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Introduced in the early days of random matrix theory, the autocovariances δI j
k = cov(s j, s j+k ) of level spacings

{s j} accommodate detailed information on the correlations between individual eigenlevels. It was first conjec-
tured by Dyson that the autocovariances of distant eigenlevels in the unfolded spectra of infinite-dimensional
random matrices should exhibit a power-law decay δI j

k ≈ −1/βπ 2k2, where β is the symmetry index. In this
Letter, we establish an exact link between the autocovariances of level spacings and their power spectrum, and
show that, for β = 2, the latter admits a representation in terms of a fifth Painlevé transcendent. This result is
further exploited to determine an asymptotic expansion for autocovariances that reproduces the Dyson formula as
well as provides the subleading corrections to it. High-precision numerical simulations lend independent support
to our results.
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Introduction. Universal aspects of spectral fluctuations
in generic quantum systems which are fully chaotic in
the classical limit are accurately described by the random
matrix theory [1,2] (RMT). This statement, known as the
Bohigas-Giannoni-Schmit (BGS) conjecture [3], has sum-
marized earlier attempts [4–7] “to put in close contact two
areas—random matrix physics and the study of chaotic
motion—that have remained disconnected” until the mid-
1980s of the past century. Supported by a vast amount of
experimental and numerical evidence, the emergence of uni-
versal statistical laws (which, in appropriate energy or time
domains, are governed by global symmetries rather than by
system specialties) has later been advocated within a field-
theoretic [8] and a semiclassical approach [9].

To probe energy level fluctuations in the unfolded spectra
of bounded quantum systems, a number of spectral statistical
measures have been devised [1]. While it is customary to
distinguish between short- and long-range statistical indica-
tors (highlighting spectral correlations on the local and global
energy scales, respectively), we find it more appropriate—in
the context of this Letter—to assign them to two alterna-
tive classes of (i) ordinary and (ii) ordered level statistics.
The two clearly differ from each other on a formal level
due to much different mathematical structures lurking behind
them.

(i) The ordinary (linear) spectral statistics [10] describes
an energy spectrum as a whole without referring to a specific
eigenlevel. In the random matrix theory setting, it deals with
the fluctuation properties of a random variable

XN (λ) =
N∑

�=1

fN (λ�), (1)

where fN (λ) is a (not necessarily linear) function of interest
and λ = {λ1, . . . , λN } are (possibly unfolded) eigenvalues of

an N × N random matrix. Clearly, XN (λ) is invariant under the
ordering of N eigenlevels. Typical representatives of the ordi-
nary statistical indicators include two-point (or higher-order)
correlation functions, or their integrated counterparts—the
variance of the (fluctuating) number N (L) of eigenlevels in
the interval of length L or its higher-order cumulants.

(ii) The ordered level statistics refers to individual eigen-
levels and thus cannot be defined without their ordering. (For
one, any statistics dealing with level spacings is, unavoidably,
ordered.) Generically, it can be formulated in terms of a ran-
dom variable

XN (λ; c) =
N∑

�=1

c� fN (λ�), (2)

where (unfolded) random eigenvalues are ordered, that is,
{λ1 � . . . � λN }, and a sequence of weights c = {c1, . . . , cN }
is not a constant one, c �= c1N . The latter is a game changer
as it makes the moments of XN (λ; c) depend on spectral
correlation functions of all orders—the feature which is not
necessarily present in the ordinary level statistics. Taken to-
gether with the correlated nature of the RMT eigenvalues, this
explains why the ordered level statistics remains a relatively
unexplored territory.

From now on, we switch from the finite-N spectra to the
unfolded spectra of infinite-dimensional random matrices, de-
scribed by the universal Sineβ point process [11–13]. Such a
setting, implied by the BGS conjecture, provides an effective
calculational environment for quantifying universal spectral
fluctuations in fully chaotic quantum systems.

