will provide an ideal platform for
testing the finite-time thermodynamics predictions and also
spur more experimental efforts into exploring the finite-time
thermodynamics.
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