Arguably, the most thoroughly studied [1,14,15] example
of the ordered statistics is the distribution of level spacing
between consecutive eigenlevels. For the β = 2 Dyson’s sym-
metry class [1], associated with quantum chaotic systems with
broken time-reversal symmetry, the level spacing distribution
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equals

P∞(s) = d2

ds2
exp

(∫ 2πs

0

σ0(t ; ζ = 1)

t
dt

)
, (3)

where σ0(t ; ζ = 1) is the single member (ζ = 1) of a family
of one-parameter solutions to the fifth Painlevé equation

(tσ ′′
0 )2 + (tσ ′

0 − σ0)[tσ ′
0 − σ0 + 4(σ ′

0)2] = 0, (4)

which are analytic at t = 0 and satisfy the ζ -dependent bound-
ary condition

σ0(t ; ζ ) = − t

2π
ζ −

(
t

2π

)2

ζ 2 + O(t3) as t → 0. (5)

The same family of one-parameter solutions will later surface
in a nonperturbative description of the autocovariances of
level spacings which are the main focus of our study.

From distribution of level spacings to their correlations.
Stunning in its appearance, the exact result Eq. (3) is com-
pletely local as it provides no information about correlations
between different spacings. To probe the latter, it is beneficial
to define yet another ordered spectral statistics—the autoco-
variances

δI j
k = cov(s j, s j+k ) = 〈s js j+k〉 − 1 (6)

of level spacings located |k| eigenlevels apart. Here, the
�th (� ∈ N) level spacing [16] s� = λ� − λ�−1 is asso-
ciated with a sequence of ordered, unfolded eigenlevels
{0 � λ1 � λ2 � . . .}; angular brackets 〈· · · 〉 denote an appro-
priate ensemble averaging.

Little is known, let alone rigorously proven, about level
spacing correlations. Two properties of autocovariances of
level spacings are self-evident though: (i) Describing the spec-
tral bulk, δI j

k does not depend on the position j of a reference
eigenlevel being a function of |k| only [1] (for this reason we
shall write δIk or δI|k| from now on); (ii) δIk → 0 as k → ∞
since the correlations between spacings of extremely distant
eigenlevels should eventually die out.

How fast do the correlations weaken as the distance between
eigenlevels grows? In the numerical study of nontrivial zeros
of the Riemann zeta function, Odlyzko [17] has quoted an
unpublished conjecture by Dyson,

δIk ≈ δID
k = − 1

2π2k2
, (7)

assumed to hold asymptotically for sufficiently large k. A
heuristic argument in favor of Dyson’s conjecture was out-
lined in Refs. [18,19], where it was argued that the variance
var(λk ) of the kth ordered eigenlevel λk in the unfolded spec-
trum can be related to the variance 	2(k) of the number of
eigenlevels N (k) in the interval of integer length k 
 1,

var(λk ) ≈ 	2(k) − 1
6 . (8)

Detailed knowledge of the number variance [1,2], combined
with the equality [16,20]

δIk = 1
2 [var(λk+1) − 2 var(λk ) + var(λk−1)], (9)

had produced [18,19] the Dyson formula Eq. (7).
The same relation Eq. (8) has later been employed by

Bohigas and collaborators [21,22] in an attempt to study the

autocovariance of level spacings beyond Dyson’s conjecture.
Two alternative approaches [21,22] brought out two different
results for δI|k|, thus questioning the validity of both. This
discrepancy adds up to a somewhat obscure status [23] of
the asymptotic formula Eq. (8). Since the number variance
	2(k) in its right-hand side is a two-point spectral statistics
while the variance var(λk ) in the left-hand side is clearly not,
Eq. (8) misses all the information about higher-order spectral
correlations. How important is this lack of knowledge for the
autocovariances?

Motivation. The scarce and inconclusive understanding
of level spacing correlations in the random matrix theory
summarized in the two last paragraphs suggests that a non-
perturbative theoretical framework is required to tackle the
problem.

In this Letter, we outline how such a framework can be built
by linking the autocovariances of level spacings to yet another
(ordered) spectral statistics known as the power spectrum [24]
of level spacings [17] and the power spectrum of eigenlevels
[25,26]. To the best of our knowledge, discussions of their
connection to the autocovariances are lacking in the literature.

Over the past two decades, the power spectra have emerged
as an effective tool for studying both system-specific and
universal properties of quantum systems. In particular, the
power spectrum analysis reveals [25] whether the correspond-
ing classical dynamics is regular or chaotic, or a mixture [30]
of both, and encodes a “degree of chaoticity” [31]. In com-
bination with other long- and short-range spectral fluctuation
measures, the power spectrum statistics provides an effective
way to identify system symmetries, determine a degree of
incompleteness of the measured spectra, and get clues about
the system’s internal dynamics. On the experimental side, the
power spectrum was measured in Sinai [32] and perturbed
rectangular [33] microwave billiards, microwave networks
[34], and three-dimensional microwave cavities [35]. More
recently, the power spectra surfaced in the studies [36] of the
nonergodic extended regime in physical and random matrix
models.

This Letter brings another dimension to the power spec-
trum statistics by positioning it as an elaborative theoretical
tool tailor-made for a detailed analysis of correlations between
level spacings which refused a nonperturbative treatment for
several decades.

Main results and discussion. Our approach rests on the
exact relation (β = 2)

Ssp
∞(ω) =

∑
k∈Z

δI|k|zk

= 1

π
Re

∫ ∞

0
dλ exp

(∫ λ

0

dt

t
σ0(t ; ζ = 1 − eiω )

)
(10)

between the autocovariances δI|k| of level spacings and their
power spectrum Ssp

∞(ω) [24], the latter being equivalently
defined by Eqs. (12) and (13) below. Here, z = eiω while
σ0(t ; ζ = 1 − z) belongs to a one-parameter family of the
fifth Painlevé transcendent defined by Eqs. (4) and (5).
Equation (10) is the first main result of this Letter. Notice, that
contrary to the level spacing distribution Eq. (3), described
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FIG. 1. Visualization of numerical data produced from M = 108

samples of CUE(N ) with N = 1024. Blue circles and red crosses rep-
resent the k dependence of the differences δIk (N, M ) − δID

k (blue)
and δIk (N, M ) − (δID

k + δIS
k ) (red) between numerically computed

autocovariances δIk (N, M ) and either the leading-order Dyson’s
term [Eq. (7)] or the improved analytical prediction [Eq. (11)]. The
vertical bars around the data points are 99% confidence intervals. The
inset shows the ratios δIk (N, M )/δID

k and δIk (N, M )/(δID
k + δIS

k ),
respectively, for the same numerical data. A detailed description of
the numerical procedure is given at the end of the Letter.

in terms of the fifth Painlevé transcendent σ0(t ; ζ ) at ζ = 1,
more detailed knowledge of σ0(t ; ζ )—on the entire unit circle
|1 − ζ | = 1—is needed to account for correlations of level
spacings.

Viewed as a Fourier series, Eq. (10) can be inverted to bring
a nonperturbative representation of autocovariances δI|k| for
all k ∈ Z [see Eq. (19) below]. Such an exact representation
is potentially useful for both numerical and analytical analyses
of δI|k|. Leaving the former, computationally demanding route
for a future study, we shall opt for the latter, aiming to generate
an asymptotic expansion for autocovariances of level spacings
as k → ∞. In particular, we derive the first three terms of such
an expansion,

δIk = − 1

2π2k2
− 3

2π4k4

(
log(2πk) + γ − 11

6

)
+ o(k−4), (11)

where γ = 0.5772 . . . is the Euler constant. While the
leading-order term in Eq. (11) merely validates the Dyson
conjecture [Eq. (7)], the subleading k−4 log k and k−4 terms
(to be denoted δIS

k ) are completely new. Equation (11) is the
second main result of this Letter.

In Fig. 1, we confront the analytical prediction Eq. (11)
with the autocovariances of level spacings computed numeri-
cally for large-dimensional Haar distributed unitary matrices.
Even though one cannot expect that the asymptotic result
Eq. (11) will provide a fair approximation for level spacing
autocovariances at very low values of k, the red-marked data
clearly indicate that our formula for δID

k + δIS
k fits a high-

precision numerics very well starting with k = 5. Indeed, for
all k � 5, the horizontal zero line—corresponding to a virtual
situation where numerically evaluated autocovariances would

coincide exactly (for all k) with the analytical prediction
δID

k + δIS
k —lies inside the red-marked confidence intervals.

In sharp contrast, a comparison of numerical data with the
Dyson formula Eq. (7) reveals a disagreement up to k = 14
as the blue-marked confidence bars start to repeatedly hit the
zero line only afterwards.

Derivation of the first result. We prove Eq. (10) in three
steps. (i) First, we define the power spectrum of level spacings
[17] as the limit

Ssp
∞(ω) = lim

n→∞ Ssp
n (ω), (12a)

Ssp
n (ω) = 1

n

n∑
�,m=1

cov(s�, sm)z�−m (12b)

[see notation specified below Eq. (6)]. Here, z = eiω and
0 � ω � π . The stationarity of level spacings, supplemented
by a sufficiently fast decay of autocovariances δIk = O(k−p)
with p > 1 as k → ∞, ensures that the limit in the right-hand
side exists and approaches the continuous function

Ssp
∞(ω) =

∑
k∈Z

δI|k| zk . (13)

(ii) Second, we define the power spectrum of eigenlevels
[24,25,27]

Seig
∞ (ω) = lim

n→∞ Seig
n (ω), (14a)

Seig
n (ω) = 1

n

n∑
�,m=1

cov(λ�, λm)z�−m (14b)

[see notation below Eq. (6)], and further claim the identity

Seig
∞ (ω) = 1

4 sin2(ω/2)

[
Ssp

∞(ω) + Ssp
∞(0)

]
, (15)

which links the power spectrum of eigenlevels Seig
∞ (ω) to the

power spectrum of spacings Ssp
∞(ω) for ω ∈ (0, π ]. In the

particular case of the Sineβ point process, the contribution
Ssp

∞(0) nullifies due to the sum rule [37]
∑

k∈Z δI|k| = 0 which
accounts for zero level compressibility. (iii) Third, the power
spectrum of eigenlevels Seig

∞ (ω) for the Sine2 determinantal
point process (which is of our main interest) is known in
terms of a fifth Painlevé transcendent [Eqs. (4) and (5)] owing
to the recent study [29]. Combining Eqs. (13) and (15) with
Theorem 1.2 of Ref. [29], which states that the power spec-
trum of eigenlevels equals

Seig
∞ (ω) = 1

4π sin2(ω/2)

× Re
∫ ∞

0
dλ exp

(∫ λ

0

dt

t
σ0(t ; ζ = 1 − eiω )

)
(16)

for all ω ∈ (0, π ), we reproduce the announced Eq. (10).
It remains to justify the identity Eq. (15) which holds

generically for random spectra with stationary level spac-
ings. To proceed, we start with the finite-n power spectrum
of eigenlevels Seig

n (ω) defined by Eq. (14b). As soon
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as cov(λ�, λm) = ∑�
i=1

∑m
j=1 cov(si, s j ), one observes the

relation

Seig
n (ω) = 1

4 sin2(ω/2)

(
Ssp

n (ω) + Ssp
n (0) − 2

n
rn(ω)

)
, (17)

where Ssp
n (ω) is the finite-n power spectrum of spacings [see

Eq. (12b)], while

rn(ω) = Re
n∑

�,m=1

δI|�−m|z�−(n−1). (18)

As n → ∞, the first two terms in Eq. (17) approach those
in Eq. (15). The third term is of the order O(n−1) since the
fast decay of autocovariances, assumed below Eq. (12), keeps
rn(ω) bounded for any fixed ω ∈ (0, π ]. Hence, it can safely
be dropped.

Derivation of the second result. To prove Eq. (11), we start
with the Fourier inversion formula

δIk = 1

π

∫ π

0
Ssp

∞(ω) cos(ωk)dω (19)

and calculate its asymptotics for k ∈ N large enough by mak-
ing use of the stationary phase approximation. As k → ∞, the
integral Eq. (19) is dominated by vicinities of the endpoints.
Their contributions can be determined by repeatedly employ-
ing integration by parts. In the vicinity of ω = 0, the required
information will be extracted out of the small-ω expansion of
the power spectrum (ω > 0)

Ssp
∞(ω) = ω

2π
+ ω3

4π3
log

(
ω

2π

)
+ O(ω4), (20)

which follows from Eq. (15) combined with Proposition 4.10
of Ref. [29] (see also Theorem 2.11 of Ref. [20]). As for the
upper integration bound, 2π periodicity and the evenness of
Ssp

∞(ω) imply that its derivatives of odd orders with respect to
ω vanish at ω = π , that is, Ssp

∞
(2 j−1)(π ) = 0 for j = 1, 2, . . . .

To achieve the accuracy o(k−4) in the asymptotic expansion
of δIk , four integrations by parts are required. Spotting that
both the first and second derivatives of the power spectrum
Ssp

∞(ω) stay finite at ω = 0 while the third derivative possesses
there a logarithmic singularity, we obtain after three consecu-
tive integrations by parts,

δIk = − 1

2π2k2
+ 3

2π4k3

∫ π

0
log ω sin(ωk)dω

+ 1

πk3

∫ π

0
S̃sp

∞
(3)

(ω) sin(ωk)dω, (21)

where

S̃sp
∞

(3)
(ω) = Ssp

∞
(3)(ω) − 3

2π3
log ω (22)

is bounded for ω ∈ [0, π ]. Calculating the first integral in
Eq. (21) exactly while handling the second integral by parts,

we derive

δIk = − 1

2π2k2
− 3

2π4k4

(
log(2πk) − Ci(πk) + γ − 11

6

)
+ 1

πk4

∫ π

0
S̃sp

∞
(4)

(ω) cos(ωk)dω. (23)

Here, Ci(x) is the cosine integral.

Two remarks are in order. (i) First, since S̃sp
∞

(4)
(ω) is inte-

grable on ω ∈ [0, π ], the integral in Eq. (23) is of the order
o(1), so that its contribution to δIk is of the order o(k−4)
as k → ∞. (ii) Second, Ci(πk) = O(k−2) provided k ∈ N.
Applying (i) and (ii) to Eq. (23), we reproduce the announced
asymptotic expansion Eq. (11).

Description of numerical procedure. To evaluate the
level autocovariances numerically, we create M = 108 sam-
ples of random CUE(N ) spectra of the size N = 1024.
Denoting {θ (α)

� }N
�=1 a set of ordered CUE(N ) eigenangles gen-

erated in αth realization (1 � α � M), we construct a set
{s̃(α)

� = θ
(α)
�+1 − θ

(α)
� }N−1

�=1 of associated spacings. Next, we com-

pute the �th mean spacing �� = M−1 ∑M
α=1 s̃(α)

� and construct
a set of unfolded spacings {s(α)

� = s̃(α)
� /��}N−1

�=1 for each sam-
ple α.

In order to minimize potential fluctuations in numerically
evaluated autocovariances, we perform both the (running) en-
ergy averaging within each sample,

δI (α)
k (N ) = 1

N − 1 − k

N−1−k∑
�=1

(
s(α)
� s(α)

�+k − 1
)
, (24)

and, on the top of it, the sample averaging

δIk (N, M ) = 1

M

M∑
α=1

δI (α)
k (N ). (25)

So evaluated autocovariances of level spacings are plotted in
Fig. 1. Due to the statistical independence of random variables
{δI (α)

k (N )}M
α=1, the confidence interval at the 99% level equals

δIk (N, M ) ± σk (N, M ), where

σk (N, M ) = c0.99

√
varα

[
δI (α)

k (N )
]

M
. (26)

Here, varα[· · · ] is a sample variance, and c0.99 ≈ 2.58. For
all 2 � k � 20, the length 2σk (N, M ) of the confidence in-
terval turned out to be of the order 4 × 10−6. Finally, we
remark that the finite-size effects [38], which are expected
to be of the order O(N−2), are small enough and should
not affect our numerical results for the chosen sampling
size.
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